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The Bianchi identities for bosonic fluxes in supergravity can receive higher derivative quantum and
string corrections, the most well known being that of heterotic theory dH ¼ 1

4
α0ðtrF2 − trR2Þ. Less studied

are the modifications at order R4 that may arise, for example, in the Bianchi identity for the seven-form flux
of M theory compactifications. We argue that such corrections appear to be incompatible with the
exceptional generalized geometry description of the lower order supergravity, and seem to imply a gauge
algebra for the bosonic potentials that cannot be written in terms of an (exceptional) Courant bracket.
However, we show that this algebra retains the form of an L∞ gauge field theory, which terminates at a level
ten multibracket for the case involving just the seven-form flux.

DOI: 10.1103/PhysRevD.100.106001

I. GENERALIZED GEOMETRY AND
BIANCHI IDENTITIES

The formalism of generalized geometry has proven to be
a very powerful tool to tackle problems in string theory
and supergravity. By looking at structures on a generalized
tangent space which has “baked in” the much richer gauge
field content of these theories, it provides a unified language
for the bosonic sector that brings within reach previously
intractable problems. However, precisely because the gauge
fields are built into the definition of the generalized
geometry, their Bianchi identities are assumed by construc-
tion and any modification of them requires a change in the
formalism. As we will review shortly, including the first α0
correction due to the Green-Schwarz mechanism in heterotic
theory requires relaxing the exactness condition of the
Courant algebroid in “base” generalized geometry, and
adding the Ramond-Ramond fields (or moving to M theory)
requires the introduction of an exceptional Courant algeb-
roid. In this paper, we will argue that further considering R4

corrections—which would be highly desirable as it could
provide a path to finally obtain their supersymmetric
completion and would have applications to phenomenologi-
cal models that rely on perturbative effects to fix moduli in
flux compactifications—implies again expanding the excep-
tional generalized geometry, and also that the gauge algebra
can no longer be captured by a bracket acting just on

elements of the generalized tangent space. Finally we will
show that there is nonetheless an L∞ algebra structure
remaining, which we compute explicitly for a particular case.

A. Generalized geometry

Generalized geometry was originally introduced in [1,2]
as a way of combining complex and symplectic geometry,
by considering structures on the generalized tangent
bundle E

T� → E → T; ð1Þ

so that E is locally isomorphic to the sum of the tangent and
cotangent bundle, E ∼ T ⊕ T�. The generalized tangent
bundle is naturally equipped with a Dorfman bracket or,
equivalently, its antisymmetrization a Courant bracket [3,4]

½X1; X2� ¼ ½x1; x2� þ Lx1λ2 − Lx2λ1 −
1

2
dðix1λ2 − ix2λ1Þ;

ð2Þ

where Xi ¼ xi þ λi ∈ E. The generalized tangent bundle is
in fact an example of an exact Courant algebroid [5] and it
possesses a three-form H that is closed [6],

dH ¼ 0; ð3Þ

which can be thought of as the curvature of a “gerbe” B [7],
i.e., H ¼ dB locally, which specifies a splitting of the
sequence (1). Physicists quickly realized that this formal-
ism provides a way of geometrizing the Neveu-Schwarz–
Neveu-Schwarz (NSNS) sector of type II supergravity
[8–11], B being identified with the Kalb-Ramond field
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and H being its flux. The Dorfman bracket along a
generalized vector LX, X ∈ E then generates the combined
(infinitesimal) bosonic symmetries of the theory: diffeo-
morphisms Lx by taking the Lie derivative along a vector
field x ∈ T, and gauge B shifts by dλ, exact two-forms
parametrized by one-forms λ ∈ T�. Introducing also a
metric, it is possible to unify all the NSNS fields into a
single object, and rewrite all the supergravity equations as a
generalized geometry equivalent of Einstein gravity [12]
(see also [13] for an overview of the closely related subject
of double field theory that often implies many of these
results).

B. Heterotic generalized geometry

In heterotic theory, however, the field strength H is no
longer closed. Supersymmetry and the Green-Schwarz
anomaly cancelation mechanism [14] require that H satisfy
a more complicated Bianchi identity. This can be handled
in the generalized geometry formalism by enlarging the
generalized tangent space. The resulting ‘heterotic gener-
alized geometry” [15–20] is given in terms of a bundle
which is a transitive, but not exact, Courant algebroid E,
that can be built as a result of two extensions

g → A → T;

T� → E → A: ð4Þ

The first sequence defines a Lie algebroid A known as the
Atiyah algebroid for the quadratic Lie algebra g, which
replaces the role of the tangent bundle T in the original
generalized geometry. Writing Xi ¼ xi þ Λi þ λi ∈ E∼
T ⊕ g ⊕ T�, the Courant bracket takes the form

½X1; X2� ¼ ½x1; x2� þ Lx1Λ2 − Lx2Λ1 þ ½Λ1;Λ2�

þ Lx1λ2 − Lx2λ1 −
1

2
dðix1λ2 − ix2λ1Þ

þ tr ðΛ2dΛ1 − Λ1dΛ2Þ: ð5Þ

The bundle E then encodes the information for local gauge
fields: a two-form1 B and a Yang-Mills one-form A taking
values in g. These fields are not independent, they satisfy
the global condition in terms of their respective field
strengths

dH ¼ trF2: ð6Þ

By considering a Lie groupG (with algebra g) composed of
two factors, a “gravitational” Lorentz group, and the usual
SOð32Þ or E8 × E8 (and choosing the correct normalization

of the metric in g), one obtains the heterotic Bianchi
identity:

dH ¼ 1

4
α0ðtrF2 − trR2Þ; ð7Þ

where R, the field strength of the Lorentz factor, is now
identified with the gravitational curvature. Once more, the
Courant bracket in E precisely reproduces the physical
infinitesimal bosonic symmetries: diffeomorphisms Lx, B
shifts by dλ, and now also non-Abelian gauge transforma-
tions by some parameter Λ ∈ g. It is then possible to show
that formulating the generalized equivalent of Einstein
gravity in E precisely reproduces the known heterotic
supergravity to order α0 [15]. The “trick” of treating the
gravitational term in (7) as if it were a Yang-Mills factor goes
back to [22], though, as shown there, supersymmetry
requires that the trR2 be given by the curvature of a specific
torsionful connection ∇ − 1

2
H. In [19] it was shown that this

is entirely consistent with the generalized geometry setup.

C. M theory and E7ð7Þ ×R + generalized geometry

In M theory, the equation of motion for the four-
form flux F in eleven-dimensional supergravity [23] is
corrected by higher order terms, starting with eight deriv-
atives [24,25]

d � F ¼ −
1

2
F 2 þ κðtrR4 −

1

4
ðtrR2Þ2Þ; ð8Þ

where κ is some constant which will be set to 1 as it will not
influence the rest of our discussion, and with further terms
which are functions of the flux expected to appear at the
same order in derivatives but whose complete form is not
yet known.
In order to find four-dimensional Minkowski back-

grounds of M theory, one considers field Ansätze that
are compatible with the external global Lorentz symmetry.
This means decomposing the eleven-dimensional manifold
M11 as a warped product

ds211ðM11Þ ¼ eΔds24ðR3;1Þ þ ds27ðMÞ; ð9Þ

where M is some seven-dimensional internal space and Δ
the warp factor, demanding that the fields depend only on
internal coordinates, and keeping the components of the F
flux which are external scalars, i.e., the purely internal four-
form F and seven-form F̃. Their components are set in
terms of the eleven-dimensional F simply by restricting

F ¼ F jM; F̃ ¼ ð�F ÞjM; ð10Þ

where �F is the eleven-dimensional Hodge dual. All other
components ofF are set to zero. The fact thatF is closed in
eleven dimensions together with the equation of motion (8)
then implies the Bianchi identities for the internal fluxes

1The heterotic B field we are considering here is not gauge
invariant under Yang-Mills transformations and is not a gerbe
connection, it is a rather more complicated object [21].
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dF ¼ 0; ð11Þ

dF̃ ¼ −
1

2
F2 þ trR4 −

1

4
ðtrR2Þ2; ð12Þ

where the second equation should be taken as purely formal,
since it vanishes identically in the seven-dimensional M.
These induce internal local potentials, a three-form C and a
six-form C̃, which together with a Riemannian metric forM
and awarp factorΔmake up the bosonic degrees of freedom
(d.o.f.) of the theory.
Ignoring the higher curvature terms, it was shown in [26]

that this supergravity setup (together with the fermionic
sector) has a very natural interpretation as the analogue of
Einstein gravity when formulated in E7ð7Þ × Rþ general-
ized geometry, also known as exceptional generalized
geometry [27–29]. One introduces a generalized tangent
bundle again as a series of extensions, such that it has a
local form

E ∼ T ⊕ Λ2T� ⊕ Λ5T� ⊕ ðT� ⊗ Λ7T�Þ; ð13Þ

which encodes the bosonic symmetries of the theory,
namely, a diffeomorphism generated by vector fields x

and shifts by two-forms ω and five-forms σ of the gauge
fields C and C̃, respectively. The peculiar one-form-tensor-
seven-form term τ ∈ T� ⊗ Λ7T� would be a charge for a
“dual graviton” field which happens to vanish identically in
seven-dimensional compactifications and so, while it is
implied by the higher-dimensional M theoretic geometry, it
has no immediate physical meaning given this setup
(though see [30], for example, where τ and other mixed-
symmetry charges become crucial to formulate higher
exceptional geometries). By construction, the generalized
tangent bundle defines a global closed four-form F that can
locally be expressed in terms of the potential

F ¼ dC; ð14Þ
and a seven-form such that

F̃ ¼ dC̃ −
1

2
CF: ð15Þ

The supergravity Bianchi identities inherited from eleven
dimensions are thus automatically satisfied. The gauge
algebra is then given by the natural differential structure
over E, the (exceptional) Courant bracket of two general-
ized vector fields, which takes the form2

½X1; X2� ¼ Lx1x2 þ Lx1ω2 − Lx2ω1 −
1

2
dðix1ω2 − ix2ω1Þ

þ Lx1σ2 − Lx2σ1 −
1

2
dðix1σ2 − ix2σ1Þ þ

1

2
σ1dσ2 −

1

2
σ2dσ1

þ 1

2
Lx1τ2 −

1

2
Lx2τ1 þ

1

2
ðjσ1 ∧ dω2 − jσ2 ∧ dω1Þ −

1

2
ðjσ2 ∧ dω1 − jσ1 ∧ dω2Þ; ð16Þ

where we write Xi ¼ xi þ ωi þ σi þ τi ∈ E. The bundle E
has a natural E7ð7Þ ×Rþ structure and the bracket is
compatible with this structure. The bosonic d.o.f. turn
out to simply be the components of a generalized metric
for the generalized tangent space, reducing the structure
group to its maximal compact subgroup SUð8Þ=Z2, and
the corresponding generalized Ricci scalar precisely re-
produces the supergravity bosonic action. That eleven-
dimensional supergravity admitted this larger symmetry
had already been proven in [31]. This efficient rewriting has
made it possible to tackle several physical problems in full
generality (without needing to restrict to some subsector of
the fluxes, for example), such as classifying supersym-
metric backgrounds [32–40] or describing their moduli
spaces and holographic duals [41,42]. It would thus seem
promising to apply the same techniques with the higher
derivative corrections included [43].

D. M theory corrections

So now let us consider adding back the higher
curvature terms originating in eleven dimensions (8).
These are incompatible with the E7ð7Þ × Rþ generalized
tangent bundle previously introduced, since by construc-
tion it forces F̃ ¼ dC̃ − 1

2
CF. On the contrary, the

corrected Bianchi identity (12) implies the local form
for the flux F̃

F̃ ¼ dC̃ −
1

2
CF þ ω7ðAÞ −

1

4
ω3ðAÞ trR2; ð17Þ

where A is the spin connection for the Riemann curvature
R and ωnðAÞ denotes the Chern-Simons n-form for A
such that dω2n−1ðAÞ ¼ trRn; see the Appendix for their
explicit form.
Following the same trick as for the heterotic case, we

may treat at first the curvature R simply as the field
strength for a generic Yang-Mills gauge field A taking
values in some algebra g, though naturally it will

2The j notation corresponds to a projection to the T� ⊗ Λ7T�
space; see [28,29] for its precise definition, though it will not be
needed for what follows.
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eventually be necessary to identify g with spinð7Þ and
express A in terms of gravitational d.o.f.3 The heterotic
generalized geometric prescription would then lead us to
consider structures over a generalized tangent space of
the form

T ⊕ g ⊕ Λ2T� ⊕ Λ5T� ⊕ T� ⊗ Λ7T�; ð18Þ

in other words, replacing the tangent bundle component
of (13) with the Atiyah algebroid.
In what follows, however, we will restrict ourselves to

simpler versions of this problem, which will still suffice to
show that the situation is more complex than the one of
heterotic generalized geometry. In particular, we will find
gauge algebras that are best described in terms of higher
order L∞ algebras.
In Sec. II we will first look at a Bianchi identity

dF̃5 ¼ trR3; ð19Þ

where F̃5 is a five-form which, even though it has no
immediate physical motivation, is easier to handle and
already displays the important features we wish to dem-
onstrate. The corresponding generalized tangent space will
be of the form

T ⊕ g ⊕ Λ3T�: ð20Þ

We will then move on in Sec. III to the case

dF̃7 ¼ trR4; ð21Þ

where now F̃7 is genuinely a seven-form, and so this
corresponds to a special case of (17). The generalized
tangent space is then

T ⊕ g ⊕ Λ5T�: ð22Þ

In both cases we will find that the Bianchi identities
imply a gauge algebra which cannot be expressed in terms
of simply a Courant bracket. Instead it is of the type of the
L∞ field theory formalism of [44]. The analysis of the
complete Bianchi identity implied by the corrected eleven-
dimensional supergravity will be left for future work.
As an aside, we expect that similar conclusions would

hold for (2n − 1)-form fluxes F̃ð2n−1Þ satisfying

dF̃ð2n−1Þ ¼ trRn; ð23Þ

based on generalized tangent spaces

E ∼ T ⊕ g ⊕ Λð2n−3ÞT�; ð24Þ

though we will not attempt to prove this here. Note as well
that in all these cases the Bianchi identities, when viewed in
cohomology classes, correspond to obstructions to this
construction, namely, the requirement that nth Chern
character of the gauge vector bundle is trivial.
We also remark that the fact that the gauge algebras we

are examining fit into the L∞ setting is not surprising. It has
already been shown that the “higher Courant algebroids” of
the type T ⊕ ΛpT� have an associated L∞ algebra [45],
and the extra terms we are considering arise from adding an
invariant polynomial to the Bianchi, which in the context of
chiral anomalies lead to the well-known “descent equa-
tions” derived from the extended Cartan homotopy [46],
with many of the terms in the brackets we present here
being directly related to the extra homotopy operator.

E. L∞ algebras and field theory

L∞ algebras or strong homotopy Lie algebras, intro-
duced in [47,48] to the physics context, have found
numerous applications in both mathematics and physics;
see [49] for a recent review of the field. In particular, they
can be found in the theories of Courant algebroids and
generalized geometry. Courant algebroids were shown to
have an L3 algebra in [50]. In the case of heterotic Courant
algebroids, it has recently been proven that this algebra is
directly connected to the physical problem of finding the
moduli of finite deformations of the Strominger-Hull
system [51]. Higher Courant algebroids over a space T ⊕
ΛpT� were proven to have L∞ algebras for arbitrary p in
[45] using a derived bracket construction, and in [52] a
large class of “Leibniz algebroids” (a Leibniz bracket being
a generalization of the Lie derivative that still satisfies the
Leibniz identity but is not necessarily antisymmetric), of
which exceptional generalized geometries are examples,
were likewise shown to admit L∞ algebras. This later point
was further explored in [53,54], where the correct L∞
algebra was demonstrated to follow from interpreting the M
theory geometries as dg-symplectic manifolds. More
broadly speaking, the higher structures that feature in
string and M theory are known to be classified by super
homotopy theory; see the review [55] and references
therein. In particular, note that the heterotic generalized
geometry that we described earlier corresponds to a “string
Lie 2-algebra” [56], while anomaly cancelation in M theory
was examined in this formalism in [57]. There has also
been much current work showing how such structures
appear in the related fields of double/exceptional field
theory, for example, in [58–70].
Recently, in [44] (see also [71]) many of these ideas were

systematized in a manner to be more immediately appli-
cable to physics, by introducing the notion of “L∞ gauge
field theories.” It is this approach that we will be following,

3Though an intriguing possibility is to consider a larger gauge
group that could accommodate the flux d.o.f., such as taking
g ¼ suð8Þ and relating A to the SUð8Þ connections implied by
supersymmetry. This could naturally give rise to a Bianchi
identity which includes higher derivative flux terms.
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and we start by quickly reviewing some of the concepts that
will be relevant here.
There are a few alternative ways of defining an L∞

algebra. Following the conventions of [44], we will be
working with the “l picture” in terms of graded-antisym-
metric multilinear brackets. Given a Z-graded vector space

V ¼⊕i∈Z Vi; ð25Þ

where the subscript denotes the degree, one defines an L∞
algebra by endowing it with a series of multilinear products
ln∶ ΛnV ↦ V. These brackets are of degree n − 2, i.e., for
inputs vi ∈ V, the total degree of lnðv1;…; vnÞ is

deglnðv1;…; vnÞ ¼ n − 2þ
Xn
i¼1

deg vi: ð26Þ

They are also graded antisymmetric,

lnðvσð1Þ;…; vσðnÞÞ ¼ ð−1ÞjσjϵðσÞlnðv1;…; vnÞ; ð27Þ

for some permutation σ and where ϵ is the Koszul sign for
the given permutation and grading of V. Crucially, for each
n the brackets must also satisfy a Jacobi identity “up to
higher homotopies,” namely, the generalized Jacobi iden-
tities

X
iþj¼nþ1

ð−1Þiðj−1Þ
X
σ

ð−1ÞjσjϵðσÞljðliðvσð1Þ;…; vσðiÞÞ;

vσðiþ1Þ;…; vσðnÞÞ ¼ 0; ð28Þ

or in abbreviated form

X
iþj¼nþ1

ð−1Þðj−1Þiljli ¼ 0: ð29Þ

Explicitly, this gives at level one

l1ðl1ðvÞÞ ¼ 0; ð30Þ

which shows that the graded vector space V of an L∞
algebra forms a chain complex with the operator l1. Level
two establishes l1 as a derivation on l2,

l1ðl2ðv1; v2ÞÞ ¼ l2ðl1ðv1Þ; v2Þ þ ð−1Þjv1jl2ðv1;l1ðv2ÞÞ:
ð31Þ

Level three would be the “traditional” Jacobi identity,
where the L∞ algebra starts to diverge from the normal
graded Lie algebras

l1ðl3ðv1; v2; v3ÞÞ þ l3ðl1ðv1Þ; v2; v3Þ
þ ð−1Þjv1jl3ðv1;l1ðv2Þ; v3Þ
þ ð−1Þjv1jþjv2jl3ðv1; v2;l1ðv3ÞÞ þ l2ðl2ðv1; v2Þ; v3Þ
þ ð−1Þðjv2jþjv3jÞjv1jl2ðl2ðv2; v3Þ; v1Þ
þ ð−1Þðjv1jþjv2jÞjv3jl2ðl2ðv3; v1Þ; v2Þ ¼ 0; ð32Þ

and so on.
Proceeding with the proposal of [44] for a gauge field

theory, one considers spaces of type4

V ¼⊕i>0 Vi ⊕ V0 ⊕ V−1: ð33Þ

An important point here is that, since one allows a space
with negative grading, there is a priori no guarantee that the
L∞ algebra will ever terminate even for a finite number of
Vi. This is in contrast to Ln algebras, defined such that the
graded vector space is concentrated in degrees 0 to n − 1
and therefore all brackets of degree higher than nþ 1
vanish trivially as a consequence of (26). However, we will
see that the cases we consider in the next sections do indeed
truncate and there is a finite number of brackets to consider.
In order to find the physical meaning of (33), one

identifies elements X ∈ V0 with gauge parameters and Ψ ∈
V−1 are taken to be the gauge fields. Elements of ⊕i>0 Vi
are to be thought of as making up a tower of trivial gauge
parameters. An L∞ gauge field theory may then be defined
with the symmetries given by

δXΨ ¼ Σn
1

n!
ð−1Þnðn−1Þ2 lnþ1ðX;ΨnÞ; ð34Þ

satisfying a gauge algebra

½δX1
; δX2

�Ψ ¼ δ½X1;X2�Ψ;

½X1; X2� ¼ Σn
1

n!
ð−1Þnðn−1Þ2 lnþ2ðX1; X2;ΨnÞ: ð35Þ

Note, in particular, that in this formalism the gauge algebra
of the parameters is permitted to depend explicitly on the
fields. In what follows we will show how the higher
curvature problem we are considering fits precisely into
this picture.
We also remark that another way the gauge fields may

appear in Courant brackets is via their “twisting.” One can
think of the fields as defining connections that split the
exact sequences that define the generalized tangent bundle,
i.e., they make explicit the isomorphism E ∼ T ⊕ ….
Under that map, the Courant bracket then becomes twisted
by the curvature of the connection—for example, for the
exact Courant algebroid case the B field splits the defining

4In [44] an extra subspace V−2 is also allowed, corresponding
to the equations of motion, but we will not make use of it here.
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sequence T� → E → T through a map eB∶ xþ λ ↦ xþ
λþ ixB (see [2]), and the bracket (2) then gets modified by
½eBX1; eBX2� ¼ eB½X1; X2� þ ix1ix2H. Note also that if B is
closed, physically “pure gauge,” then it is a symmetry of the
bracket, extending the usual diffeomorphism invariance of
the Lie bracket. One would expect that something similar
for the higher order brackets we define in the following
sections, it should be possible to twist them with the field
strengths of the gauge fields, and pure gauge finite trans-
formations should leave them invariant. However, we do
not attempt to verify this here; a full study of the twisted
structure of the higher order generalized tangent bundles,
their patching rules (which would involve computing finite
gauge transformations of the Chern-Simons forms), the
automorphisms of these L∞ structures, etc. will be left for
future work.

II. dF̃5 = trR3

We begin by considering a theory with a globally defined
five-form flux F̃ and a Yang-Mills g-valued potential A
with corresponding field strength R such that

dAR ¼ 0; ð36Þ
dF̃5 ¼ trR3: ð37Þ

We can thus define a four-form potential C̃ for the flux by

F̃5 ¼ dC̃4 þ ω5ðAÞ: ð38Þ
Much like the B field in heterotic theory, we find that since
F̃5 is gauge invariant, C̃4 must transform to compensate for
a variation of the Chern-Simons five-form ω5ðAÞ. That is, if
Λ ∈ g parametrizes an infinitesimal gauge transformation,
we must have that locally

dδΛC̃4 ¼ −δΛω5ðAÞ ¼ −dω1
4ðΛ; AÞ

¼ −d tr dΛ
�
AdAþ 1

2
A3

�
; ð39Þ

from the properties of the Chern-Simons forms (see the
Appendix). It is also clear that F̃ remains invariant under
shifts of C̃4 by a closed four-form, locally parametrized by
the exterior derivative of some three-form σ. Together with
a diffeomorphism symmetry parametrized by some vector
field x, we have that the potentials obey the infinitesimal
gauge transformations

δXA ¼ LxA − dΛ − ½A;Λ�;

δXC̃4 ¼ LxC̃4 − dσ − tr dΛ
�
AdAþ 1

2
A3

�
; ð40Þ

where δX denotes the combined infinitesimal diffs, gauge,
and shifts in terms of parameters X ¼ xþ Λþ σ. This
therefore suggests a generalized tangent space

E ¼ T ⊕ g ⊕ Λ3T�: ð41Þ

So far, this precisely matches the procedure for con-
structing the heterotic generalized geometry; see, for
example, [19]. However, let us look at how the algebra
of transformations δX closes when acting on the fields.
Taking two parameters X1, X2 ∈ E, we find that

½δX1
; δX2

�A ¼ L½x1;x2�A − dð½Λ1;Λ2� þ ix1dΛ2 − ix2dΛ1Þ
− ½A; ½Λ1;Λ2� þ ix1dΛ2 − ix2dΛ1�;

½δX1
; δX2

�C̃4 ¼ L½x1;x2�C̃4

− d

�
ix1dσ2 − ix2dσ1 þ

1

2
dix1σ2 −

1

2
dix2σ1

�

− tr dð½Λ1;Λ2� þ ix1dΛ2 − ix2dΛ1Þ

×

�
AðdAÞ2 þ 1

2
A3

�

þ d trðΛ1dΛ2dA − Λ2dΛ1dAÞ; ð42Þ

so we have that indeed the algebra closes on a parameter X3

given by

½δX1
;δX2

�ðAþ C̃4Þ ¼ δX3
ðAþ C̃4Þ;

X3 ¼ ½x1; x2� þ ½Λ1;Λ2� þ ix1dΛ2 − ix2dΛ1

þ ix1dσ2 − ix2dσ1 þ
1

2
dix1σ2 −

1

2
dix2σ1

− trðΛ1dΛ2dA−Λ2dΛ1dAÞ ∈ E;

ð43Þ

but note that this depends not just on X1 and X2 but also
explicitly on the fields. Therefore, unlike the previous
examples in generalized geometry, the gauge algebra does
not define for us a bracket over just the space E. It does,
nonetheless, fit into the L∞ field theory setting.

A. An L∞ gauge algebra for R3

Let us then introduce the graded vector space:

V ¼ V3 ⊕ V2 ⊕ V1 ⊕ V0 ⊕ V−1; ð44Þ

where5

5A more “generalized” treatment in the sense of [29] would
presumably involve introducing a space of “generalized frames”
for E [that is a subspace of EndðEÞ that preserves the defining
generalized structures—Oðd; dÞ in NSNS generalized geometry,
E7ð7Þ in exceptional generalized geometry, etc.] and identifying
its “geometric subspace” with V−1, which is used to construct the
physical brackets.
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V3 ¼ C∞ðMÞ; V2 ¼ T�; V1 ¼ Λ2T�;

V0 ¼ E ¼ T ⊕ g ⊕ Λ3T�; V−1 ¼ T� ⊗ g ⊕ Λ4T�;

ð45Þ

and we label elements in the subspaces as

ξ ∈ V3 ⊕ V2 ⊕ V1; X ¼ xþ Λþ σ ∈ V0;

Ψ ¼ Aþ C̃ ∈ V−1: ð46Þ

We will then endow V with a series of multilinear
brackets to define an L∞ algebra that will realize the
gauge algebra (43). Terms in the brackets involving only
elements in Vi>0 or the vector þ three–form part of V0 will
be necessarily the ones in [45], but we must introduce new
products for terms involving the Lie algebra g. Comparing
with (35), we can directly read off some of the multi-
brackets, since we must insist that picking particular
elements Aþ C̃4 ¼ Ψ ∈ V−1 corresponds to specifying
the data for the supergravity gauge fields, i.e., that they
satisfy a gauge algebra

δXΨ ¼ l1ðXÞ þ l2ðX;ΨÞ −
1

2
l3ðX;Ψ;ΨÞ

−
1

6
l4ðX;Ψ;Ψ;ΨÞ; ð47Þ

with

½δX1
; δX2

�Ψ ¼ δX3
Ψ; X3 ¼ l2ðX1; X2Þ þ l3ðX1; X2;ΨÞ;

ð48Þ
such that it precisely matches (40) and (43), respectively.
Several more brackets are necessary to complete the

algebra, which can be obtained from the requirement that
they satisfy the generalized Jacobi identities (28). It is
possible to do this exhaustively term-by-term since, due to
both the grading of the vector space V and the subdivisions
inside V0 and V−1, many will vanish trivially. For example,
we will see that all brackets ln of level n > 2 whose image
is in V−1 actually only map to the four-form subspace, i.e.,
they are C̃-type objects. On the other hand, the brackets
of level n > 2 that take an object in V−1 as input are all
independent of C̃. So chaining together those sets of
brackets is trivial.
Note that due to the grading and symmetry properties of

the ln brackets (27), products involving multiple factors of
Xi will always have to be antisymmetrized, and products
involving products of Ψi will always have to be sym-
metrized. We denote this explicitly using the typical index
notation of symmetrizers and antisymmetrizers.
We find that the (nontrivial) L∞ products are then:
at level one

l1ðξÞ ¼ dξ; l1ðXÞ ¼ −dΛ − dσ; l1ðΨÞ ¼ 0; ð49Þ

at level two

l2ðX; ξÞ ¼
1

2
Lxξ; ð50aÞ

l2ðX1; X2Þ ¼ ½x1; x2� þ ½Λ1;Λ2� þ Lx1Λ2 − Lx2Λ1

þ Lx1σ2 − Lx2σ1 −
1

2
dix1σ2 þ

1

2
dix2σ1;

ð50bÞ
l2ðX;ΨÞ ¼ LxΨ − ½A;Λ�; ð50cÞ

at level three

l3ðξ; X1; X2Þ ¼ −
1

6
ðix½1Lx2� þ i½x1;x2�Þξ; ð51aÞ

l3ðX1; X2; X3Þ ¼ −
1

2
ðix½1Lx2 þ i½x½1;x2� þ ix½1ix2dÞσ3�;

ð51bÞ
l3ðX1; X2;ΨÞ ¼ −2 trΛ½1dΛ2�dA; ð51cÞ

l3ðX;Ψ1;Ψ2Þ ¼ 2 tr dΛAð1dA2Þ; ð51dÞ

at level four

l4ðX1; X2; X3; X4Þ ¼ −12 trΛ½1Λ2Λ3dΛ4�; ð52aÞ

l4ðX1; X2; X3;ΨÞ ¼ 6 trΛ½1Λ2dΛ3�A −
3

2
ix½1l3ðX2; X3�;ΨÞ;

ð52bÞ
l4ðX;Ψ1;Ψ2;Ψ3Þ ¼ 3 tr dΛAð1A2A3Þ; ð52cÞ

at level five

l5ðX1;…; X5Þ ¼ −12 trΛ½1Λ2Λ3Λ4Λ5�

−
5

2
ix½1l4ðX2; X3; X4; X4�Þ

−
1

3
ix½1ix2l3ðX3; X4; X5�Þ; ð53aÞ

l5ðX1; X2; X3; X4;ΨÞ ¼ −2ix½1l4ðX2; X3; X4�;ΨÞ
− 2ix½1ix2l3ðX3; X4�;ΨÞ; ð53bÞ

and finally at level six

l6ðX1;…; X5;ΨÞ ¼
5

3
ix½1ix2l4ðX3; X4; X5�;ΨÞ

þ 5

2
ix½1ix2ix3l3ðX4; X5�;ΨÞ: ð54Þ

All other brackets vanish. Even though there is a large
number of them, it should be clear from the form of the
nontrivial brackets that they are straightforward to obtain
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by iterating through the generalized Jacobi identities. As
an example, consider the fourth level identity when the
inputs are in ðV0Þ3 ⊗ V−1. This will involve the bracket
l4ðX1; X2; X3;ΨÞ given in (52b), which cannot be read

directly from the gauge algebra (and has not been pre-
viously derived in the literature); instead we infer it from
the generalized Jacobi identity. We compute from the lower
order brackets

l3ðl2ðX½1; X2Þ; X3�;ΨÞ ¼ −2 trLx½1ðΛ2dΛ3ÞdAþ 2 trΛ½1dΛ2Λ3�dA;

l3ðX½1; X2;l2ðX3�;ΨÞÞ ¼ −2 trΛ½1dΛ2ðLx3�dA − d½A;Λ3��Þ;
l2ðX½1;l3ðX2; X3�;ΨÞÞ ¼ −2Lx½1 trΛ2dΛ3�dAþ dix½1 trΛ2dΛ3�dA; ð55Þ

and noting that l4ðl1ðX1Þ; X2; X3;ΨÞ and l4ðX1; X2; X3;l1ðΨÞÞ vanish identically, the generalized Jacobi identity then
reads

l1ðl4ðX1; X2; X3;ΨÞÞ ¼ 3l4ðl1ðX½1Þ; X2; X3�;ΨÞ þ 3l2ðX½1;l3ðX2; X3�;ΨÞÞ
− 3l3ðX½1; X2;l2ðX3�;ΨÞÞ − 3l3ðl2ðX½1; X2Þ; X3�;ΨÞ

¼ 6d trΛ½1Λ2dΛ3�Aþ 3dix½1 trΛ2dΛ3�dA

¼ 6d trΛ½1Λ2dΛ3�A −
3

2
dix½1l3ðX2; X3�;ΨÞ; ð56Þ

which is consistent with (52b).

III. dF̃7 = trR4

The analysis for a seven-form flux follows in much
the same way as the five-form case we just considered,
it is simply more computationally intensive. We again
introduce a g-valued one-form potential A with field
strength R, and a globally defined seven-form F̃ such
that

dF̃7 ¼ trR4; ð57Þ

and so locally we define a six-form potential C̃ by

F̃7 ¼ dC̃6 þ ω7ðAÞ: ð58Þ

As previously remarked, this is a toy example for the
supergravity theory of Sec. I C when one truncates
Eq. (17). Now, the gauge invariance of F̃7 once again
implies that C̃6 must vary as

dδΛC̃6 ¼ −δΛω7ðAÞ ¼ −dω1
6ðΛ; AÞ

¼ −d tr dΛ
�
AðdAÞ2 þ 2

5
ðA3dAþ dAA3 þ A5Þ

þ 1

5
ðA2dAAþ AdAA2Þ

�
; ð59Þ

for some gauge parameter Λ ∈ g [from Eq. (A8) in the
Appendix]. We also have the usual diffeomorphism Lx
and shift symmetries dσ generated by, respectively, a
vector field x ∈ T and a five-form σ ∈ Λ5T�. We are
thus led to consider a generalized tangent space

E ¼ T ⊕ g ⊕ Λ5T�;

X ¼ xþ Λþ σ ∈ E: ð60Þ

This is a close cousin of the SLð8;RÞ ×Rþ “half-
exceptional” generalized geometry obtained by truncat-
ing the E7ð7Þ ×Rþ case, as was described in [72]. We
can then group the infinitesimal symmetries as

δX ¼ infinitesimal diffs; gauge and shifts

δXA ¼ LxA − dΛ − ½A;Λ�
δXC̃6 ¼ LxC̃6 − dσ

− tr dΛ
�
AðdAÞ2 þ 2

5
ðA3dAþ dAA3 þ A5Þ

þ 1

5
ðA2dAAþ AdAA2Þ

�
: ð61Þ

As in the R3 case, we find that the gauge algebra closes
on terms that explicitly depend on the gauge fields. Taking
two parameters X1, X2 ∈ E, we have
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½δX1
; δX2

�A ¼ L½x1;x2�A − dð½Λ1;Λ2� þ ix1dΛ2 − ix2dΛ1Þ − ½A; ½Λ1;Λ2� þ ix1dΛ2 − ix2dΛ1�;

½δX1
; δX2

�C̃6 ¼ L½x1;x2�C̃6 − d

�
ix1dσ2 − ix2dσ1 þ

1

2
dix1σ2 −

1

2
dix2σ1

�

− tr dð½Λ1;Λ2� þ ix1dΛ2 − ix2dΛ1Þ
�
AðdAÞ2 þ 2

5
ðA3dAþ dAA3 þ A5Þ þ 1

5
ðA2dAAþ AdAA2Þ

�

þ d tr

�
Λ1

�
dΛ2dAdAþ 3

5
dΛ2dðA3Þ þ 1

5
dðA2dΛ2AÞ

�
− Λ2

�
dΛ1dAdAþ 3

5
dΛ1dðA3Þ þ 1

5
dðA2dΛ1AÞ

��
;

ð62Þ

and therefore, the algebra of the gauge parameters is

½X1; X2� ¼ ½x1; x2� þ ½Λ1;Λ2� þ ix1dΛ2 − ix2dΛ1

þ ix1dσ2 − ix2dσ1 þ
1

2
dix1σ2 −

1

2
dix2σ1

− tr

�
Λ1

�
dΛ2dAdAþ 3

5
dΛ2dðA3Þ þ 1

5
dðA2ÞdΛ2A −

1

5
A2dΛ2dA

�

− Λ2

�
dΛ1dAdAþ 3

5
dΛ1dðA3Þ þ 1

5
dðA2ÞdΛ1A −

1

5
A2dΛ1dA

��
∈ E: ð63Þ

Let us then see how this fits with the L∞ formalism.

A. An L∞ gauge algebra for R4

We start by building a seven-term graded vector space

V ¼ V5 ⊕ V4 ⊕ V3 ⊕ V2 ⊕ V1 ⊕ V0 ⊕ V−1; ð64Þ

where

V5 ¼ C∞ðMÞ; V4 ¼ T�; V3 ¼ Λ2T�;

V2 ¼ Λ3T�; V1 ¼ Λ4T�;

V0 ¼ E ¼ T ⊕ g ⊕ Λ5T�; V−1 ¼ T� ⊗ g ⊕ Λ6T�;

ð65Þ

whose elements we will generically label as

ξ ∈ V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5; X ¼ xþ Λþ σ ∈ V0;

Ψ ¼ Aþ C̃ ∈ V−1: ð66Þ

We now construct the L∞ products as before. The terms
in the products which are independent of V−1 or the g part
of V0 must reproduce the results of [45]. Again we read off
some of the brackets by comparing (61) and (63) with (34)
and (35), respectively. Then picking a specific point Ψ in
the space V−1 will correspond to specifying the super-
gravity data by demanding that the gauge algebra obeyed
by Ψ is

δXΨ ¼ l1ðXÞ þ l2ðX;ΨÞ −
1

2
l3ðX;Ψ2Þ − 1

6
l4ðX;Ψ3Þ

þ 1

24
l5ðX;Ψ4Þ þ 1

120
l6ðX;Ψ5Þ; ð67Þ

and

½X1; X2� ¼ l2ðX1; X2Þ þ l3ðX1; X2;ΨÞ −
1

2
l4ðX1; X2;Ψ2Þ

−
1

6
l5ðX1; X2;Ψ3Þ; ð68Þ

such that its components Ψ ¼ Aþ C̃6 match (61) and (63)
by construction.
We can then use the generalized Jacobi conditions to

complete the algebra. As in the previous section, we can
verify the relations by exhaustively going through every
term of (28), for each level n and for each possible set of
inputs for the brackets, since the extra substructure of the
vector spaces V0 and V−1 means that many of those terms
vanish trivially and thus the method becomes tractable. The
full list of nonvanishing multilinear brackets is nonetheless
still rather long. We find the following:
at level one (these show that V is a differential chain

complex)

l1ðξÞ ¼ dξ; l1ðXÞ ¼ −dΛ − dσ; l1ðΨÞ ¼ 0; ð69Þ

at level two (these include the normal gauge trans-
formations)
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l2ðX; ξÞ ¼
1

2
Lxξ; ð70aÞ

l2ðX1; X2Þ ¼ ½x1; x2� þ ½Λ1;Λ2� þ Lx1Λ2 − Lx2Λ1

þ Lx1σ2 − Lx2σ1 −
1

2
dix1σ2 þ

1

2
dix2σ1;

ð70bÞ

l2ðX;ΨÞ ¼ LxΨ − ½A;Λ�; ð70cÞ

at level three (this is the level where the usual Jacobi
identity breaks and one is led to use the higher formalism)

l3ðξ; X1; X2Þ ¼ −
1

6
ðix½1Lx2� þ i½x1;x2�Þξ; ð71aÞ

l3ðX1; X2; X3Þ ¼ −
1

2
ðix½1Lx2 þ i½x½1;x2� þ ix½1ix2dÞσ3�;

ð71bÞ

at level four

l4ðX1; X2;Ψ1;Ψ2Þ ¼ 4 trΛ½1dΛ2�dAð1dA2Þ; ð72aÞ

l4ðX;Ψ1;Ψ2;Ψ3Þ ¼ 6 tr dΛAð1dA2dA3Þ; ð72bÞ

at level five

l5ðξ; X1; X2; X3; X4Þ ¼ −
1

5
ix½1ix2l3ðξ; X3; X4�Þ; ð73aÞ

l5ðX1;…; X5Þ ¼ −
1

3
ix½1ix2l3ðX3; X4; X5�Þ; ð73bÞ

l5ðX1; X2; X3; X4;ΨÞ ¼ −
24

5
tr ð2Λ½1Λ2Λ3dΛ4�

− Λ½1Λ2dΛ3Λ4�ÞdA; ð73cÞ

l5ðX1; X2; X3;Ψ1;Ψ2Þ ¼ −
3

2
ix½1l4ðX2; X3�;Ψ1;Ψ2Þ

−
12

5
tr ð2Λ½1Λ2dΛ3�dAð1A2Þ þ 3Λ½1Λ2dΛ3�Að1dA2Þ − Λ½1dΛ2Λ3�dðAð1A2ÞÞ

− Λ½1dΛ2dAð1Λ3�A2Þ þ Λ½1dΛ2Að1Λ3�dA2ÞÞ; ð73dÞ

l5ðX1; X2;Ψ1;Ψ2;Ψ3Þ ¼
12

5
tr ð3Λ½1dΛ2�dðAð1A2A3ÞÞ þ Λ½1dðAð1A2dΛ2�A3ÞÞÞ; ð73eÞ

l5ðX;Ψ1;Ψ2;Ψ3;Ψ4Þ ¼ −
24

5
tr dΛð2Að1A2A3dA4Þ þ Að1A2dA3A4Þ

þ Að1dA2A3A4Þ þ 2dAð1A2A3A4ÞÞ; ð73fÞ

at level six

l6ðX1;…; X6Þ ¼ −144 trΛ½1Λ2Λ3Λ4Λ5dΛ6�; ð74aÞ

l6ðX1;…; X5;ΨÞ ¼ 24 tr ð2Λ½1Λ2Λ3Λ4dΛ5� þ Λ½1Λ2dΛ3Λ4Λ5�ÞA

−
5

2
ix½1l5ðX2; X3; X4; X5�;ΨÞ; ð74bÞ

l6ðX1; X2; X3; X4;Ψ1;Ψ2Þ ¼ −
48

5
tr ðΛ½1dðΛ2Λ3ÞΛ4�Að1A2Þ

þ Λ½1Λ2dΛ3Að1Λ4�A2Þ þ Λ½1dΛ2Að1Λ3Λ4�A2ÞÞ
− 2ix½1l5ðX2; X3; X4�;Ψ1;Ψ2Þ − 2ix½1ix2l4ðX3; X4�;Ψ1;Ψ2Þ; ð74cÞ

l6ðX1; X2; X3;Ψ1;Ψ2;Ψ3Þ ¼ −
3

2
ix½1l5ðX2; X3�;Ψ1;Ψ2;Ψ3Þ

−
36

5
tr ð3Λ½1Λ2dΛ3�Að1A2A3Þ − Λ½1Λ2Að1A2dΛ3�A3ÞÞ; ð74dÞ

l6ðX;Ψ1;…;Ψ5Þ ¼ −48 tr dΛAð1A2A3A4A5Þ; ð74eÞ
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at level seven (last level with a bracket acting just on the generalized tangent space E, the corresponding higher Courant
algebroid of [45] would terminate here)

l7ðX1;…; X7Þ ¼ −144 trΛ½1Λ2Λ3Λ4Λ5Λ6Λ7� −
7

2
ix½1l6ðX2;…; X7�Þ

þ 1

3
ix½1ix2ix3ix4l3ðX5; X6; X7�Þ; ð75aÞ

l7ðX1;…; X6;ΨÞ ¼ −3ix½1l6ðX2;…; X6�;ΨÞ − 5ix½1ix2l5ðX3; X4; X5; X6�;ΨÞ; ð75bÞ

l7ðX1;…; X5;Ψ1;Ψ2Þ ¼ −
5

2
ix½1l6ðX2; X3; X4; X5�;Ψ1;Ψ2Þ

−
10

3
ix½1ix2l5ðX3; X4; X5�;Ψ1;Ψ2Þ −

5

2
ix½1ix2ix3l4ðX4; X5�;Ψ1;Ψ2Þ; ð75cÞ

l7ðX1; X2; X3; X4;Ψ1;Ψ2;Ψ3Þ ¼ −2ix½1l6ðX2; X3; X4�;Ψ1;Ψ2;Ψ3Þ
− 2ix½1ix2l5ðX3; X4�;Ψ1;Ψ2;Ψ3Þ; ð75dÞ

at level eight

l8ðX1;…; X7;ΨÞ ¼
7

2
ix½1ix2l6ðX3;…; X7�;ΨÞ

þ 35

4
ix½1ix2ix3l5ðX4; X5; X6; X7�;ΨÞ; ð76aÞ

l8ðX1;…; X6;Ψ1;Ψ2Þ ¼
5

2
ix½1ix2l6ðX4; X5; X6�;Ψ1;Ψ2Þ

þ 5ix½1ix2ix3l5ðX4; X5; X6�;Ψ1;Ψ2Þ þ
9

2
ix½1ix2ix3ix4l4ðX5; X6�;Ψ1;Ψ2Þ; ð76bÞ

l8ðX1;…; X5;Ψ1;Ψ2;Ψ3Þ ¼
5

3
ix½1ix2l6ðX3; X4; X5�;Ψ1;Ψ2;Ψ3Þ

þ 5

2
ix½1ix2ix3l5ðX4; X5�;Ψ1;Ψ2;Ψ3Þ; ð76cÞ

at level nine

l9ðX1;…; X7;Ψ1;Ψ2Þ ¼ −
7

6
ix½1ix2ix3ix4l5ðX5; X6; X7�;Ψ1;Ψ2Þ

−
7

4
ix½1ix2ix3ix4ix5l4ðX6; X7�;Ψ1;Ψ2Þ; ð77aÞ

l9ðX1;…; X6;Ψ1;Ψ2;Ψ3Þ ¼ −
1

2
ix½1ix2ix3ix4l5ðX5; X6�;Ψ1;Ψ2;Ψ3Þ; ð77bÞ

and finally at level ten

l10ðX1;…; X7;Ψ1;Ψ2;Ψ3Þ ¼ −
7

6
ix½1ix2ix3ix4l6ðX5; X6; X7�;Ψ1;Ψ2;Ψ3Þ

−
7

4
ix½1ix2ix3ix4ix5l5ðX6; X7�;Ψ1;Ψ2;Ψ3Þ: ð78Þ

All other brackets vanish. As in the previous section, we observe that most of terms in the brackets can be expressed
recursively, which is to be expected since they were built by explicitly iterating through the generalized Jacobi identities.
Note also that, as mentioned earlier, the terms that depend only on elements Λ and A are simply reproducing the (polarized)
p-forms that result from the descent equations of the anomaly polynomial. For example, we have that

HIGHER CURVATURE BIANCHI IDENTITIES, … PHYS. REV. D 100, 106001 (2019)

106001-11



ω1
6ðΛ; AÞ ¼

1

3!
l4ðΛ; A3Þ − 1

4!
l5ðΛ; A4Þ − 1

5!
l6ðΛ; A5Þ:

ð79Þ

Despite no longer being able to describe these higher
order gauge algebras in terms of just a Leibniz bracket on
the generalized tangent space, we thus have that the extra
structure of E is still enough to ensure that we can find an
L∞ algebra, and that this algebra has a finite number of
brackets. And while there should not be much difficulty in
adding the extra geometrical data that make up the physical
d.o.f. such as the Riemannian metric, it will require further
study to see whether this weaker differential structure will
be enough to give a natural geometric description of the
dynamics of higher-derivative-corrected supergravity.
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APPENDIX: CONVENTIONS AND
CHERN-SIMONS FORMS

We mostly follow the conventions of [19], though we
generally omit the wedge symbol for the product of
differential forms.
Given a Lie algebra-valued one-form A we define its

curvature by

RðAÞ ¼ dAþ A2; ðA1Þ

which satisfies

dAR ¼ dRþ ½A;R� ¼ 0; ðA2Þ

and is invariant under the infinitesimal gauge transforma-
tions of the potential

δΛA ¼ −dAΛ ¼ −dΛ − ½A;Λ�: ðA3Þ

As is well known from the study of anomalies [46,73–
75], taking the trace of powers of the curvature one can
define invariant polynomials

d trRn ¼ δ trRn ¼ 0; ðA4Þ

from the nth Chern character trRn of the gauge vector
bundle. Poincaré’s lemma then implies that one can locally
define the Chern-Simons forms ωð2n−1Þ

dωð2n−1ÞðAÞ ¼ trRn; ðA5Þ

and applying the lemma once again, now for δ, gives

dω1
ð2n−2ÞðΛ; AÞ ¼ δΛωð2n−1ÞðAÞ; ðA6Þ

where the superscript denotes the powers of the gauge
parameter, since, in principle, one can continue “descend-
ing” along this chain.
We can list (up to exact terms) some of the Chern-

Simons forms that will be important for us explicitly

ω7ðAÞ ¼ tr

�
AðdAÞ3 þ 8

5
A3ðdAÞ2 þ 4

5
AdAA2dA

þ 2A5dAþ 4

7
A7

�
; ðA7Þ

ω1
6ðΛ; AÞ ¼ tr dΛ

�
AðdAÞ2 þ 2

5
ðA3dAþ dAA3 þ A5Þ

þ 1

5
ðA2dAAþ AdAA2Þ

�
; ðA8Þ

ω5ðAÞ ¼ tr

�
AðdAÞ2 þ 3

2
A3dAþ 3

5
A5

�
; ðA9Þ

ω1
4ðΛ; AÞ ¼ tr dΛ

�
AdAþ 1

2
A3

�
; ðA10Þ

ω3ðAÞ ¼ tr

�
AdAþ 2

3
A3

�
; ðA11Þ

ω1
2ðΛ; AÞ ¼ tr dΛA: ðA12Þ

The last two are not used in this work but are the ones that
are featured in heterotic generalized geometry. These agree
with the usual ones in the literature [74] up to exact terms
corresponding to our convention choice of having the
differential acting on the parameter Λ.
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