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1 Introduction

We consider in this report non-linear models that map an input D-dimensional column
vector x into a single dimensional output f(x). The non-linear mapping f(·) is implemented
by means of a Gaussian process (GP) or a Relevance Vector Machine (RVM), see for
example [Rasmussen, 1996] and [Tipping, 2001]. We are given a training data set D =
{xi, yi}N

i=1 where the target yi relates to the input xi through

yi = f(xi) + ε (1)

where ε ∼ N (0, σ2
ε ) is additive i.i.d. Gaussian noise of variance σ2

ε .
We address in this technical report the issue of making predictions, that is of evaluating

f(x∗) in the case where the input x∗ is not deterministic, but rather a stochastic variable
whose distribution we observe.

1



In Section 2 we give a brief description of Gaussian processes, and in Section 3 a
brief description of the Relevance Vector Machine. In Section 4 we address the problem of
predicting at an uncertain input, and derive exact expressions for the mean and the variance
of the predictive distribution in the case of Gaussian kernels for GPs and Gaussian basis
functions for RVMs. In Section 5 we apply our ability to predict on uncertain inputs to
iterated time-series predictions, and describe how the uncertainty of the predictions can
be propagated.

2 Gaussian Processes

The Gaussian Process (GP) modeling framework consists in placing a Gaussian prior over
the function values. The joint distribution of the values of the function evaluated at a set
of inputs is then a Gaussian of the form:

p(f) ∼ N (0,Σ) (2)

where f = [f(x1), . . . , f(xN)]>, and we have set the mean to be zero. The covariance
matrix Σ can be parameterized, and computed by means of a covariance function, such
that

Cov(f(xp), f(xq)) = Σpq = CGP(xp,xq) (3)

where CGP(·, ·) is the kernel, or covariance function. Notice that in this way the covariance
between two model outputs is related to the distance between the two corresponding inputs
under the kernel metric.

The prior on the function values, eq. (2), and the noise model, eq. (1) allow us to obtain
the evidence,

p(y|θ) ∼ N (0,Σ + σ2
ε I), (4)

where y = [y1, . . . , yN ]> and I is the identity matrix. θ are the parameters of the covariance
function, or kernel, and of the noise. They are in fact the hyper-parameters of the model.
The model is trained by estimating the value of θ that maximizes the evidence.

2.1 Gaussian Kernel

While there exists number of different ways of choosing kernels for Gaussian processes, see
for example [Gibbs, 1997], we will in this report concentrate on a Gaussian type of kernel
that is also a very common choice:

CGP(xp,xq) = exp

[
−1

2
(xp − xq)

>Λ−1(xp − xq)

]
, (5)

We consider Λ = diag[λ2
1, . . . , λ

2
D]>, allowing for different length scales in different input

directions.
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2.2 Prediction at x∗

Given our set of training data D, the predictive distribution of f(x∗) at a new input x∗

is obtained by first building the joint probability distribution of f(x∗) and the training
data y. This distribution is obtained by augmenting the evidence, eq. (4) with f(x∗).
The distribution p(f(x∗),y|x∗,D, θ) is Gaussian with zero-mean and covariance matrix K̃
which we can write

K̃ =

[
K k(x∗)

k(x∗)> k

]
(6)

where K is the covariance matrix of the evidence, K = Σ + σ2
ε I, also called ‘data

covariance matrix’. We also have that k = CGP(x∗,x∗) = 1 with our choice of ker-
nel, and k is the vector of covariances between the new inputs and the training inputs,
k(x∗) = [CGP(x∗,x1) . . . CGP(x∗,xn)]>. By conditioning on the observed cases, we obtain
the predictive distribution,

p(f(x∗)|x∗,D) ∼ N (µ(x∗), σ2(x∗)), (7)

where µ(x∗) and σ2(x∗) are the mean and the variance of the Gaussian predictive distri-
bution and are given by:

µ(x∗) = k(x∗)>K−1t (8)

σ2(x∗) = 1− k(x∗)>K−1k(x∗). (9)

Note that the input dependent variance of the estimate of the function value σ2(x∗) should
not be confused with the estimate of the output noise σ2

ε , which is independent of the input
x∗.

3 The Relevance Vector Machine

The Relevance Vector Machine (RVM) is a probabilistic sparse kernel model, identical in
functional form to the Support Vector Machine (SVM) model, which is

f(x) =
M∑

j=1

ωjφj(x) + ω0 = ωωω>φφφ(x) + ω0 (10)

where {ωj} are the model weights and φj(.) is an arbitrary basis function. We also write in
vector form the weights vector ωωω = [ω1, . . . , ωM ]> and the responses of all basis functions
φφφ(x) ≡ [φ1(x), . . . , φM(x)]> to the input x. In the RVM case, a prior is put over the
weights, governed by a set of hyperparameters, one associated with each weight. For the
specific choice of a factorized distribution with variance α−1

j :

p(ωj|αj) =

√
αj

2π
exp

(
−1

2
αj ω2

j

)
(11)
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the prior over functions p(y|ααα) is N (0,ΦΦΦA−1ΦΦΦ>), i.e. a Gaussian process with covariance
function given by

CRVM(xp,xq) =
M∑

j=1

1

αj

φj(xp)φj(xq) (12)

where ααα = (α0, . . . , αN)> and A = diag(α0, . . . , αN), and matrix Φ is such that Φpq =
φq(xp). Sparseness in terms of the basis vectors may arise if for some j α−1

j = 0. Then the
jth basis function will not contribute to the model. Associating a basis function with each
input point may thus lead to a model with a sparse representation in the inputs, i.e. the
solution is only spanned by a subset of all input points. This is exactly the idea behind
the relevance vector machine.

3.1 Gaussian basis functions

One way of associating a basis function with each training input point is to choose (non-
normalized) Gaussian basis functions of the form:

φj(x) = exp

(
−1

2
(x− xj)

>Λ−1(x− xj)

)
(13)

where xj are the training inputs, and the functions are isotropic with Λ = λI.
The resulting covariance function is obtained by inserting expression (13) into equation

(12), and is given by:

CRVM(xp,xq) =
M∑

j=1

1

αj

exp

[
−1

2

(
(xp − xj)

>Λ−1(xp − xj) + (xq − xj)
>Λ−1(xq − xj)

)]
(14)

One clear advantage of Gaussian basis functions is that they allow the exact analytical
computation of the mean and variance of the predictive distribution for the case where the
input is uncertain. These derivations are made in section 4.

Furthermore, it can be shown that for an infinite number of equally spaced Gaussian
basis functions, equation (14) converges to the Gaussian covariance function of a GP, given
by equation (5) [Mackay, 1997].

3.2 RVMs viewed as GPs

RVMs are Gaussian processes where the covariance between the training targets, based on
equation (12), is given by the ‘data covariance matrix’ (see section 2.2) of the RVM:

K = σ2
ε I + ΦA−1Φ> or Kpq = σ2

ε δpq +
M∑

j=1

1

αj

φj(xp)φj(xq) (15)
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The vector of covariances between the new prediction and the training targets is given by

k(x∗) = ΦA−1φφφ∗ or [k(x∗)]p =
M∑

j=1

1

αj

φj(xp)φj(x
∗) (16)

where we set φφφ∗ = φφφ(x∗). Finally, the variance of the function value of the new prediction

is given by k = CRVM(x∗,x∗) = φφφ∗
>
A−1φφφ∗, for the RVM case this value is not necessarily

1.
Prediction of f(x∗) at a new input x∗ can be computed using the same approach as

for GPs (section 2.2), by computing the joint distribution of f(x∗) and the data first, and
conditioning then on the data to obtain the predictive distribution p(f(x∗)|x∗,D).

Plugging the expressions of K, k(x∗) and k for the RVM into equations (8) and (9) we
obtain:

µ(x∗) = φφφ∗
>
ωωωMP (17)

σ2(x∗) = φφφ∗
>
Σ−1φφφ∗ (18)

where ωωωMP and Σ are the mean and the variance of the posterior distribution over the
weights. They are given by:

ωωωMP = σ−2
ε ΣΦ>t (19)

Σ = (σ−2
ε Φ>Φ + A)−1 (20)

Equations (17)and (18) correspond to the classical expression of the mean and variance of
the predictive distribution for the RVM [Tipping, 2001].

4 Prediction at x∗ ∼ N (u,S)

The predictive distribution of the function value, p(f ∗) (we will for simplicity write from
now on f ∗ = f(x∗)), when the input is the random variable x∗ with input distribution
given by p(x∗|u,S) ∼ N (u,S), is obtained by integrating over the input distribution:

p(f ∗|u,S,D) =

∫
p(f ∗|x∗,D)p(x∗|u,S)dx∗ , (21)

where p(f ∗|x∗) = 1
σ(x∗)

√
2π

exp
[
−1

2
(f∗−µ(x∗))2

σ2(x∗)

]
with mean and variance depending on the

model. Equation (21) gives a distribution that we will call marginal predictive distribution,
since the predictive distribution has been marginalized with respect to the input x∗ and
the conditioning is now on the parameters of the input distribution u and S.
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4.1 Numerical approximation

Given that the integral (21) is analytically intractable (p(f ∗|x∗,D) is a complicated function
of x∗), one possibility is to perform a numerical approximation of the integral by a simple
Monte-Carlo approach:

p(f ∗|u,S) =

∫
p(f ∗|x∗,D)p(x∗|u,S)dx∗ ' 1

T

T∑
t=1

p(f ∗|x∗t,D) , (22)

where x∗t are independent samples from p(x∗|u,S).

4.2 Gaussian approximation

The analytical Gaussian approximation consists in only computing the mean and variance
of f ∗|u,S,D. They are obtained using respectively the law of iterated expectations and
law of conditional variances:

m(u,S) = Ex∗ [Ef∗ [f
∗|x∗]] = Ex∗ [µ(x∗)] (23)

v(u,S) = Ex∗ [varf∗(f
∗|x∗)] + varx∗(Ef∗ [f

∗|x∗])
= Ex∗ [σ

2(x∗)] + varx∗(µ(x∗)) (24)

where Ex∗ indicates the expectation under x∗.

4.2.1 Approximate solution

The approximate solution consists in approximating the mean and the variance of the
predictive distribution by their Taylor expansion, of order 1 and 2 respectively. The details
can be found in [Girard et al., 2003] and more extended in [Girard et al., 2002].

4.2.2 Exact solution

What is exact in the exact solution is the estimate of the first and second order moments
of the marginal predictive distribution [Quiñonero-Candela et al., 2003]. We are able to
compute them exactly when the kernel we use for GPs and RVMs is of the Gaussian kind,
as previously described. For deriving the following results, we use the fact that the mean
and the variance of the predictive distribution for a deterministic input is given by very
similar expressions both for GPs and RVMs. For the GP case we have:

µ(x∗) =
∑

i

βiCGP(x∗,xi) (25)

σ2(x∗) = 1−
∑

i

∑
j

Kij
−1CGP(x∗,xi)CGP(x∗,xj) (26)
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where we define βββ = [β1, . . . , βN ]> = K−1t, and for the RVM case we have:

µ(x∗) =
∑

i

βiφi(x
∗) (27)

σ2(x∗) =
∑

i

∑
j

Σij
−1φi(x

∗)φj(x
∗) (28)

with βββ = ωωωMP , as given by (19), and Σ as given by (20). It is worth noticing that
CGP(x∗,xi) and φi(x

∗) are given by the same expression:

CGP(x∗,xi) = φi(x
∗) = exp

(
−1

2
(x∗ − xj)

>Λ−1(x∗ − xj)

)
(29)

Computing the mean (for GPs and RVMs)
Using equation (25) and (27) we have:

m(u,S) = Ex∗ [µ(x∗)] =

∫
µ(x∗)p(x∗|u,S)dx∗ =

∑
j

βj

∫
h(x∗,xj)p(x∗|u,S)dx∗

=
∑

j

βjlj = βββ>l
(30)

where l is a column vector with elements lj, and lj =
∫

h(x∗,xj)p(x∗|u,S)dx∗. We also
have that h(x∗,xj) = CGP(x∗,xj) is as given by (5) for GPs and h(x∗,xj) = φj(x

∗) is as
given by (13) for RVMs.

Computing lj is a simple task, since it is the integral in x∗ of the product of two
Gaussians in x∗ except for a normalization constant. We can write

lj =
(2π)−D/2|Λ|−1/2

(2π)−D/2|Λ|−1/2

∫
h(x∗,xj)p(x∗|u,S)dx∗ (31)

so that we have that (2π)−D/2|Λ|−1/2h(x∗,xj) as a function of x∗ is a normal distribution
with mean xj and covariance Λ. Now, using the formula giving the multiplication of two
Gaussian distributions1 we have lj = (2π)D/2|Λ|1/2zc with

zc = (2π)−D/2|C|1/2|Λ|−1/2|S|−1/2 exp

[
−1

2
(xj

>Λ−1xj + u>S−1u− c>j C−1cj)

]
C = (Λ−1 + S−1)−1

cj = C(Λ−1xj + S−1u) (32)

1N (a,A)N (b, B) ∝ N (c, C) with C = (A−1 + B−1)−1, c = C(A−1a + B−1b) and normalizing constant
zc = (2π)−D/2|C|1/2|A|−1/2|B|−1/2 exp

[
− 1

2 (a>A−1a + b>B−1b− c>C−1c)
]
.
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With a little bit of algebra2, lj simplifies into

lj = |Λ−1S + I|−1/2 exp

(
−1

2
(u− xj)

>(S + Λ)−1(u− xj)

)
(33)

where I is the D ×D identity matrix.
It is worth noticing that if the covariance matrix of the input distribution, S, is the

zero matrix, that is if the inputs are certain, then lj = h(u,xj) and m(u,S) = µ(u) both
for GPs and RVMs as would be expected.

Computing the variance for GPs
We have v(u,S) = Ex∗ [σ

2(x∗)] + varx∗(µ(x∗)) = Ex∗ [σ
2(x∗)] + Ex∗ [µ(x∗)2]−E2

x∗ [µ(x∗)],
which translates into

v(u,S) =

∫ (
1−

∑
i

∑
j

CGP(x∗,xi)Kij
−1CGP(x∗,xj)

)
p(x∗|u,S)dx∗

+
∑

i

∑
j

βiβj

∫
CGP(x∗,xi)CGP(x∗,xj)p(x∗|u,S)dx∗

−

[∑
j

βj

∫
CGP(x∗,xj)p(x∗|u,S)dx∗

]2

,

(34)

which simplifies into

v(u,S) = 1−
∑

i

∑
j

(Kij
−1 − βiβj)Lij − [

∑
j

βjlj]
2

= 1− Tr
(
(K−1 − ββββββ>)L

)
− Tr

(
ll>ββββββ>

)
= σ2

GP(u) + Tr
(
K−1(kk> −L)

)
+ Tr

(
ββββββ>(L− ll>)

)
,

(35)

where Tr(·) is the trace operator, lj is given by (33), k is a vector whose i-th element is
ki = CGP(u,xi) and σ2

GP(u) is the variance of the GP model output f(u) evaluated at the
deterministic input u. The element Lij of matrix L is the following integral:

Lij =

∫
h(x∗,xi)h(x∗,xj)p(x∗|u,S)dx∗. (36)

2We use here the following identities:

(S + Λ)−1 = S−1 − S−1(S−1 + Λ−1)−1S−1 = Λ−1 −Λ−1(S−1 + Λ−1)−1Λ−1

(S + Λ)−1 = S−1(S−1 + Λ−1)−1Λ−1 = Λ−1(S−1 + Λ−1)−1S−1
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where again h(x∗,xj) = CGP(x∗,xj) is as given by (5) for GPs and h(x∗,xj) = φj(x
∗) is

as given by (13) for RVMs. Using the expression for the product of two Gaussians twice
this time, we obtain the following expression:

Lij =|2Λ−1S + I|−1/2

· exp

(
−1

2

[
(u− xd)

>(
Λ

2
+ S)−1(u− xd) + (xi − xj)

>(2Λ)−1(xi − xj)

])
(37)

where we define xd = 1
2
(xi + xj). An expression of Lij that gives more insight into the

variance in equation (35) is

Lij = ki kj |2Λ−1S + I|−1/2 exp
(
2(u− xd)

>Λ−1(2Λ−1 + S−1)−1Λ−1(u− xd)
)
. (38)

Notice that as S goes to zero, i.e. the input uncertainty collapses, L tends to kk>. Since
we also know that when S goes to zero, l tends to k, then it can easily be seen that v(u,S)
tends to σ2

GP(u) as the input uncertainty disappears, as we would expect.

Computing the variance for RVMs
We have v(u,S) = Ex∗ [σ

2(x∗)] + varx∗(µ(x∗)) = Ex∗ [σ
2(x∗)] + Ex∗ [µ(x∗)2]−E2

x∗ [µ(x∗)],
which for RVMs, using (18) translates into

v(u,S) =

∫ ∑
i

∑
j

Σij
−1φi(x

∗)φj(x
∗)p(x∗|u,S)dx∗

+
∑

i

∑
j

ωiωj

∫
φi(x

∗)φj(x
∗)p(x∗|u,S)dx∗

−

[∑
j

ωj

∫
φj(x

∗)p(x∗|u,S)dx∗

]2

(39)

where ωi is the i-th component of the maximum posterior estimate of the weights ωωω = ωωωMP,
given by (19), and Σ is the maximum posterior estimate of the covariance of the weights,
eq. (20). The expression for the RVM variance can be simplified to

v(u,S) =
∑

i

∑
j

(Σij
−1 + ωiωj)Lij − [

∑
j

ωjlj]
2

= Tr
(
(Σ−1 + ωωωωωω>)L

)
− Tr

(
ωωωωωω>ll>

)
= σ2

RVM(u) + Tr
(
Σ−1(L− kk>)

)
+ Tr

(
ωωωωωω>(L− ll>)

) (40)

again, lj is as given by (33) and Lij as given by (38) where in the RVM case ki = φi(u).
Notice here too that as S goes to zero, L tends to kk>, l tends to k, and it can easily be
seen that v(u,S) tends to σ2

RVM(u) as we would expect.

9



5 Time-Series Forecasting

Multiple step ahead time-series predictions can typically be performed under two ap-
proaches. The first approach consists in training the model to learn to predict on a fixed
horizon of interest (direct method) and the second in training the model to learn to predict
on a short horizon, and in reaching the horizon of interest by making repetitive one-step
ahead predictions (iterative method). The direct method has the disadvantages that as the
forecast horizon increases, the complexity of the non-linear mapping increases as well, and
the number of available input-output training pairs decreases. For the iterative method,
the complexity of the non-linear mapping is much lower, and the model only needs to be
trained once no matter what the forecast horizon of interest is. The disadvantage of the
iterative method is that as the forecast horizon increases, the performance is diminished
by the accumulated uncertainty of the intermediate predictions.

Näıve iterative methods do not account for the accumulated uncertainty in the predic-
tive distribution at a given horizon. We believe that the quality of the prediction of the
iterative approach can be much improved if it is able to account for this uncertainty. We
are concerned with the iterative approach and suggest to propagate the uncertainty as we
predict ahead in time.

5.1 “Näıve” iterative k-step ahead prediction

Consider the discrete time series given by a set {yt} of samples ordered according to is an
integer index t, and where the sampling period is constant. Consider as well the state-space
model {

xt = [yt−1, . . . , yt−L]
>

yt = f(xt) + ε
(41)

where the state x at time t is composed of previous outputs, up to a given lag3 L and we
have an additive (white) noise with variance σ2

ε .
The naive iterative k-step ahead prediction method works as follows: it predicts only

one time step ahead, using the estimate of the output of the current prediction, as well as
previous outputs (up to the lag L), as the input to the prediction of the next time step,
until the prediction k steps ahead is made.

Using the model (41) and assuming the data is known up to time step T , the prediction

3We are not concerned with the identification of the lag and assume it has a known, fixed value.
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of yT+k is computed via

xT+1 = [yT , yT−1, . . . , yT+1−L]
> → f(xT+1) ∼ N (µ(xT+1), σ

2(xT+1))

ŷT+1 = µ(xT+1)

xT+2 = [ŷT+1, yt, . . . , yT+2−L]
> → f(xT+2) ∼ N (µ(xT+2), σ

2(xT+2))

ŷT+2 = µ(xT+2)
...

xT+k = [ŷT+k−1, ŷT+k−2, . . . , ŷT+k−L]
> → f(xT+k) ∼ N (µ(xT+k), σ

2(xT+k))

ŷT+k = µ(xT+k)

where the point estimates µ(xT+k−i) are computed using equation (8) for GPs, and equation
(17) for RVMs. This setup does not account for the uncertainty induced by each successive
prediction (variance σ2(xt+k−i) + σ2

ε associated to each ŷ, given by (9) for GPs, by (18) for
RVMs). For each recursion, the current state vector is considered deterministic, ignoring
the the fact that the previous predictions that it contains as elements are in fact random
variables distributed according to the predictive distribution given by the model.

5.2 Propagating the uncertainty

Using the results derived in the previous section, we propose to formally incorporate the
uncertainty information about the future regressor. That is, as we predict ahead in time,
we now view the lagged outputs as random variables. The input vectors, or states, will as
well be random variables as they incorporate predictions recursively, xt ∼ N (ut,St).

Suppose as before, that data samples have been observed up to time T , we call YT the
set observed samples up to that time, and we wish to predict k steps ahead. The predictive
distribution we want to compute is

p(yT+k|YT ) =

∫
p(yT+k|xT+k) p(xT+k|YT ), dxT+k. (42)

The problem is that the distribution of the state at time t = T +k, p(xT+k|YT ), does depend
on the distribution of the output at the previous time t = T + K − 1, p(yT+k−1|YT ) since
the random variable yT+k−1 is incorporated in the state xT+k. We thus need a recursive
algorithm.

Let us now give a detailed description of the recursive estimation of the predictive
distribution at time t = T + k. Bear in mind that the input distribution at step t = T + n
is given by p(xT+n|YT ) ∼ N (uT+n,ST+n).

• at t = T + 1,

uT+1 =

 yT

. . .
yT+1−L

 and ST+1 =

 0 . . . 0
. . . . . . . . .
0 . . . 0

 (43)
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and since xT+1 is not random,

p(yT+1|YT ) ∼ N (µ(uT+1), σ
2(uT+1) + σ2

ε ), (44)

and we can use eqs. (8) and (9) for GPs, and (17) and (18) for RVMs.

• at t = T + 2,

uT+2 =

 µ(uT+1)
. . .

yT+2−L

 and ST+2 =

 σ2(uT+1) + σ2
ε . . . 0

. . . . . . . . .
0 . . . 0

 (45)

and since xT+2 has now one random component,

p(yT+2|YT ) ∼ N (m(uT+2,ST+2), v(uT+2,ST+2) + σ2
ε )) (46)

and we use eqs. (30) for the mean of both GPs and RVMs, and (35) for the variance
for GPs, and (40) for the variance for RVMs.

. . .

• at t = T + k,

uT+k =

 m(uT+k−1,ST+k−1)
. . .

m(uT+k−L,ST+k−L)

 and

ST+k =


v(uT+k−1,ST+k−1) + σ2

ε cov(yT+k−1, yT+k−2) . . . cov(yT+k−1, yT+k−L)
cov(yT+k−1, yT+k−2) . . . . . . . . .

. . . . . . . . . . . .
cov(yT+k−1, yT+k−L) . . . . . . v(uT+k−L,ST+k−L + σ2

ε )


(47)

and since xT+k has k random components if k ≤ L, or all random otherwise,

p(yT+k|YT ) ∼ N (m(ut+k,St+k), v(ut+k,St+k) + σ2
ε )). (48)

5.2.1 Input distribution

We can easily find a general expression for the input distribution at any time t = T + k
by making a few observations. First, notice that both for RVMs and GPs we have that
m(u,S) = µ(u) and v(u,S) = σ2(u) when S is the zero matrix. This allows us to use a
single notation for the mean and the variance of the function value evaluated at a given
input, be it random or not.

At time t = T + k + 1, the covariance matrix ST+k+1 of the state is computed by
updating its first column (and row, since it is symmetric):

[ST+k+1]1:L,1 =


v(uT+k,ST+k) + σ2

ε

cov(yT+k, yT+k−1)
. . .

cov(yT+k, yT+k−L+1)

 =

[
v(uT+k,ST+k) + σ2

ε

cov(yT+k, x̃T+k)

]
(49)
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where x̃T+k is a shorter version of the state vector xT+k where the last element has
been truncated: as we incorporate the new prediction in the state vector, we need to
get rid of the oldest prediction. For simplicity in the notation, we will compute the co-
variance cov(yT+k,xT+k) and then throw away the last element of that vector to obtain
cov(yT+k, x̃T+k). We have

cov(yT+k,xT+k) = Ex[Ey[yT+k · xt+K ]]− E[yT+k]E[xT+k], (50)

and we know that E[yT+k] = m(uT+k,ST+k), eq. (30), and that E[xT+k] = uT+k. We also
have that

Ex[Ey[yT+k · xt+K ]] = Ex[µ(xT+k) · xt+K ] =

∫
xT+k µ(xT+k) p(xT+k) dxT+k, (51)

which is a quite similar expression to equation (30), with µ(xT+k) as given by (8) for GPs,
and by (17) for RVMs.

Replacing and solving this integral in a similar way to what we did for the calculation
of the mean, using again the properties of the product of two Gaussians, we get

E[ytkxtk ] =
∑

j

βjljcj, (52)

where lj and cj are given by (33) and (32) respectively. The covariance terms are then
given by

cov(yT+k,xT+k) =
∑

j

βjlj(cj − uT+k). (53)

6 Conclusion

We have considered regression using Gaussian Processes (GPs) and Relevance Vector Ma-
chines (RVMs) in the case where the test inputs are not deterministic, but rather random
variables with known distribution. In particular, we have considered Gaussian distributed
inputs. For such uncertain inputs, the predictive distribution of the regressors is not
Gaussian anymore. For the widely used family of Gaussian covariancee functions, we ap-
proximate the predictive distribution of GPs and RVMs by a Gaussian distribution, by
computing the exact value of the mean and the variance of the actual predictive distribu-
tion. As an application of our results, we consider iterated time-series prediction, where
the predictions are fed back into the input vector to perform predictions further ahead in
time. For GPs and RVMs the predictions are probabilistic, and there is need to propa-
gate ahead the corresponding uncertainty as new predictions are made based on previous
predictions. We derive analytic expressions for the covariance of the iterated predictions,
and provide a framework for the obtention of realistic predictive distributions for iterated
predictions. Experiments where we perform multiple-step ahead time-series forecasting are
described in [Girard et al., 2003, Quiñonero-Candela et al., 2003], where we obtain much
better predictive distributions than when using a näıve approach. Our expressions have
also recently been applied to reinforcement learning [Rasmussen and Kuss, 2004].
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