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We present the first calculations performed with the Stepped-Pressure Equilibrium Code (SPEC)
in stellarator geometry. Provided a boundary magnetic surface, stellarator vacuum fields with islands
are computed and verified to machine precision, for both a classical l = 2 stellarator field and for
a Wendelstein 7-X limiter configuration of the first experimental campaign. Beyond verification, a
detailed comparison of SPEC solutions to Biot-Savart solutions for the corresponding coil currents is
shown. The level of agreement is quantified and the error is shown to be dominated by the accuracy
with which the boundary representation is given. Finally, partially relaxed stellarator equilibria are
computed with SPEC and verification is presented with force-balance down to machine precision.

PACS numbers: 52.35.Ra, 52.35.Kt, 52.65.Ff

I. INTRODUCTION

Verification and validation of numerical codes are the
two milestones in the path towards predictive capability
and are essential to guarantee code reliability [1]. Ver-
ification answers the question: are we solving the equa-
tions correctly? Validation answers the question: are
we solving the correct equations? More precisely, code
verification provides numerical proof that the code is ac-
tually solving the equations that it claims to be solving,
with increasing accuracy as the numerical resolution is
increased. Code validation quantifies the level of agree-
ment between numerical predictions and experimental
measurements for a given set of observables.

Fusion research increasingly depends upon fast, robust,
and reliable numerical codes capable of describing three-
dimensional magnetohydrodynamic (MHD) equilibria in
toroidally confined plasmas, which generally consist of
an intricate combination of magnetic surfaces, magnetic
islands, and magnetic field-line chaos [2]. The Stepped-
Pressure Equilibrium Code (SPEC) was developed as one
possible approach to fulfil this highly non-trivial task [3].
SPEC has been verified in axisymmetry and for slightly
perturbed configurations [3–6]. Here we present the first
SPEC calculations of equilibria in stellarator geometries,
including a Wendelstein 7-X (W7-X) vacuum field limiter
configuration of the first experimental campaign [7].

Section II briefly describes the SPEC code. Verifi-
cation of vacuum fields is presented in Sec. III, and in
Sec. IV a detailed comparison of SPEC solutions to Biot-
Savart solutions is presented. Section V provides a verifi-
cation of stellarator equilibria with two relaxed volumes.
Conclusions follow in Sec. VI.

II. THE SPEC CODE

SPEC [3] was developed to calculate MHD equilibria as
extrema of the multi-region, relaxed MHD (MRxMHD)
energy functional proposed by Hole, Hudson and Dewar
[8, 9]. While in ideal MHD the magnetic topology is

continuously constrained, in MRxMHD the topology is
only discretely constrained, thus allowing for partial re-
laxation. More precisely, the plasma is partitioned into
a finite number, N , of nested volumes, Vv, that undergo
Taylor relaxation. These volumes are separated by N−1
interfaces, Iv, that are constrained to remain magnetic
surfaces during the energy minimization process. The lo-
cation and shape of these surfaces is a priori unknown
and determined self-consistently by a force-balance con-
dition. MRxMHD equilibrium states satisfy

∇×B = µvB in Vv (1)[[
p+

B2

2

]]
v

= 0 in Iv (2)

for v = 1, . . . N , and where [[·]]v is the jump across the
vth interface and p is the pressure, which is constant
in each relaxed volume. This class of equilibria bridges
the gap between Taylor relaxed states and ideal MHD
equilibrium states in a very precise way [10]. Moreover, it
allows for the possibility of non-smooth solutions, which
are ubiquitous to the three-dimensional MHD problem.

As of now, SPEC is a fixed-boundary code and requires
specification of the boundary in terms of the harmonics of
its geometry. For stellarator symmetry, a general surface
can be represented as R(θ, ϕ)R̂+ Z(θ, ϕ)Ẑ, with

R =
∑
mn

Rmn cos (mθ − nNpϕ) (3)

Z =
∑
mn

Zmn sin (mθ − nNpϕ) (4)

where Np is the field periodicity and θ, ϕ ∈ [0, 2π]. Here

R̂ = cosϕî+ sinϕĵ and Ẑ = k̂, where î, ĵ, and k̂ are the
Cartesian unit vectors. While the boundary harmonics
are given as input, the harmonics of each internal in-
terface are unknown and iteratively adjusted during the
energy minimization process in order to satisfy Eq. (2).

Akin to other equilibrium codes, SPEC also needs
specification of two profiles, e.g., the pressure in each re-
laxed volume, p(ψv), and the rotational transform on ei-
ther side of each interface, ι-±(ψv), in terms of the toroidal



2

magnetic flux, ψv, enclosed by each volume. Instead of
the rotational transform, it is also possible to specify the
Beltrami parameter, µv, and the poloidal magnetic flux,
ψp,v, enclosed by each volume; except for the innermost
volume, where, as in Taylor’s theory [11], only the Bel-
trami parameter needs to be specified in addition to the
enclosed toroidal flux.

The SPEC code provides the equilibrium solution in
terms of the magnetic vector potential, A, which is writ-
ten as A = Aθ∇θ + Aϕ∇ϕ by a proper choice of gauge.
In each volume, the covariant components of the vector
potential are represented as

Aθ(s, θ, ϕ) =
∑
m,n,l

Aθ,m,n,lTl(s) cos (mθ − nNPϕ) (5)

Aϕ(s, θ, ϕ) =
∑
m,n,l

Aϕ,m,n,lTl(s) cos (mθ − nNPϕ) (6)

where s ∈ [−1, 1] and the toroidal coordinates (s, θ, ϕ) are
adapted to the interface geometries defining each volume.
The boundary conditions on A are such that the enclosed
poloidal and toroidal magnetic fluxes are enforced and
B ·n = 0 is guaranteed on the two interfaces defining the
volume. The functions Tl(s) are the Chebyschev polyno-
mials of order l [12]. The numerical resolution in SPEC is
therefore given by Lrad ≡ max(l), Mpol ≡ max(m), and
Ntor ≡ max(n). We note that while Mpol and Ntor are
the same in each volume, Lrad may be different in each
volume. Finally, in the innermost volume, regularization
factors are included in Eqs. (5) and (6) in order to ensure
well-behaved solutions (for more details, see Ref. [3]).

III. VERIFICATION OF VACUUM FIELDS

There is a unique magnetic field B [13], up to a scale
factor, that satisfies

∇×B = 0 in V (7)

∇ ·B = 0 in V (8)

B · n̂ = 0 on ∂V (9)

where V is a volume enclosed by a surface ∂V and n̂
is the unit vector normal to the surface.

The SPEC code can be used to calculate vacuum fields
given a boundary magnetic surface. In fact, Eq. (7) can
be seen as a Taylor state ∇ × B = µB with no parallel
current, namely µ = 0. These states can be computed
with SPEC by considering one relaxed volume (N = 1)
with no current (µ = 0) and no pressure (p = 0), and
providing the geometry of the boundary and the total
enclosed toroidal flux. Equation (8) is satisfied by con-
struction since the magnetic field in SPEC is given in
terms of a magnetic vector potential, B = ∇×A. Equa-
tion (9) is also satisfied by construction since, on the
boundary, the geometry of the coordinate grid coincides
with the geometry of the boundary and the magnetic
field on the boundary has only tangential components.
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FIG. 1: Convergence of the error as a function of Fourier res-
olution, for the l = 2 stellarator case. Stars: Lrad = 2. Cir-
cles: Lrad = 8. The three components are shown in different
colours (red: s, black: θ, blue: ϕ). Here the representation of
the boundary is fixed with highest Fourier modes m = n = 4.
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FIG. 2: Convergence of the error as a function of radial resolu-
tion, for the l = 2 stellarator case. Crosses: Mpol = Ntor = 4.
Diamonds: Mpol = Ntor = 14. The three components are
shown in different colours (red: s, black: θ, blue: ϕ). Here the
representation of the boundary is fixed with highest Fourier
modes m = n = 4.

Verification of SPEC therefore requires numerical proof
that the SPEC solution satisfies Eq. (7) with increasing
accuracy as numerical resolution is increased and with an
error approaching machine precision for sufficiently high
resolution.

Two stellarator configurations are considered: a classi-
cal l = 2 stellarator with 5 field periods [14] and a W7-X
limiter configuration of the first experimental campaign
[7]. The latter includes a large n = 5/NP , m = 6, mag-
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FIG. 3: Convergence of the error as a function of Fourier
resolution, for the W7-X case. Here Lrad = 6. The three
components are shown in different colours (red: s, black: θ,
blue: ϕ). Here the representation of the boundary is fixed
with highest Fourier modes m = n = 6.

netic island chain located inside the last closed flux sur-
face, where the vacuum rotational transform is ι = 5/6.
For each configuration, a boundary can be provided to
SPEC by extracting the geometry of a magnetic sur-
face from the vacuum field calculated with a Biot-Savart
solver. A description of the method used to extract the
surface geometry from field-line-tracing on vacuum fields
is presented in the Appendix A. Of course, an accurate
description of the W7-X boundary requires more Fourier
harmonics than that of the l = 2 stellarator boundary.

In order to quantify the error in SPEC we define the
quantity

εα =
1

V

∫
ds

∮
dθ

∮
dϕ J (s, θ, ϕ)|(∇×B− µB) · ∇α|

(10)
where α = s, θ, ϕ and V =

∫
ds
∮
dθ
∮
dϕ J (s, θ, ϕ) is

the total volume. The value of εα measures the volume-
averaged distance from the exact solution, component by
component. Figure 1 shows, for the l = 2 stellarator case,
the convergence of εα towards machine precision (10−16)
as the Fourier resolution is increased at fixed high radial
resolution. The convergence is exponential, εα(Mpol) ∼
10−κMpol , with κ ≈ 0.8. Notice that for Lrad = 2 the
error is dominated by the low radial resolution and thus
no convergence is observed as the Fourier resolution is
increased. Similarly, Fig. 2 shows that, at high Fourier
resolution, the error converges towards machine precision
as the radial resolution is increased. The convergence is
also exponential, εα(Lrad) ∼ 10−κLrad , with κ ≈ 2.

The same exercise has been carried out for the W7-X
vacuum field. As an example, Fig. 3 shows the corre-
sponding error as a function of Fourier resolution, show-
ing slower (εα ∼ 10−κMpol , κ ≈ 0.33) but clear conver-

gence. In fact, the Fourier resolution required to get the
error down to machine precision is much higher because
of the higher Fourier content of the boundary and the
lower aspect ratio (R/a ∼ 10 for W7-X and R/a ∼ 25
for the l = 2 stellarator), which enhances the toroidicity
effects and thus the Fourier content in the solution.

This verification exercise provides evidence that the
SPEC code is calculating correctly, namely, with arbi-
trary accuracy, the solution to the equations it claims to
be solving. It also motivates improvement in the numer-
ics in order to make high Fourier resolution calculations
converge faster towards the exact solution. We would
like to remark, however, that our definition of the error,
Eq. (10), is more stringent than one would need for veri-
fication purposes: instead of requiring B to be accurate,
we require ∇ × B to be accurate. Thus SPEC may be
even more accurate than what this exercise shows. This
may also be a reason why reaching high accuracy requires
a higher Fourier resolution in the case of W7-X.

IV. COMPARISON TO BIOT-SAVART FIELDS

Beyond verification and with a view to progressing to-
wards validation, it is interesting to investigate whether
fixed-boundary vacuum field SPEC calculations can re-
produce the solution to Biot-Savart calculations for the
corresponding coil currents.

We start by comparing Poincaré plots obtained from
field-line-tracing using both magnetic field solutions for
a given set of initial positions. Figures 4 and 5 show
the result of this comparison for both the l = 2 and
the W7-X stellarator configurations, respectively. The
corresponding vacuum rotational transform profiles are
also shown in Figs. 6 and 7. Qualitatively, the agreement
is excellent.

In order to better quantify the level of agreement be-
tween SPEC and Biot-Savart vacuum field solutions, we
consider the magnetic field amplitude, B = ||B||, which is
a scalar field (thus independent of coordinates) and does
not require post-processing analysis such as, for example,
field-line-tracing (thus avoiding additional numerical er-
rors). Even though the SPEC solution is given in terms
of the vector potential, the magnetic field B = ∇×A and
its amplitude can be calculated exactly from the values
of A. As an example, Fig. 8 shows B on the boundary
magnetic surface and on three different cross-sections, as
obtained from the SPEC solution.

We define a metric for quantifying the level of agree-
ment between SPEC and the corresponding Biot-Savart
calculations:

χ(R,Z, ϕ) =
|B∗

SPEC(R,Z, ϕ)−BBS(R,Z, ϕ)|
BBS(R,Z, ϕ)

(11)

where B∗
SPEC = (ΨBS/ΨSPEC)BSPEC, and ΨBS and ΨSPEC

are the total enclosed toroidal fluxes in each calcula-
tion. This normalization factor reflects the fact that in a
fixed-boundary equilibrium calculation the total enclosed
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FIG. 4: Poincaré plot of the vacuum field for an l = 2 stellara-
tor. Three cross-sections are shown: ϕ = 0◦ (top), ϕ = 24◦

(middle), and ϕ = 48◦ (bottom). Results obtained using both
the SPEC (black) and Biot-Savart (green) solutions. The
boundary provided to SPEC is also indicated (solid red line).
The representation of the boundary has Fourier modes as high
as m = n = 12.

4.5 5 5.5 6 6.5

−0.5

0

0.5

Z

4.5 5 5.5 6 6.5
−0.5

0

0.5

1

Z

4.5 5 5.5 6 6.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

R

Z

FIG. 5: Poincaré plot of the vacuum field for the W7-X case.
Three cross-sections are shown: ϕ = 0◦ (top), ϕ = 18◦ (mid-
dle), and ϕ = 36◦ (bottom). Results obtained using both the
SPEC (black) and Biot-Savart (green) solutions. The bound-
ary provided to SPEC is also indicated (solid red line). The
representation of the boundary has Fourier modes as high as
m = n = 12.
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FIG. 6: Rotational transform profile in the l = 2 stellara-
tor configuration as given by SPEC (circles) and from the
Biot-Savart solution (crosses), obtained by tracing field lines
initially at (Rstart, Z = 0).
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FIG. 7: Rotational transform profile in the W7-X configu-
ration as given by SPEC (circles) and from the Biot-Savart
solution (crosses), obtained by tracing field lines initially at
(Rstart, Zstart) such that the O-point of the island chain is
crossed.

toroidal flux is irrelevant and only acts as a global scale-
factor on the magnetic field strength.

Figure 9 (left panel) shows the value of χ for the W7-X
case on the ϕ = 0 cross-section. The values of χ range
from χ ≈ 4× 10−9 in the core to χ ≈ 1.6× 10−3 close to
the boundary. Very similar values are obtained for the
l = 2 stellarator case (data not shown). That means that
the SPEC and Biot-Savart solutions agree within 0.1%,

FIG. 8: Amplitude of the magnetic field on the boundary
magnetic surface and on three different cross-sections. Results
obtained from SPEC calculations of the W7-X vacuum field.
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FIG. 9: Distance χ between SPEC and Biot-Savart solutions
for the W7-X vacuum field. Left: χ(R,Z) on the bean cross-
section. Top right: Bn as a function of the number of toroidal
transits used for the boundary extraction (different colors are
for different surfaces with different ι-). Bottom right: maxi-
mum and volume-average of χ(R,Z, ϕ) as a function of Bn.
Dashed lines have slope 1.

with very good agreement far from the boundary.

An increase in the numerical resolution used in either
SPEC or the Biot-Savart solver does not produce sub-
stantially lower values of χ (data not shown). This sug-
gests that the distance between the two calculations is
due to some difference in the boundary representation.
In fact, while SPEC assumes the existence of one flux-
surface (the boundary), the Biot-Savart calculation does
not. Since the boundary geometry in SPEC is extracted
from field-line-tracing of the Biot-Savart solution, it is
possible that (1) the extraction is not precise enough, or
(2) there is no exact magnetic surface traced by a field-
line. These possibilities can be investigated by measur-
ing the quantity Bn ≡ BBS · n̂, where n̂ is the unit vector
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normal to the extracted boundary and BBS is the Biot-
Savart solution used for the extraction. Figure 9 (top
right panel) shows that Bn is non-zero but can be reduced
by increasing the number of toroidal transits used to gen-
erate points on the surface. We expect that the distance
between SPEC and Biot-Savart solutions, χ, monoton-
ically decreases when reducing Bn, with a dependence
that can be estimated as follows. Let us assume that the
toroidal flux is roughly ψ ∼ Bπa2 ∼ const, where a is the
effective radius of the cross-section. Thus the error in the
magnetic field magnitude, δB, produced by an error in
the boundary geometry, δa, is δB/B ∼ 2δa/a. Since we
expect δa ∼ Bn, we conclude that the distance between
the two solutions, χ, should scale linearly with Bn. Fig-
ure 9 (bottom right panel) confirms this dependence.

In this Section, we have demonstrated how we can use
SPEC in fixed-boundary mode to recover the experimen-
tal state of W7-X (at least for a vacuum). This is an
important first step towards experimental equilibrium re-
construction activities using SPEC.

V. VERIFICATION OF PLASMA EQUILIBRIA

A complete verification of the SPEC code requires per-
forming equilibrium calculations with N > 1, so that the
algorithm solving the force-balance equation, Eq. (2), is
also tested. To this aim, we consider the l = 2 stellara-
tor described in Sec. III with N = 2 relaxed volumes
separated by an ideal interface. As input parameters,
one must provide (i) the boundary geometry; (ii) the
pressures, p1 and p2, and the enclosed toroidal fluxes,
ψ1 and ψ2, in each relaxed volume; (iii) and three ad-
ditional numbers, e.g., the rotational transform on each
side of the inner interface, ι-+ and ι-−, and the edge rota-
tional transform, ι-a. The solution for the equilibrium
consists of the geometry of the internal interface and
the magnetic field in each relaxed volume. An exam-
ple of such equilibrium is shown in Fig. 10, with the in-
ternal interface geometry as well as a Poincaré plot of
the magnetic field in each volume. The rotational trans-
form at the edge has been chosen to be equal to the
vacuum edge transform, ι-a ≈ 0.243 (see Fig. 6). The
rotational transform on the internal interface has been
chosen to be continuous and equal to a noble irrational,
ι-+ = ι-− = (n1 + γn2)/(m1 + γm2) ≈ 0.2309, guided by
the KAM theorem [15] and the work of Greene [16], which
show that the most robust surfaces are those with most
irrational transform. Here γ = (1 +

√
5)/2 is the golden

mean and n1/m1 = 23/100 and n2/m2 = 231/1000.
Finally, the pressures and enclosed toroidal fluxes are
p1 = p2 = 0 and ψ1 = 0.25 = 1− ψ2.

Verification of SPEC demands numerical proof that
Eqs. (1) and (2) are satisfied to arbitrary precision for
sufficiently high resolution. As before, we use Eq. (10) to
quantify the error in the Beltrami field in each volume.
For a measure of the force imbalance on the internal in-
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FIG. 10: Poincaré plot (ϕ = 0◦) of the SPEC magnetic field
for an l = 2 stellarator equilibrium with 2 volumes. The
boundary provided to SPEC and the self-consistently calcu-
lated internal interface are also indicated (solid red lines).
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FIG. 11: Convergence of the error as a function of Fourier
resolution, for the l = 2 stellarator case with N = 2 volumes.
Circles: inner volume. Crosses: outer volume. The three
components are shown in different colours (red: s, black: θ,
blue: ϕ). Radial resolution is Lrad = 6 in both volumes.

terface, we define the quantity

|f | = 1

N
∑
mn

[[p+
B2

2
]]mn (12)

where N = Ntor+1+Mpol(2Ntor+1) is the total number
of Fourier modes. In SPEC, a Newton method is used to
iteratively find the zero of the force-balance equation.

Figure 11 shows convergence of the error in the Bel-
trami fields as a function of Fourier resolution. For each
of these equilibria, we verify that |f | ∼ 10−16, i.e., force-
balance is satisfied to machine precision in all cases.
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FIG. 12: Rotational transform profile for the l = 2 stellarator.
Red stars: N = 1 volume in vacuum. Circles: N = 2 volumes
with different values of µ1,2. Results obtained from field-line
tracing on the different SPEC solutions.

Since we have, for computational expediency, chosen
to enforce the rotational transform constraint (to ensure
that ι- is continuous), the values of µ1 and µ2 are, in gen-
eral, non-zero. This implies that there is current in the
plasma and therefore the rotational transform profile dif-
fers from that of the vacuum (Figure 12). A state with
µ1 = µ2 = 0 and with a continuous rotational-transform
can be obtained by iterating on ψ1 and ι-a. A Newton
method was implemented to this aim. SPEC is run se-
quentially by iterating on (ψ1, ι-a) in order to minimize
(|µ1|, |µ2|). In a few iterations, the values of µ1,2 can
be made arbitrarily small and the corresponding rota-
tional transform profile approaches the vacuum profile,
as shown in Fig. 12. We can quantify the difference be-
tween the N = 2 solution and the N = 1 vacuum solution
by using a metric, χ, as the one defined in Eq. (11). Even
when µ1,2 → 0, the agreement between the two solutions
is limited by the errors in the Beltrami fields which, as
we have showed, can be reduced by increasing the Fourier
resolution. Figure 13 shows that the distance between the
N = 2 and N = 1 calculations converges exponentially
to zero as the Fourier resolution is increased.

VI. CONCLUSIONS

In this article, we have presented the first calculations
performed with the SPEC code in stellarator geometries.
A rigorous verification of the SPEC code has been carried
out for vacuum fields, along with a quantitative compar-
ison to Biot-Savart solutions. A verification of SPEC
for partially relaxed stellarator equilbiria has also been
presented. In all cases, errors have been quantified. Fi-
nally, we have reconstructed a vacuum stellarator field
iteratively, starting from a multi-region, finite current,
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FIG. 13: Convergence of the maximum distance between the
N = 2 and N = 1 solutions as a function of Fourier resolution,
for the l = 2 stellarator case.

plasma equilibrium. This represents a first step towards
the computation of general zero-current stellarator equi-
libria.

In summary, we conclude that the SPEC code solves
Eqs. (1) and (2) in stellarator geometries with arbitrary
accuracy as numerical resolution is increased. Accuracy
is the first and most important feature of numerical codes
and needs to be guaranteed. Next comes robustness and
speed. From this verification exercise, we have learned
that the SPEC algorithm may need to be improved in
order to maintain speed at high resolutions, which are
required for an accurate description of certain stellarator
geometries such as that of Wendelstein 7-X.
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Appendix A: Boundary extraction from Biot-Savart

Magnetic surface geometries can be extracted from
vacuum fields in terms of Fourier coefficients, Rmn and
Zmn, that can be used to describe the boundary in SPEC,
see Eqs. (3) and (4).
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Firstly, the vacuum field is computed using the Biot-
Savart solver VACFIELD [17] provided a set of coil cur-
rents. The cylindrical components of the vacuum field
are stored on a cylindrical grid, (R,ϕ,Z). Secondly,
points on a field line are collected with the field-line tracer
GOURDON [18]. Next, on each plane, ϕ = const, the
Poincaré points are ordered for increasing poloidal mag-
netic angle θ. Fourier decompositions of R and Z are
determined from the set of points obtained from the field
line by ordering poloidally and toroidally.

The convergence properties of this procedure were stud-
ied by using a one-parametric sequence of resolution pa-
rameters, NR = Nϕ = NZ = 4.8Ntransit, and simulta-
neously increasing the size of the R and Z Fourier ta-
bles from m0 = n0 = 12 to 18. The maximum value
of the normal component of the magnetic field on the
approximation of the surface spanned by the field line,
max |B0 · n|, is used as figure of merit, vanishing for an
ideal magnetic surface. The results of this convergence
study are shown in Sec. IV.
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