Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Incidental processing of biological motion

MPG-Autoren
/persons/resource/persons84258

Thornton,  IM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84291

Vuong,  QC
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Thornton, I., & Vuong, Q. (2004). Incidental processing of biological motion. Current Biology, 14(12), 1084-1089. doi:10.1016/j.cub.2004.06.025.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-D8CB-B
Zusammenfassung
The successful detection of biological motion can have important consequences for survival. Previous studies have demonstrated the ease and speed with which observers can extract a wide range of information from impoverished dynamic displays in which only an actorlsquo;s joints are visible. Although it has often been suggested that such biological motion processing can be accomplished relatively automatically, few studies have directly tested this assumption by using behavioral methods. Here we used a flanker paradigm to assess how peripheral "to-be-ignored" walkers affect the processing of a central target walker. Our results suggest that task-irrelevant dynamic figures cannot be ignored and are processed to a level where they influence behavior. These findings provide the first direct evidence that complex dynamic patterns can be processed incidentally, a finding that may have important implications for cognitive, neurophysiological, and computational models of biological motion processi
ng.