Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Topology determines force distributions in one-dimensional random spring networks

MPG-Autoren
/persons/resource/persons242077

Heidemann,  Knut M.
Group Physics of social systems, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen

Link
(beliebiger Volltext)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Heidemann, K. M., Sageman-Furnas, A. O., Sharma, A., Rehfeldt, F., Schmidt, C. F., & Wardetzky, M. (2018). Topology determines force distributions in one-dimensional random spring networks. Physical Review E, 97(2): 022306. doi:10.1103/PhysRevE.97.022306.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-0B47-0
Zusammenfassung
Networks of elastic fibers are ubiquitous in biological systems and often provide mechanical stability to cells and
tissues. Fiber-reinforced materials are also common in technology. An important characteristic of such materials is
their resistance to failure under load. Rupture occurs when fibers break under excessive force and when that failure
propagates. Therefore, it is crucial to understand force distributions. Force distributions within such networks are
typically highly inhomogeneous and are not well understood. Here we construct a simple one-dimensional model
system with periodic boundary conditions by randomly placing linear springs on a circle. We consider ensembles
of such networks that consist of N nodes and have an average degree of connectivity z but vary in topology.
Using a graph-theoretical approach that accounts for the full topology of each network in the ensemble, we show
that, surprisingly, the force distributions can be fully characterized in terms of the parameters (N ,z). Despite the
universal properties of such (N ,z) ensembles, our analysis further reveals that a classical mean-field approach
fails to capture force distributions correctly. We demonstrate that network topology is a crucial determinant of
force distributions in elastic spring networks.