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Trait specialization, innovation, and the evolution of
culture in fluctuating environments
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ABSTRACT Individuals often respond phenotypically to environmental challenges by

innovating and adopting novel behavioral variants. Behavioral (or ‘cultural’) variants are

defined here as alternative ways to solve adaptive problems, such as finding food or building

shelter. In unpredictable environments, individuals must both be able to adapt to current

conditions but also to cope with potential changes in these conditions, they must “hedge their

evolutionary bets” against the variability of the environment. Here, we loosely apply this idea

to the context of behavioral adaptation and develop an evolutionary model, where cultural

variants differ in their level of generality, i.e. the range of environmental conditions in which

they provide fitness benefits: generalist variants are characterized by large ranges, specialist

variants by small ranges. We use a Moran model (with additional learning opportunities) and

assume that each individual’s propensity for innovation is genetically determined, while the

characteristics of cultural variants can be modified through processes of individual and social

learning. Our model demonstrates that flexibly adjusting the level of generality allows indi-

viduals to navigate the trade-off between fast and reliable initial adaptation and the potential

for long-term improvements. In situations with many (social or individual) learning oppor-

tunities, no adjustment of the innovation rate, i.e. the propensity to learn individually, is

required to adapt to changed environmental conditions: fast adaptation is guaranteed by

solely adjusting the level of generality of the cultural variants. Few learning opportunities,

however, require both processes, innovation and trait generality, to work hand in hand. To

explore the effects of different modes of innovation, we contrast independent invention and

modification and show that relying largely on modifications improves both short-term and

long-term adaptation. Further, inaccuracies in social learning provide another source of

variant variation that facilitates adaptation after an environmental change. However,

unfaithful learning is detrimental to long-term levels of adaptation. Our results demonstrate

that the characteristics of cultural variants themselves can play a major role in the adaptation

process and influence the evolution of learning strategies.
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Introduction

Many of the challenges individuals face during their
lifetime are fundamentally unpredictable. To be able to
thrive in the face of such uncertainty, individuals often

need to exhibit adaptations that respond to the diversity of
environmental conditions they are likely to encounter in their
lifetime (Slatkin, 1974; Starrfelt and Kokko, 2012). Adaptations
often arise phenotypically by innovating (“innovation” here and
in the following refers to any individual learning process that
introduces new traits (Cavalli-Sforza and Feldman, 1981)) and
socially transmitting novel behavioral variants through the
population. Such social learning, i.e. learning that is facilitated by
observation of, or interaction with, another individual or its
products (Hoppitt and Laland, 2013; Heyes, 1994), is prevalent
among many, taxonomically diverse, species, ranging from
bumblebees and fish to cetaceans and chimpanzees (Galef and
Laland, 2005; Laland, 2018), and is most prominently showcased
in human cumulative cultural evolution (Mesoudi and Thornton,
2018). Innovation and social learning here refer to the functional
outcome of learning processes that make individuals either
acquire a new variant or match the behavioral variant of an
interaction partner and do not imply any specific learning
mechanisms. Populations of socially learning individuals can
respond to changes in the environment by collectively building up
and transmitting behavioral adaptations, that allow them to
flexibly respond to variable environmental conditions. There is
now a vast theoretical and empirical literature on the conditions
that favor the evolution of social learning and the way individuals
(should) combine individual and social information strategically
in order to acquire locally adaptive behavior in variable envir-
onments (see e.g. Aoki and Feldman, 2014; Kendal et al., 2018, for
reviews of the theoretical end empirical literature, respectively). In
particular, theoretical modeling approaches have mainly focused
on understanding which individual and social learning strategies
are expected to have evolved in such environments. On a more
proximate level, there is still debate about what exactly evolves in
the evolution of social learning, with opinions ranging from
changes in specialized learning brain circuitry to more subtle
attentional or motivational differences between humans and
animals less reliant on social learning (Leadbeater, 2015).

Characteristics of the cultural variants themselves, the target of
learning, as well as the way they have been invented were largely
ignored. But individuals may cope with environmental uncer-
tainty not only by employing different learning strategies or
changing innovation rates, but also by strategically adjusting
certain characteristics of the cultural trait itself. In the past,
models of cumulative culture and cultural complexity incorpo-
rated properties of cultural traits explicitly. These models usually
treat cultural traits as symbol or number vectors that can vary in
length which is taken to represent cultural complexity (Mesoudi,
2011; Fogarty et al., 2017). More elaborately, Kolodny et al. (2015)
modeled the state of tool knowledge in a population as a com-
bination of “main-axis tools”, “toolkits” associated with them and
“combinations” of these main-axis tools. Although elucidating,
these kinds of models study trait complexity as their outcome
measure and do not address how intrinsic properties of cultural
traits themselves might facilitate adaptation in variable
environments.

A modeling framework for addressing how trait characteristics
may facilitate successful adaptation, has been put forward by
Kandler and Laland (2013). They developed a mathematical
model to study how different mixtures of individual and social
learning strategies affect the frequencies of different variants of a
cultural trait, and consequently the adaptation level of the
population, in temporally and spatially changing environments.
Cultural variants in this model are characterized by adaptation

functions expressing the degree of benefit a variant conveys over a
range of environmental settings. Some traits had narrow adap-
tation functions making them “specialist” solutions useful only in
a very narrow range of environmental settings. More “generalist”
variants, in contrast, had wider distributions, making them
adapted to a broader range of conditions. They provided results
about the interplay between social learning, in the form of payoff-
biased and conformist learning, and individual learning, as well as
the role of cultural diversity for an efficient adaptation process.
However, they did not systematically investigate the role of such
specialist and generalist variants in the adaptation process, nor
did they look at the consequences these trait characteristics may
have on the evolution of the propensity for individual learning,
i.e. the rate of innovation.

In this paper, we build on the modeling framework by Kandler
and Laland (2013) and develop an evolutionary model of beha-
vioral adaptation in temporally variable environments that
incorporates the possibility of specialized and generalist cultural
variants. We aim to clarify the role such trait characteristics have
for managing uncertainty in variable environments but also
explore how innovation and trait specialization (or generality) act
together in responding to changed environmental conditions.
Rather than modeling a specific study system, we keep our model
abstract enough to be applicable to a diverse range of contexts,
where the propensity for social learning has a genetic basis and
cultural variants can differ with respect to the range of environ-
ments in which they confer adaptive benefits. One could for
example imagine different culturally learned food preferences in
whales, songs in birds, or weapon technologies in humans.

Recently, several studies explored the consequences of different
kinds of innovation, innovation rates, and “creativity” for cultural
adaptation dynamics (and cultural complexity) (e.g. Kandler and
Laland, 2009, 2013; Fogarty et al., 2015; Fogarty and Creanza,
2017; Fogarty, 2018). Lewis and Laland (2012), for instance,
investigated the relative influence of transmission fidelity, novel
invention, modification, and combination for the build-up of
cumulative culture and found that while fidelity is key, mod-
ification and combination play a more important role than novel
inventions. Addressing the impact of different innovation pro-
cesses on the accumulation of cultural traits empirically, Miu
et al. (2018) used data from 14 years of online programming
competitions and explored the dynamics of cumulative culture in
a system exhibiting real-world complexity. They report that,
within each contest population, performance increased over time
through a combination of many gradual modifications (“tweaks”)
and rare independent innovations (“leaps”). Following Lewis and
Laland (2012) and Miu et al. (2018), we investigate how a com-
bination of gradual modifications and rarer novel inventions
influence adaptation dynamics. Lastly, we study the consequences
of different degrees of copying error for short-term and long-term
adaptation and, thereby, address the long-held assumption that
high fidelity of transmission is a prerequisite for successful cul-
tural adaptation and cumulative cultural evolution (Lewis and
Laland, 2012; Heyes, 1993; Tennie et al., 2009).

The model
We consider a population of N individuals which experience a
temporally changing environment, described by EðtÞ. The
environment can assume any value between −1 and 1, whereby
values closer together represent environmental conditions that
are more similar in the dimension of interest. Each individual j is
characterized by its propensity to engage in social learning,
denoted by 1� ξj with ξj 2 ½0; 1�, and the cultural variant it has
adopted at time t.
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Cultural variants. A cultural variant i is defined by its adaptation
function aiðEðtÞÞ which expresses the benefit the variant conveys
to its carriers in the environmental state EðtÞ

aiðEðtÞÞ ¼ amax;ie
�ðEðtÞ�μiÞ2

2σ2
i : ð1Þ

The variable μi represents the environmental condition to which
variant i is optimally adapted, σ i the width of the adaptation
function, which can be interpreted as the level of generality (the
larger σ i the more general is variant i), and amax;i its maximum
adaptation level (see Fig. 1a).

To prevent the evolution of an “Ubervariant”, which possesses
high adaptation levels in a large range of environmental
conditions, the maximum adaptation level of a variant, amax;i,
decays exponentially with increasing σ i. It holds amax;i ¼ e�10σ i .
This expression implements a trade-off between specialist
variants that convey high adaptation levels in a narrow range of
environmental conditions and generalist variants that convey
lower maximum adaptation levels but cover a broader range of
environmental conditions (see Fig. 1a). Adaptation levels can vary
between 0 and 1 with 1 describing optimal adaptation to the
present conditions. Further, it holds μi 2 ½�1; 1� and σ i 2 ð0; 0:2�.
Summarizing, a cultural variant i is characterized by the
parameter pair ðμi; σ iÞ and the adaptation function (1).

Learning. At the beginning of each timestep k individuals are
randomly selected from the population to update their cultural
variant through learning. As we are interested in how different
genetic and cultural processes contribute to adaptation to chan-
ging environments, we included a parameter k for the number of
learning opportunities per timestep that effectively controls how
fast cultural variants can evolve relative to genetic evolution. Each
selected individual j engages in innovation with probability ξj and
in social learning with probability 1� ξj.

Innovation means that individuals acquire a new cultural
variant through either novel invention or modification, i.e. the
probability ξj can also be interpreted as innovation rate of
individual j. Novel inventions occur with probability 1�m and
are defined by randomly drawing the μ- and σ-value of the new
variant from the uniform distributions Uð�1; 1Þ and Uð0; 0:2Þ,
respectively, allowing individuals to acquire a cultural variant that
is independent of their present variant (see e.g. Lewis and Laland,
2012). In contrast, modification occurs with probability m and
assumes that individuals do not invent a new variant from scratch

but modify the variant they have already adopted (see e.g. Lewis
and Laland, 2012). In detail, an individual modifies its current
variant characterized by ðμi; σ iÞ by adding a value drawn from
Nð0; 0:1Þ to μi and a value drawn from Nð0; 0:01Þ to σ i. If this
process results in parameter values outside the allowed ranges for
μi or σ i, new values are drawn until the variant remains within the
allowed boundaries. We note that our model does not include
potential recombination processes between different cultural
variants. This remains an interesting focus of future research.
While many models (especially those on the adaptive value of
culture (e.g. Rogers, 1988; Boyd and Richerson, 1988) assume that
individual learners pay a cost to reliably acquire adaptive behavior
through for example trial-and-error learning, we do not assume
an additional learning cost, as individuals here just try out some
new variant without exploring the environment (see also Fogarty
and Creanza, 2017; Fogarty, 2018; Kolodny et al., 2015).

Social learning means that individuals randomly select three
interaction partners from the population from whom they may
copy a cultural variant. This stems from the assumption that
individuals may not be able to interact with the whole population
at the same time. However, over the course of multiple learning
events individuals interact with different members of the
population (letting social learners select a model from the whole
population leads to very similar results; see Fig. A1 in the
Appendix). If individuals possess a variant that conveys higher
adaptation levels than the variants of all interaction partners, then
they keep their own variant. If this is not the case, individuals
choose among the interaction partners with a probability
proportional to the relative adaptation level of their respective
variants. Individuals acquire the variant of the selected model
either faithfully, i.e. individuals are able to reliably adopt the
observed behavior, or unfaithfully. In the case of unfaithful
learning a value drawn from Nð0; σerrorÞ with σerror ¼ 0:01 or
σerror ¼ 0:05 is added to the μ-value of the variant that is being
copied and a value drawn from Nð0; 0:01Þ is added to the
respective σ-value. Summarizing, social learners in our model
follow a payoff-biased social learning strategy (Boyd and
Richerson, 1988).

Birth–death process. Birth and death events, which occur after
learning has taken place, were implemented through a Moran
process (Moran, 1958). In each timestep, one individual is chosen
for reproduction and one individual dies; thus ensuring that the
population size remains constant over time. In more detail, an

Fig. 1 a Illustrative example of four different adaptation functions with decreasing levels of generality (from left to right; indicated by smaller σ). Broader
distributions cover wider ranges of environmental conditions but are accompanied by lower maximum adaptation levels. b Illustration of different modes of
environmental change (with ε ¼ 0:01): solid line shows drastically fluctuating environment (new state drawn from Uð�1; 1Þ), dashed line shows gradually
fluctuating environment (σε ¼ 0:05).
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individual is chosen for reproduction with a probability propor-
tional to its relative adaptation level determined by the adaptation
function (1) of the cultural variant it has adopted.

The newborn inherits the ξ-value of its parent with probability
1� μξ and with probability μξ a mutation occurs. In this case a
new ξ-value is drawn from the uniform distribution Uð0; 1Þ. As
the precise process by which an individual’s propensity to engage
in social learning mutates is not known we also implemented a
more gradual process, where the offspring value deviates slightly
from the parent value: ξoffspring ¼ ξparent þ δ with δ � Nð0; σξÞ.
Now the newborn, j, engages in vertical social learning, i.e. it
copies the variant of its parent with probability 1� ξj, or
innovates through novel invention with probability ξj.

In contrast to the birth process, death occurs at random; one
individual, which may also be the one that was chosen for
reproduction, is randomly selected to die irrespective of the
adaptation level.

Environmental stochasticity. At the end of each timestep the
environment switches to a new state with probability ε. Simpli-
fying we assume that while the state of the environment changes
over time, the maximum adaptation levels for a given level of
generality stays constant. We compared two different modes of
environmental change that differed in the extent to which indi-
viduals could predict the new state of the environment after an
environmental change. First a drastic change mode, where the
environment can switch randomly to any new state in the interval
½�1; 1�, replicating very unpredictable environments (cf. solid line
in Fig. 1b). Second a gradual change mode, where the environ-
ment changes according to Eðt þ 1Þ ¼ EðtÞ þ δ with δ �
Nð0; σεÞ (cf. dotted line in Fig. 1b). The variable σε controls the
magnitude of the environmental change.

Simulation set-up. We ran 1000 independent simulations per
analysis and parameter combination. Simulation runs were
initialized by setting the state of the environment E(t) to a ran-
dom value in the interval ½�1; 1�. Each individual receives a
starting variant with μi drawn from Uð�1; 1Þ and σ i drawn from
Uð0; 2Þ. We started recording variables of interest after a burn-in
period of 1000 timesteps, which was long enough so that the
system reached its equilibrium state. Consequently each simula-
tion run started from a stochastic initial condition. Table 1 pro-
vides a summary of all parameters used in our model.

Results
Baseline model. We start our analysis by exploring a baseline
model where all innovations are novel inventions and social
learning occurs faithfully.

Adaptation dynamic after an environmental shock. The first set of
simulations aims to uncover the adaptation dynamic after an
environmental shock. In particular, we are interested in under-
standing how innovation rates and levels of generality of the
present cultural variants respond. We assume a relatively stable
environment (ε ¼ 0:001) and after the burn-in period we let each
simulation run until the next environmental change. We then
record the mean adaptation levels, apopðEðtÞÞ as well as the mean
ξ-values, ξpopðtÞ, and σ-values, σpopðtÞ, of the population for
additional 1:5=ε timesteps (i.e. 1500 timesteps in relatively stable
environments), where the environment stays constant. Figure 2
summarizes the result of 1000 simulation runs: the shaded areas
show the 90% prediction intervals of these population-level
quantities and the solid lines represent their corresponding mean
values apopðEðtÞÞ, ξpopðtÞ, and σpopðtÞ taken over the
1000 simulations.

If environmental conditions can fluctuate drastically (top four
panels in Fig. 2), the adaptation process seems to consist of two
phases. The first phase is marked by a sharp increase in both the
mean level of generality, σpopðtÞ, and the mean level of
adaptation, apopðEðtÞÞ, and the second phase by a decrease in
σpopðtÞ and a moderate increase in apopðEðtÞÞ. After a drastic
environmental change it is likely that none of the existing variants
are adapted anymore. In this situation generalist variants are
more likely to provide some adaptive benefit, as their broader
adaptation functions have a higher chance of covering the new
state of the environment. Consequently, an increase in σpopðtÞ
facilitates the quick discovery of variants with some adaptive
benefit. However, as soon as most individuals have adopted these
first successful variants, selection acts in the opposite direction as
now more specialized variants may provide a higher level of
adaptation leading to the decline in σpopðtÞ. Comparing the top
panels for k ¼ 10 and k ¼ 1 learners, it is obvious that a high
number of learning opportunities results in a faster adaptation
process.

If environmental conditions can fluctuate gradually (bottom
four panels in Fig. 2 with σε ¼ 0:05), qualitatively, a similar
dynamic occurs but with a less pronounced first phase. After a
gradual environmental change, some variants in the population,
likely the ones with larger σ-values, may remain adapted to a
certain extent and consequently only a relatively small increase in

Table 1 Summary of model parameters.

Parameter Values Description

EðtÞ ½�1; 1� State of the environment at time t
aiðEðtÞÞ ½0; 1� Adaptation level of variant i at time t
μi ½�1; 1� Mean of the adaptation function of variant i describing the environmental state to which it is best adapted to
σ i ð0;0:2� Standard deviation of the adaptation function of variant i describing its level of generality
amax;i ½0; 1� Maximum adaptation level of variant i
ξ j ½0; 1� Probability of innovation for individual j
m ½0; 1� Probability of modification as opposed to novel invention
μξ 0:1 Mutation rate for ξ
ε f0:001;0:01;0:1g Probability the environment switches per time step
σε f0:05;0:2g Standard deviation of the magnitude of gradual environmental change
σξ f0:05;0:1;0:3g Standard deviation of the magnitude of gradual mutation on ξ j
σerror f0;0:01;0:05g Standard deviation of the magnitude of copying error
k f1; 3; 5; 10; 20; 50g Number of learning opportunities per timestep
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the variants’ level of generality are sufficient to track down the
new state of the environment.

Notably, mean innovation rates, ξpopðtÞ, (illustrated by the pink
lines in Fig. 2) increase only very slightly at the beginning in the
drastically fluctuating environment and even less in the gradually
fluctuating environment in the case of 10 learners. This suggests
that if individuals can modify their cultural variant frequently
during their lifetime, there is little need for genetic evolution to
modify learning parameters. In contrast, if only one individual
can learn every timestep, i.e. individuals have fewer opportunities
to modify their cultural variant during their life time, ξpopðtÞ also
increases initially to facilitate the adaption process, especially after
a drastic change in the environment. As expected, in the long
term we observe a decrease in the innovation rates (with the lower
limit determined by the mutation rate μξ).

A gradual mutation process of the parameter ξj, i.e. if it holds
ξoffspring ¼ ξparent þ δ with δ � Nð0; σξÞ, leads to very similar
dynamics when the magnitude of mutations, δ, is relatively large

(right panel in Fig. A2 in the Appendix). With small δ-values (left
panel), ξpopðtÞ increases only mildly after an environmental
change, as the mutation process does not provide enough
variation in the ξ-values for natural selection to act on. This
inflexibility in the innovation rate is compensated by a more
pronounced increase in σpopðtÞ compared to situations with larger
δ-values and therefore makes the flexible σ strategy more
important for the adaptation process.

We note that the adaptation dynamics are qualitatively similar
in unstable environments (see Fig. A3 in the Appendix for
ε ¼ 0:01).

Interplay between innovation rate, trait characteristics, and
learning opportunities. To further tease apart the interplay
between innovation rate, level of generality, and learning
opportunities, we ran a second set of simulations for different
levels of environmental stability and different modes of envir-
onmental change and recorded relevant statistics after t ¼ 1000

Fig. 2 Adaptation dynamics in relatively stable environments (ε ¼ 0:001) for k ¼ 10 (left column) and k ¼ 1 (right column). Top panels show drastically
changing environments, bottom panels gradually changing environments (with σε ¼ 0:05). The solid pink lines illustrate the mean level of innovation, ξpop,
in the population over time, the solid green lines show the mean level of generality, σpop, and black lines show the mean adaptation level, apop. The shaded
areas represent the corresponding 90% PIs obtained from 1000 independent simulations.
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timesteps. Figure 3 plots the mean innovation rate, ξpopðtÞ,
against the mean level of generality, σpopðtÞ, for different numbers
of learning opportunities and different modes of environmental
change.

For drastically changing environments (left panel in Fig. 3) we
observe that higher rates of environmental change (illustrated by
the different colors) result in more innovations and more
generalist variants. The relative importance of both variables
varies predictably with the number of learning opportunities: if
individuals can update their cultural variant on average every
other timestep (i.e. k ¼ 50), innovation rates remain relatively
stable even for very different rates of environmental change. In
other words, if the level of generality of the cultural variants is
malleable enough, frequent adjustments of this variant character-
istic suffice for successful adaptation to different rates of
environmental change. With fewer learning opportunities,
however, there is an increasing importance of innovations, or
independent learning events, relative to the level of generality. In
the extreme case of only one learner per timestep the mean
innovation rate increases from under 0.2 in relatively stable
environments (i.e. ε ¼ 0:001) to over 0.4 in relatively unstable
environments (i.e. ε ¼ 0:1).

For “mild" gradual fluctuations (right panel in Fig. 3 with
σε ¼ 0:05), we find very similar innovation rates irrespective of
the number of learning opportunities and environmental stability.
Consequently, if environmental conditions change predictably
within a certain range around the present state, individuals
respond to more unstable environments (characterized by large
ε-values) by adopting more general variants not by innovating
more. As expected, results for “strong" gradual fluctuations
(middle panel in Fig. 3 with σε ¼ 0:2) are intermediate between
drastic environmental fluctuations and “mild" gradual
fluctuations.

Summarizing, the relative contribution of the innovation rate
and the level of generality of the cultural variants to the
adaptation process in more unstable environments depends on
the number of learning opportunities. While the innovation rate
evolves through genetic processes, the level of generality evolves
through cultural processes. The number of learning opportu-
nities, k, effectively determines the relative timescales of both co-
evolutionary processes: if k is large, cultural evolution is much
faster than genetic evolution and individuals are more likely to
find beneficial variants by increasing the variants’ level of

generality compared to genetically evolving higher innovation
rates. In contrast, smaller values of k, make the “speed" of genetic
and cultural evolution more similar resulting in a more significant
role of frequent innovations in the adaptation process.

What good is a “flexible σ” strategy? We have seen before that the
mean level of generality, σpopðtÞ changes as part of the adaptation
process. To better understand the functional significance of
adjusting the variants’ level of generality, we compare the “flexible
σ” scenario to scenarios where the variants’ levels of generality
were restricted to relatively high values (“generalists” with
σ i 2 ½0:1; 0:2�) or relatively low values (“specialists” with
σ i 2 ð0; 0:02�).

As before, after a burn-in period in a fluctuating environment
(ε ¼ 0:001), we let each simulation run until the next environ-
mental change and record in Fig. 4 the proportion of 1000
independent simulations that reached a given adaptation thresh-
old for different times after the environmental change: darker
areas correspond to low proportions while lighter areas
correspond to high proportions. As we are mostly interested in
how adjusting the level of generality facilitates the adaptation to
changing environments, we focus on the first phase of the
adaptation process (see Fig. A4 in the Appendix for trajectories of
50 randomly selected simulation runs).

Populations with both fixed generalist (left panel in Fig. 4) and
flexible variants (center panel in Fig. 4) found in all simulations
variants with some positive adaptation level within the first few
timesteps leading to a fast and reliable adaptation process. In
contrast, populations with fixed specialist variants (right panel in
Fig. 4) are characterized by a much higher variability in success.
In some simulations the populations found quickly an adaptive
solution while in others the populations remained not adapted
even after 250 timesteps leading to a more unreliable adaptation
process. Naturally, as time progresses the situation changes. Now
populations with fixed generalist variants are restricted to rather
low adaptation levels stagnating at around 0:3, whereas popula-
tions with fixed specialist variants show much higher adaptation
levels. Flexibly adjusting the variants’ level of generality allows
individuals to mitigate the trade-off between fast and reliable
initial adaptation and the potential for long-term improvement if
the environment stays unchanged. Increasing the σ-values of the
variants in the beginning prevents the risk of long phases of non-
adaptation, while reducing the σ-values again after the phase of

Fig. 3 Mean innovation rate, ξpopðtÞ, vs. mean level of generality, σpopðtÞ, for different rates of environmental change (indicated by color) and different
numbers of learning opportunities (indicated by shape). Drastically fluctuating environments are shown on the left, strong gradual fluctuations (σε ¼ 0:2)
in the middle and mild gradual fluctuations (σε ¼ 0:05) on the right. Gray lines connect simulations with same number of learning opportunities.
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initial adaptation allows individuals to improve adaptation levels
and go beyond the levels fixed generalists can achieve.

Source of innovation. So far, we have assumed that individuals
innovate only through novel invention. However, both theoretical
(e.g. Lewis and Laland, 2012) and empirical (e.g. Miu et al., 2018)
research suggests that individuals do not only invent new variants
but heavily rely on gradual modification of their existing variants.
To investigate how such gradual modification influences short-
term and long-term adaptation dynamics, we repeated the ana-
lyses presented in the previous section but included the possibility
to modify one’s trait instead of inventing a new one.

Figure 5d shows the adaptation dynamic under the assumption
that 80% of the innovation, or independent learning, events are

modifications and 20% novel inventions (Fig. 5a shows result for
independent inventions only). These values were chosen accord-
ing to Miu et al. (2018), but in the Appendix we explore the
effects of different fractions of modification and novel invention
(see Fig. A5). First, including modification substantially reduced
the variability in early success for fixed specialist variants and lead
to faster and more reliable initial adaptation compared to
situations with only novel inventions (cf. pink 90% PI in Fig.
5a, d). Innovation through modification allows individuals to
explore the adaptive qualities of variants close to their present
variant, and therefore to carry out a “local” search, so that
individuals with specialist variants are still likely to identify the
present, unknown state of the environment. But in the long run
adaptation dynamics for populations with fixed specialists and

Fig. 4 Proportion of simulations that reach a given adaptation threshold conditional on the time since the last change in the environment (with k ¼ 1 and
ε ¼ 0:001). Results for generalist variants are shown in the left figure, for flexible variants in the middle figure, and for specialist variants in the right figure.

Fig. 5 Comparison of mean adaptation levels (and 90% PIs) of populations with k ¼ 1 for specialist variants (σ i 2 ð0;0:02�, solid pink lines and light pink-
shaded areas), flexible variants (σ i 2 ð0;0:2�, solid yellow lines and light yellow-shaded areas) and generalist variants (σ i 2 ½0:1;0:2�, solid green lines and
green-shaded areas). Top row shows results for novel inventions only, bottom row for 80%modifications and 20% novel inventions. Columns show results
for faithful learning (left), small copying error (σerror ¼ 0:01; center) and large copying error (σerror ¼ 0:05; right).
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fixed generalists are very similar to situations with novel
inventions. In contrast, modifications allow populations with
variants with flexible levels of generality to reach a higher mean
level of adaptation compared to situations of novel inventions
only (cf. yellow solid lines in Fig. 5a, d). Once individuals have
zoned in on the present state of the environment, “tinkering” with
their variants allows them to more effectively reduce the σ-values
and therefore to invent more specialized variants adapted to the
present environmental state. Fig. A5 in the Appendix shows
results for different fractions of modification and novel invention.
While the described benefits generally increase with the
proportion of modifications, there seems to be no further increase
beyond 80% modifications. Notably, even 100% modifications
lead to fast and reliable initial adaptation which might be
attributable to the relatively easy search problem in this model.

Fidelity of social learning. Lastly, we relax the assumption of
faithful social learning and include different levels of copying
error. High-fidelity learning is often seen as a crucial prerequisite
for cumulative cultural evolution, because it allows populations
to maintain and build up adaptive cultural information over time
(e.g. Lewis and Laland, 2012; Heyes, 1993; Tennie et al., 2009). In
line with this reasoning, stronger reliance on low-fidelity social
learning mechanisms, such as emulation in non-human pri-
mates, instead of imitation and teaching, is often seen as part of
the explanation of why human culture is so exceptionally
cumulative (Laland, 2018). However, high-fidelity social learning
should only be adaptive if most models actually carry beneficial
variants. Consequently, in fluctuating environments individuals
may sometimes be better off if they do not faithfully copy what
they observe but instead adopt a variant that is slightly different
to the one they observed. To investigate this potentially two-
sided role of copying error, we run the same analyses as in the
previous sections but with different levels of copying error.
Figure 5 shows the adaptation dynamics for populations char-
acterized by no copying error (left column), relatively small
copying error (center column) and relatively large error (right
column). Interestingly, even small copying errors allow popula-
tions (especially those with fixed specialist variants) to quickly
and reliably adapt to new environmental conditions. Copying
errors lead to slight changes to the variants individuals learn and
consequently to an exploration of a wider range of environ-
mental conditions. While modification results in the alteration of
one’s own variant, copying error results in the alteration of a
variant copied from a model. The effects on short-term adap-
tation are comparable with copying errors leading to an even
faster initial adaptation process. As expected from previous
research, the presence of copying errors in the learning process
reduces the mean level of adaptation in the long run. Why does
modification increase long-term adaptation levels while copying
error reduces it given their similar effect on short-term adapta-
tion? Modification allows individuals to make small changes to
their variants that get then passed on to the next generation
allowing gradual accumulation. Copying error, in contrasts,
makes such accumulation impossible as variants get changed in
each transmission event. The strength of the influence of copying
error, however, varies between different scenarios. While popu-
lations with generalist variants are only mildly affected by
unfaithful social learning, populations with specialist variants
almost quarter their maximum mean adaptation level compared
to faithful social learning for σerror ¼ 0:05. Notably, populations
with flexible variants reach the highest adaptation levels for both
levels of copying error suggesting that once social learning is
unfaithful, it is particularly beneficial to adjust the variants’
σ-values flexibly.

Discussion
Being optimally adapted to present environmental conditions is
desirable, but individuals also need to be able to cope with
changing environments. Here, we investigate mechanisms of
cultural adaptation in changing environments and report a
Moran-type evolutionary model where individuals could adjust
(i) their propensity for innovation vs. social learning and (ii) the
properties of the cultural variants they adopt, in particular the
variants’ level of generality, i.e. the range of environmental con-
ditions in which they confer adaptive benefits.

We found that modifying the level of generality of cultural
variants allows populations to navigate the trade-off between fast
and reliable initial adaptation and the potential for optimal long-
term improvements. After a change in the environment, more
generalist variants allow individuals to quickly adjust to the new
condition before more specialist variants let them become better
and better adapted. Similarly, Kolodny et al. (2015) found that if
environments change rarely a population’s tool repertoire can
become highly specialized, whereas more frequent changing
environments lead to the accumulation of more generalist var-
iants. Our results add on to those findings by explicitly demon-
strating how general and specialist variants evolve. Further, our
analysis sheds light on the varying importance of specific
mechanisms of the adaptation process in different environmental
and cultural settings.

Number of learning opportunities. The number of learning
opportunities an individual has during its life time determined
whether changes in the way individuals learn (i.e. increasing or
decreasing innovation rates) or changes in a characteristic of the
cultural variant itself (i.e. trait specialization) play a more
dominant role in responding to changed environments. Standard
models of cultural evolution predict that higher rates of envir-
onmental change lead to higher rates of innovation, or individual
learning events (e.g. Boyd and Richerson, 1988; Rogers, 1988). If
the environment changes rapidly, chances are high that the
available social information is outdated, so that it is best to
innovate, or learn individually. Our model replicates these find-
ings in situations of low numbers of learning opportunities. But
for high numbers of learning opportunities modifying the prop-
erties of the cultural variant itself, in particular broadening their
adaptation function, appears more efficient to adapt to new
environmental conditions than changing the way individuals
learn. This suggests that if individuals can modify their cultural
variant frequently during their lifetime, there is little need for
genetic evolution to modify learning parameters. We note that
this conclusion hinges on the assumption that individuals possess
a genetically determined propensity for social learning, i.e. they
can switch between individual and social learning but only at a
given rate. But even if there are only a few learning opportunities
in an individual’s life time, the efficiency of adjusting the learning
dynamics for the adaptation process depends on the way the
environment is changing. While drastically changing environ-
ments often forced individuals to innovate more in order to find
beneficial variants, gradually changing environments resulted in
similar innovation rates irrespective of the frequency of envir-
onmental changes and individuals adapted by only adjusting the
level of generality of their variants.

Mode of innovation. Typically, properties of individual learning
are ignored in models of cultural evolution (Fogarty et al., 2015).
Often these models assume that individual learners acquire the
adaptive behavior with a certain probability (and often paying a
learning cost c), without specifying how such individual learning
exactly works (McElreath and Boyd, 2008). Here we distinguished
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between two modes of innovation: modification and independent
invention. We found that the long-term adaptation level
in situations where individuals are able to modify the level of
generality of cultural variants are influenced by the mode of
innovation. Populations where 80% of the innovation events are
modifications and 20% independent inventions reached a higher
mean level of adaptation compared to populations relying on
independent inventions only. Once individuals have zoned in on
the present state of the environment, “tinkering” with their var-
iants allows them to more effectively reduce the σ-values and
therefore to invent more specialized variants adapted to the
present environmental state. We note that we would expect larger
differences in the adaptation dynamics of populations engaging in
these different innovations modes at various degrees, if the pre-
sent, unknown state of the environment becomes more difficult to
identify. The validation of this point is left for future research.

Fidelity of social learning. Lastly, we investigated the role of
learning fidelity for short-term and long-term adaptation
dynamics. Social learners in our model used payoff information
to identify individuals to learn from and in accordance with the
previous cumulative culture literature, high-fidelity transmission
was necessary to reach optimal levels of adaptation in stable
environments in the long term. High copying errors do not allow
variants to become highly specialized to the present environ-
mental condition, which per definition results in a lower mean
adaptation level. However, low-fidelity social learning facilitated
rapid, short-term adaptation in changing environments. Every
time individuals engage in social learning they effectively explore
the adaptation level of a cultural variant similar to the one that
was demonstrated and which consequently leads to a relatively
fast identification of the new environmental state (at least in our
relatively simple environment).

Unlike most models of cumulative culture, we studied the effect
of innovation and transmission fidelity on adaptation levels,
rather than the diversity or complexity of cultural variants. As
humans mostly adapt behaviorally and culture is frequently
regarded as key to our ecological success (Boyd et al., 2011;
Henrich and McElreath, 2003), models of cumulative cultural
evolution should not solely focus on the number of cultural
variants or cultural complexity in a population, but also study the
impact this cultural ratcheting has on adaptation to variable
environments. Recombination of existing variants into new ones
is frequently regarded as another important process in cumulative
cultural evolution (Mesoudi and Thornton, 2018; Lewis and
Laland, 2012; Miu et al., 2018). Simplifying, individuals possess in
our model only one variant at a time and cannot combine
variants to form new ones. In the future, these assumptions
should be generalized to allow individuals to hold multiple
variants and to include more realistic innovation processes.

Payoff-biased social learning functions similarly to selection in
that better adapted variants increase in frequency after transmis-
sion events and is expected to be particularly beneficial as the
probability of copying is directly related the benefit of the
observed trait, rather than indirectly as, for example, for
frequency-dependent and model-based biases (Boyd and Richer-
son, 1988). Future studies could extend our model and investigate
different social learning strategies, such as conformity, prestige, or
several other model-based biases (Kendal et al., 2018). Con-
formity, for example has been found to be positively correlated
with innovation rate, such that strong conformity requires fewer
conformists (Kandler and Laland, 2013). It would be elucidating
to see if and how conformity might influence the dynamics of
both innovation rate and trait specialization in our model.

In summary, the model presented in this paper suggests that
allowing characteristics of cultural variants, such as the level of
generality to flexibly respond to changing environmental
conditions can enhance both short-term and long-term adapta-
tion. Undoubtedly adjusting the way individuals learn is a viable
strategy to adapt to changing environments, but our results show
that especially in situations where individuals have several
opportunities to change the cultural variant in their life time it
may be more efficient to adjust what is learned than how it is
learned. This points to the importance of incorporating a more
detailed description of the properties of cultural variants into
models of cultural evolution.

Data availability
This manuscript does not contain any empirical data. Simulation
and plotting code necessary to reproduce all results and figures in
the manuscript can be found on GitHub: https://github.com/
DominikDeffner/TraitSpecializationSocialLearning.
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