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ABSTRACT. We prove the global asymptotic stability of the Minkowski space for the
massless Einstein-Vlasov system in wave coordinates. In contrast with previous work on
the subject, no compact support assumptions on the initial data of the Vlasov field in
space or the momentum variables are required. In fact, the initial decay in v is optimal.
The present proof is based on vector field and weighted vector field techniques for Vlasov
fields, as developed in previous work of Fajman, Joudioux, and Smulevici, and heavily
relies on several structural properties of the massless Vlasov equation, similar to the null
and weak null conditions. To deal with the weak decay rate of the metric, we propagate
well-chosen hierarchized weighted energy norms which reflect the strong decay properties
satisfied by the particle density far from the light cone. A particular analytical difficulty
arises at top order, when we do not have access to improved pointwise decay estimates
for certain metric components. This difficulty is resolved using a novel hierarchy in the
massless Einstein-Vlasov system, which exploits the propagation of different growth rates
for the energy norms of different metric components.
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1. INTRODUCTION

1.1. Stability of the Minkowski space for Einstein-matter systems. The non-
linear stability of the Minkowski space, first established in the fundamental work of
Christodoulou and Klainerman [12], is one of the most important results in mathematical
relativity. There are by now several well-established strategies to address this problem,
such as the original approach of [I2] or the one by Lindblad and Rodnianski [26] based
on the formulation of the Einstein equations in wave coordinates. These pioneering works
were generalized in different ways to more general sets of initial perturbations as well as
to various Einstein-matter models [5], 15, 19 27, 23] 37, 40, 20} 21].

On the other hand, not all Einstein-matter systems have Minkowski space as an attractor.
The Einstein-dust system leads to the well known Oppenheimer-Snyder collapse for initial
data arbitrarily close to Minkowski space, while the Euler equations will generally lead to
the formation of shockd] even in the absence of coupling with gravity.

A realistic matter model which is widely used in general relativity and avoids shock
formation on any fixed background spacetime is that of collisionless matter considered in
Kinetic theory, which, when coupled to gravity, constitutes the Einstein-Viasov system
(EVS). In the case when the individual particles in the ensemble are massive this system
models distributions of stars, galaxies or galaxy clusters and constitutes an accurate model
for the large scale structure of spacetime. It admits a large variety of nontrivial static
solutions [29, 30, [, 3], 22] which are potential attractors other than Minkowski space.

The study of the nonlinear stability problem for Minkowski space for the EVS was initi-
ated by Rein and Rendall in the spherically symmetric setting [28] and recently established
without symmetry restrictions for certain complementary regimes of initial perturbations
[15, 27]. Other stability results for the massive EVS were established in the cosmological

setting [11 31].

1.2. The massless Einstein-Vlasov system. The EVS is also used to model ensem-
bles of self-gravitating photons or other massless particles, when the corresponding mass
parameter m is set to zero. The system then takes the following form,

1
R (x) — §Rg,w(x) = / Jopvpdpz-10), Vo € M,

7! (z)

Ty(f)(x,v) =0, VY(z,v)eP,

for (M, g) a Lorentzian manifold and f a massless Vlasov field. Here, Ty denotes the
Louville vector field and P C T*M is the fiber bundle consisting of all the future light
cones of the spacetime. We refer to P also as the co-mass shelB. The fibre of P over z € M
we denote by 77!(x) and dptr-1(z) is the natural volume form on 7~ 1(x) arising from the
metric g. For a comprehensive geometric introduction to relativistic Vlasov fields, see for
example [33]. While the massless system formally differs from the massive system only
by changing the support of f from timelike to null vectors, the behaviour of its solutions
differs substantially in several key points.

The first stability result of Minkowski space for the massless EVS in spherical symmetry
was established by Dafermos [I3] and later generalised to the case without any symmetry
assumptions by Taylor [39]. In both cases, initial data are restricted to distributions
of particles with compact support in momentum variables and space. This implies in
particular that the particles stay in the wave zone, while the spacetime remains vacuum in
interior and exterior regions. For a global existence result in spherical symmetry without
necessarily small (but strongly outgoing) initial data cf. [I7]. Note that, for initial data

(1.1)

1On the other hand, shock formation can be avoided in the presence of accelerated expansion [36] [32]

(35}, [T8].

2This is a small abuse of language, since the particles have no mass here.



4 L. BIGORGNE, D. FAJMAN, J. JOUDIOUX, J. SMULEVICI, M. THALLER

with generic momenta, a smallness assumption is nevertheless necessarily required since
the massless system does possess steady states for sufficiently large data [2].

In the present paper we consider the nonlinear stability problem of Minkowski space-
time for the Einstein-Vlasov system with massless particles without any compact support
assumptions, neither for the distribution function nor for the metric perturbation. This
removes any restrictions related to the semi-global features observed in [13] [39] and allows
for arbitrary initial particle distributions including standard Maxwellians, which are ex-
cluded by compact momentum support assumptions. Moreover, metric perturbations and
matter field are coupled initially in all regions and the propagation of these general initial
conditions is captured by the solutions we consider. For the metric, the spatial decay rates
of the initial perturbations we consider coincide with those of [26].

1.3. The main result. Our main theorem can be summarized as follows.

Theorem 1.1. (Main theorem, rough version)

Consider smooth and asymptotically flat initial data (X9, g, 12:, f), where Yo ~ R3, to the
massless Finstein-Viasov system which are sufficiently close to the ones of Minkowsk:
spacetime (R3,6,0,0). Then, the unique mazimal Cauchy development (M, g, f) arising
from such data is geodesically complete and asymptotically approaches Minkowski space-
time.

For a more precise statement, we refer to Subsection

In the massive case, metric perturbations and particles travel at different speeds, in
particular in a uniform sense when velocities are bounded away strictly from the speed of
light. In contrast, for the massless system this decoupling does not occur, which creates
substantial new difficultied] in comparison with the massive system. We resolve these prob-
lems by a number of new techniques in the realm of the vector-field-method for relativistic
transport equations [16] discussed in the following.

1.4. The vector field method for transport equations and technical aspects.
The vector field method for relativistic transport equations was developed recently to
provide a robust technique which yields sharp estimates on velocity averages of kinetic
matter in spacetimes with geometries close to Minkowski spacetime [16]. It is based on
the commutation properties of complete lifts of Killing fields of Minkowski spacetime
with the transport operator. The method has the additional feature to be compatible
with the corresponding method for the wave equation introduced by Klainerman, which
constitutes the foundation of most stability results of Minkowski spacetime. For a classical
version cf. [37]. The vector field method for transport equations has in the meantime been
applied successfully to the Vlasov-Nordstréom system [14] and the massive Einstein-Vlasov
system in [I5]. In a serie of papers, [0 [7, 8, 9], the method has also been extended to
the Vlasov-Maxwell system in various contexts, in particular, without the need of any
compact support assumptions.

In the present paper, we apply the method to the massless Einstein-Vlasov system. In
particular, we introduce fundamental improvements, which are tailored to the structure
of the system in the massless case, which we will lay out in the following.

1.4.1. Null structures. The vector field method is based on the commutation properties of
the transport operator T, with the complete lifts of Killing fields of Minkowski spacetime.
The pertubation of the transport operator, defined loosely by the difference between the
transport operator in curved space and that of Minkowski spacetime, Ty — T, creates an

3Note that, in return, the massive case also contains independent difficulties, in particular, the compo-
nents of the energy-momentum tensor do not decay arbitrarily fast in the interior region, contrary to the
massless case.
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error term in the commutator with the complete lifts and in turn obstructing terms in the
resulting energy estimates.

The first crucial structure in the transport part of the massless system is the null
structure of the perturbation terms. There are roughly three distincts sources of null
structures. Two of them arise from the decomposition of the metric components and the
momentum variables with respect to a null frame. The third arises from the identification
of null forms for products involving (¢, z)-derivatives of the metric components and v-
derivatives of the Vlasov field. These null structures are all discussed on Subsection

It can be shown, as for the Vlasov-Maxwell system [§], that this structure is conserved
under commutation with complete lifts. What is crucial in a subsequent step is to assure
that this null structure can be exploited at all levels of regularity, which is not straight-
forward to validate. A particular difficulty occurs when well-behaved components of the
metric perturbation need to be estimated in energy. In that case the bulk energies of
Lindblad and Rodnianski are insufficient to close the estimates. We return to this issue
below.

1.4.2. A null structure in the energy-momentum tensor and its consequence for propagation
of the metric perturbation. The energy momentum tensor for massless particles is trace-
free. As a consequence of that, the 4-Ricci tensor is proportional to the energy-momentum
tensor. From the aforementioned null structure in the momentum components, after
decomposition on a standard null frame, we obtain a system of wave equations where
certain matter source terms enjoy improved decay in comparison with a generic energy-
momentum tensor term. This structure is another characteristic feature of the massless
system. To our knowledge, in the massive case, matter source terms are usually taken of
the generic type and an underlying hierarchy was never exploited.

To derive suitable energy estimates for the frame components of the metric, we consider
additional energy norms for the metric components. The resulting estimates are better
than the generic ones due to the fast decaying matter source terms and improved null
properties satisfied by the semi-linear terms of the Einstein equations. It is those energy
norms that in turn can be used to estimate the good frame components of the metric
perturbation when the source terms in the Vlasov equation are analysed at top order.
Moreover, compared to the proof of Lindblad-Rodnianski [26], this allows us to avoid the
use of Hérmander’s L' — L™ estimate.

1.4.3. Strong (t — r)-decay for velocity averages. In order to close the energy estimates
for the particle density, we have to deal with the weak decay rate of the pertubation part
of the metric in the interior of the light cone. In the case of Vlasov fields with compact
support, massless particles will follow straight lines parallel to the light cone, so that the
support of the Vlasov field is located close to the light cone. We capture this effect in the
non-compactly supported case using hierarchized weighted-energy norms for the Vlasov
field, similar to those considered in [9]. The extra weights allows us to prove strong decay
away from the wave zone, i.e. when t — r is large.

1.4.4. The Lie derivative. As in [27], we commute the Einstein equations with Lie deriva-
tives. Following a strategy initially developped for the Vlasov-Maxwell system in [6], we
also write the error terms arising in the commutation of the Vlasov equation in terms of
Lie derivatives of the metric components. Compared to [I5], this reduces the complexity
of the error terms, and fully conserves the null structure of the system after commutation,
which appears to be crucial in our proof. Moreover, it also allows to avoid many hierar-
chies considered in [26] in the commuted Einstein equations and in [I5] in the commuted
Vlasov equation.
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1.4.5. Decay loss and v-derivatives. At the linear level, derivatives in v do not commute
well with the masslessA transport operator, so that one should expect that the presence of
terms of the form 9, Z f in the source term of the Vlasov equation to be problematic. In
the massive case [I5] 27], the introduction of improved commutators seemed necessary to
deal with the similar issue. Here, this issue can be resolved essentially by using the null
structure of the system, the strong decay in t — r of the Vlasov field and a hierarchy of
growth in ¢ at the top order.

1.5. Acknowledgements. This material is based upon work supported by the Swedish
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pitality during a visit April - June 2019. M.T. has received financial support of the
G. S. Magnusons fond foundation (grant numbers MG2018-0077, MG2019-0109) which is
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2. STRATEGY OF THE PROOF AND OUTLINE OF THE PAPER

2.1. The Cauchy problem in wave coordinates and initial data. It is well known
that the Einstein equations can be formulated as a Cauchy problem and in the case of the
Einstein-Vlasov system, the well-posedness is guaranteed by a theorem of Choquet-Bruhat
[T1]. See also [38] for the massless case. A detailed formulation of the Cauchy problem for
the Einstein Vlasov system can be found in [31].

Consider a smooth 3-dimensional manifold ¥y with a Riemannian metric g, a symmetric
covariant 2-tensor k and a function f defined on T (or equivalently on T*Y), with all
data assumed to be smooth and such that the constraint equations (see [31] for details) are
satisfied. The Cauchy problem then consists in constructing a 4-dimensional manifold M
with Lorentz metric g, a smooth function f defined on P, satisfying the Einstein-Vlasov
system ([LT]), and an embedding i : ¥ — M such that i*g = g, i*k = k, foprE = f, where
k is the second fundamental form of i(X) in (M, g) and the function pry, : 77 1(X) — T*%,
with 7 : P C T*M — M the canonical projection, is defined analogously to [31], Definition
13.30], i.e. prg projects p € 71*1(2), for some hypersurface ¥ € M, to the part p+ of p
being perpendicular to the unit normal vector of 3.

Analogous to [26], 25], we consider here wave coordinates, i.e. we choose coordinates
(t =2 2% 22, 23), on M which satisfy

(2.1) VO<pu<3, Oyt =0,

where [, = gaﬁDaDg is the wave operator associated to the metric g. An element
v € T*M can then be written as v = v,da* and this gives rise to coordinates (z*,v,),
v =0,...,3 onT*M.

The class of initial data which is considered in the following is asymptotically flat and
small in the following sense. Let M > 0 be a constantf]. Following [26], we make the
ansatz

(2.2) g=n+h0+ R,

4With our convention, M is twice the ADM mass of the initial data.
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where 7 denotes the Minkowski metric while the perturbation h 4+ h! consists in the
“Schwarzschild part” hgﬁ = X(ﬁ)%%ﬁa and the perturbation h!'. The function y is
smooth and chosen such that x(s) =0 if s < 1 and y(s) =1 if s > 3.

In wave coordinates, the evolution equations can be written as a system of quasilinear
wave equations, the reduced equations, taking the form

(2.3) Uggpw = F,W(g)(Vg, Vg) — QT[f]uw 0<pv<3, O:= gaﬁaxaaxﬂa
where V denotes the covariant derivative of the flat Minkowski space-time. An initial data
set (Xo,9,k, f) gives rise to initial data of the reduced equations coupled to the Vlasov
equation via

o M o
. Gijlt=0 = Gij, 9oolt=0 = —a~, Goijt=0 =Y, alx)" =1 —=X\r)—, t=0 = J,
24) gyl o= —a% auhoo =0, a@P=1-x()2, flo=
and
(2.5) Brgijlimo = —2akij, Orgooli=o = 2a°§7 kij,
2
o o a” o
(2.6) A goili—o = a*§7%0; i, — —§*0igjk — adsa.

2

One can show that, with the choice ([ZH)—(26]) the wave coordinate condition (ZII) is
satisfied by (g, Orguv)|i=0, see, for example, [25, Section 4].

In view of the decomposition (Z2]), the equations ([Z3]) can be rewritten as a system
for the components of h', with extra source terms depending on h°. Thus, the unknowns
of the reduced Einstein-Vlasov system are h' and the distribution function f. The initial
data will be chosen small in the sense that the mass parameter M and certain energy
norms of h! and f are bounded by a small constant ¢ > 0.

2.2. Vector fields. Let
K = {0, 0,1,0,2,0,3, Y2, 3, L2z, Qo1, Qo2, Qo3, S},

be an ordered set of conformal Killing vector fields of Minkowski spacetime, where €);; =
xiaj—xjai, Qop = 2¥0,+t0), and S = x#0,,. We consider an ordering on K = {(Z4, ... z1}
and for any multi-index I = (I1,...,1|y) of length [I| we denote the high order Lie

I
derivative Elzl L Z\I\ by Eé. Let also

I/P\)O = {at,axla812,8;1:3,§12,5\213’@237@01’@02’@03,5} = {215"'211}5

where
(2.7) ﬁij = xiaj — xjai + vi&,j — 0Oy,
(2.8) Qo = 28, + t8), + [v]0,,, [v| = /|v1]? + |va|? + |vs]?

and we denote Zt...zn by Z1 Moreover, we work with the null frame U =
{L,L,e1,e2}, where L = 0, + 0,, L = 0y — 0y, and (e1,e3) forms an orthonormal ba-
sis of the tangent space to the 2-spheres of constant ¢ and r. We define 7 = {L, A, B} as
the set of the basis vectors which are tangent to the light cone and we denote £ = {L}.
Let k be a covariant 2-tensor field and V, W € {U, T, L}. At any point (¢, z), we define

VEww(tz) = S VekR)VW)|(ta) = Y ‘Gggakg,\(t,m)Uo‘VﬁWA ,
velu,vey,wew veu,vey,wWew

Vhbw(ta)i= > ViRVt = Y |dekn (L) TV,
TeT,VeV,Wew TeT,Vey,Wew

Finally, we denote by ¥; the hypersurface of constant t, i.e.

¥ = {(r,2) eR3 /r =1t}
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2.3. Detailed statement of the main theorem. Our main result can then be formu-
lated as follows.

Theorem 2.1. (Main theorem, complete version)
Let N >13,0< v < % and (3o, Gij, kij, f) be an initial data set to the massless Finstein-
Viasov system such that Yo ~ R3,

M
.&ij = (1 + 7) 5”‘ +o (T'_l_’y) s

l?:ij =0 (7“7277) , T =|x| = o0,

(2.9)

where M > 0 and giving rise to initial data (hhy|t:0,8thhy|t:0,f|t:0) of the reduced
Einstein-Viasov system through 24)-286]). Consider ¢ > 0 and assume that the following
smallness assumptions are satisfied

M+ > <H(1+r)%”+'”vv1iﬁ‘
[I|[<N+2

+ [+ mEHneT

) < 6’
LQ(RS -

L1(R3xR3) —

L2 (R3

Z H(l"i‘r) N+10+|I|(1+’U’)1+\J|318Jf‘
[I|4+|J|<N+3

There exists a constant eg > 0 such that if € < €g, then the maximal Cauchy development
(g, f) arising from such data is geodesically complete and asymptotes the Minkowski space-
time.

Moreover there exists a global system of wave coordinates (t,z',x2, 2%), and a constant
0 < d(€) < 55, with 6(e) =0 0, in which the following energy bounds hold.

For the Viasov field, Vt € R,

5 ke

[T|<N—1

> bt

[I|=N

/Z\If‘dvdx < e(l—l—t)%,

/Z\If‘ dvdz < e (1 —|—2€)%‘HS

For the metric perturbation h', ¥Vt € R,

S [ vetutf s [ Teieh (i —rl) e S e (40
|J|<N—1 X

WEJ hl |TZ/{ J 11412 14+~ 5
> (T IVLL (A |y, (L4 [t = 7)) da e (1+1),
|J|<N—17% o

> A AGE VLR :
—(1 — 2702 < € (1 25
J|=N/Et (1+t+7")(1+\’5—7“!)”dx+/27 sy GFlr—r)™ dese(d+1)

LL (qp +/ IVL( 1)\i£(1+yt—r1)dm§e(1+t)5.
|JI<N

Remark 2.2. On top of the above energy bounds, we also prove pointwise decay estimates
on hy and its derivatives, see Propositions [I01 and I8 We note that the decay rates
we state on certain null components of Vh! (see (I0B)) are weaker near the light cone
than those obtained by Lindblad-Rodnianski [26]. This is because we can close our main
estimates without using L' —L>® decay estimate of Hormander. Of course, a posteriori, one
can upgrade these rates to those of [26, Subsection 10.2] to obtain that for any |J| < N —5
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and for all (t,x) € Ry x R3

€ Velog(3+1t)
vLL (Y|, (t < L, VLS (RY|(¢ < —
VL7 (h)] 7 ( $)N1+t+r VL7 (Y| (t2) S Trier
Remark 2.3. At the top order, the strong growth on the energy norm of f leads to a
strong growth on the L? norm of the pertubation of the metric. For a technical reason and
in order to avoid a much stronger decay hypothesis on h'(0,-), we, in some sense, include
this strong growth through the weight (14t 4 7)~! into the top order energy norm of h'.

The proof of the main theorem is based on vector field methods and a continuity ar-
gument so that it essentially consists in improving bootstrap assumptions on well-chosen
energy norms of h' and f. The global-in-time existence then follows by standard argu-
ments. As we use vector fields method, we then need to

e commute the equations by high order derivatives composed by elements of K for
the Einstein equations and I/P\)O for the Vlasov equations.

e Perform energy estimates in order to propagate weighted L? norms of h' and
weighted L! norms of f.

e Obtain pointwise decay estimates on the solutions through Klainerman-Sobolev
type inequalities.

e Estimate all the error terms arising from the energy estimates using the decay
estimates.

As is usual for these type of problems, the main sources of difficulty arise from
e the bad behaviour near the light cone and the weak decay rate of h; in the interior
region t > r,
e the bad commutation properties of the Vlasov equation, in particular, generating
error terms containing 0, derivatives of f,

e the top order estimates, where some of the structural properties of the equations
cannot be used anymore.

We present below some key technical ingredients of the proof that addresses in particular
the above issues.

2.4. L' estimates for the Vlasov field.

2.4.1. Naive estimate. As Z , the complete lift of a Killing vector field] Z , commute with
the flat relativistic transport operator T, := |v|0; + v;0,, and since |g — 7| is expected to

be small, commuting Ty(f) = 0 with Z should create controllable error terms. However,
a naive estimate leads to

T, (Z7)| 5 2 120l 1Bua 110] + 100 Z () 0ufI10] + 10r () 10 Sl
0<p,v<3

and, during the proof, we will have

(1+|t—r])z Ve
|Z ()| S Ve —5+ |02 Z (b))l + [0 (hyw)| S :
: (1+t+r)1-0 e P Lt ) 1S (1 [t — )
so that, since |0, f| < (t + )| f| + Zie@o \Zf],

(2.10)

i

5The case of S, which is merely a conformal Killing vector field, is slightly different but do not create
more complicated error terms.

1
Zf dvdg;dT < / / veldtr+r) r)? ————-|0 o f||v|dvdadT+Dbetter terms.
R V7]
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Controling the left-hand side is necessary to close the energy estimates for f using a
Gronwall type inequality. However, with the above naive estimate, there are two obstacles
preventing us to do so

(1) The decay rate degenerates near the light cone ¢t = r. As mentionned earlier, we
will deal with this issue by taking advantage of the null structure of the equations.

(2) The decay rate is not integrable (and not even almost integrable). Even if we could
transform the ¢ —r decay into a ¢+ r one, the overall ¢ decay is too weak to derive
an estimate such as ||Z\f||L; L S e(1+1¢)7 for any Z € Py, with < 1.

2.4.2. The null structure of the Viasov equation. Let us denote g~' —n~! by H and vg + |v]
by Av. Then, the deviation of T, from the flat relativistic transport operator is

(2.11) T,- T, = —Avd; + v, H 5axﬂ——V( )P 00 - Oy,

Now, recall

e that the derivatives of H tangential to the light cone can be compared to those of
h and have a better behavior than the others. More precisely,

1+ t—7))2

< -~ U
VLH|(t,2) + Ve, H|(6,2) + Ve, HI(62) S Ve

It will be important to notice that a similar property hold for |Lf].
e from [26] Section 8] and the wave gauge condition that the £7 components of H
enjoy improved decay estimates near the light cone,

(14|t —r[)ztd
(L4t +mr)2=20"

(14|t —r[)2*s
1+t+r

|H|c7(t,z) S Ve , |VH[gr(t2) S Ve
We will prove that V., (H)rr decay even more faster near the light, which will be
crucial in our proof.

e from [0, Proposition 2.9], that certain null components of v behaves better than
others. In particular, in the flat case where vy = —|v|, one can controld

Z
// / 21 ———————|vr|dvdzdT
RS (1+[t—r])8

by the initial energy of |Z f|, so that, in the presence of vy, we can exploit the decay
in ¢t — r in order to close the energy estimates. Moreover, the angular components
satisfy, still in the flat case, |va| < /|v||vr|, so that angular components also
behave better than generic ones.

e from [0, Lemma 4.2], that %avi [ behaves better near the light cone that 0,, f since
%00 f1 S 1t = 11|10 fI + X zcp, 1211

e from [I5], Subsection 4.2], that Av satisfied a kind of null condition. In our case,
we have

|Av| = |H(v,0)| S [Hlcr|v] + [Hllor].
Now note that a naive estimate of (ZI1]) gives us

B (1+t47)° Ve 5

6The exponent % appearing in the denominator could be replaced by any number a > 1.
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whereas, expanding all the error terms according to a null frame and taking advantage of
the improved properties satisfied by the good null components of the solutions, we obtain

(1+[t—r|)2

)
T4+t+r ((1+‘t )’ [ol|0e £ + (L4t + 1) \/!vHvL!@me

\/_
(I4+t+r)/1+t—r| £

This last estimate is much better since either the decay rate is almost integrable for ¢ ~ r
or the Vlasov field is multiplied by +/|v||vr|, which allows to use part of the decay in ¢t —r.
This indicates how important the structure of the non-linearities is and how important it
is to conserve them by commutation. By differentiating the metric by Lie derivatives, we
will obtain thatl]

Ty (f) = Ty(N)I S Ve

Z (=PIl Z ]+ (1 + 4+ )P | Z])

(2.12) ( z]f) U(Av) Oﬁ({“) ,Bf Uaﬁg ( )“58$3f+%vi (Egij(H))anavg&,if,
(2.13) Ty(0anf) = —0an(Av)g Oﬁaﬂf—vacm<H>°‘ﬁaxaf+§vi (Lo, (H))* a5, ],

which improves the commutation formula obtained in [I5], where the quantities controlled,
Z(huy), are not geometric, and where the full structure of the non-lineraties were not
preserved. This will allow us to improve our naive estimate ([ZI0) in the following way

VALY

(1
(2.14) / \[1 n i——‘:r - ’25 |0t 2 f||vr|dvdzdT + better terms,

346
Zf (dvdxdT / Vel 11++|T e ulk |01 f||v]dvdazdT
o

< €1+ )" with n < 1

~

so that we can expect to propagate the bound || Zf(t, My,
independant of 9§, provided that we can improve the decay in t—r of the velocity averages
of f and its derivatives. Note that we will take n = g during the proof.

2.4.3. Dealing with the non integrable decay rate. Even after exploiting the null structure
as explained above, we are still left with error terms which are not time-integrable and
therefore with energy norms a priori growing in time. We will circumvent this difficulty
by following the strategy of [9] and we will then consider hierarchized weighted L' norms.
It essentially relies on the following two properties.

(1) The translations d,,, when applied to solutions of a wave equation, provide an extra
decay far from the light cone compared to the other commutation vector fields. In
view of (ZI2)-(ZI3)), we can expect the following improved behavior for T y(0.u f),

Ty@u f)] ~ (L[t = 7))~ T(Qs)],

which would considerably improved the estimate (ZI4) for Z = Opu. Since the

worst source terms of Tg(Z\ f), for any Z € @0, contains only standard deriva-
tives Oy, f of the particle density, the system composed by the commuted Vlasov
equations is in some sense triangular.

(2) The weight m :=

1+((t2+r )—2t7"$ Vi

2|1
‘U‘) ' can be used in order to obtain

stronger decay on f. It essentiallyﬁ arises from the contraction of the Morawetz

"The commutations formula for the scaling and the Lorentz boosts contain more terms which can be
handled in a similar way than those of (ZITJ).
8The overall exponent 1/4 is here only for homogeneity, so that m ~ ¢, for ¢ > r.
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conformal Killing vector field K = (t2+12)9; + 2tro, with the flat velocity current.
It satisfies in particular
Ty(m) =0, (A+[t—r)" < m
so that one can expect Tg(m" f) to be small and then propagate L' norms of f
weighted by m™.
As a consequence of these two observations, we will then be able to prove an estimate such
2
as Hm§ Oaf(t, )|y, < €(1+1¢)". This will then allow us to improve the estimate (2.14)

// / Zf ‘dvdﬂ:dT // em3|(9tmf||v| —dvdzdr
/R - 1+T+7"(1+‘T—7"‘)6_6
// €m3|atmf||vL| -dvdadT 4 better terms,
(14 74+7)- 45(1—1—\7’—7”\)

and then prove || Zf(t, Mz, < el +1)". Since we will have to consider higher order

derivatives, in order to apply this strategy, we will rather consider energy norms of the
2 ~

form ||mQ7§IPZIf(t, Iy, with @ > 0 sufficiently large and where I? is the number of

homogeneous vector fields composing Z1

2.5. Study of the metric perturbation h'. As already observed by Lindblad [24], dif-
ferentiating the metric by Lie derivatives considerably simplifies the study of the Einstein
equations. In particular for the two reasons presented here.

2.5.1. The wave gauge condition is preserved by commutation with E 7, where 7z e KV,
More precisy, the wave gauge condition Lgz” = 0 leads to

v (h - %tr(h)n + (9(|h|2)> ~0

7%

and one can prove (see Subsection [.2]) that this property is preserved by differentiation
by the Lie derivative, i.e.

1
V|J| < N, vH (ﬁg(h) — 5tr(@h)n + L} (0(|h|2))> = 0.
nv
This implies in particular, with V := (Vp, V., V.,) containing the good derivatives of
our null frame (those tangential to the light cone), that for any |J| < N,

VLz(W)er S IVLZM+ Y0 1L (WIVLZ ().
| K[+ K2 <[]

n [26] (and in [I5]), this property was obtained for Vh but could not be directly obtained
for its derivatives, since the quantities controlled, Z' (huv), were not geometric. For the
purpose of this article, it is crucial to derive improved estimated on the null components of
the higher order derivatives of h in order to close the energy estimates. Otherwise, certain
error terms of the commuted Vlasov equations would lack too much ¢ + r decay.

Remark 2.4. In [26], a lack of (t+7)°-decay in the error terms of the commuted Einstein
equations was circumuvented by considering several hierarchies so that HVZIh}W(t, Mz S
e(1+ )01, with d7) < 1 growing with |I|. In our case the lack of decay seems to be much
worse (recall the naive estimate (ZI1))) and this prevents us to consider such hierarchies
between the energy norms at top order.
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Remark 2.5. Several analogies exists between the Fintein equations and the Maxwell
equations

V‘HFHV = Jy, V'u*F;w = 0,

where the electromagnetic field F is a 2-form, *F is its Hodge dual and the source term J
is a current. In particular, studying the Fintein equations in wave coordinates has to be
compared to considering the Mazwell equations in the Lorentz gauge. This means that we
work with a potential A satisfying dA = F and the Lorentz gauge condition V*A, = 0,
which has to be compared to the wave gauge condition since it gives |V(A)L| < VA
Moreover, we noticed in [6] that

VZek, (dA=F and V!'A,=0)= (dLz(A)=Lz(F) and V'Lz(A),=0),

so that commuting with Lz conserves the Maxwell equations as well as the Lorentz gauge
condition.

2.5.2. The null structure of the Einstein equations. For the study of the Einstein equations
23), all the error terms arising after commutation will have enough decay outside from
the wave zone. To control the error terms near the wave zone, one of course, needs to
exploit the null structure and the weak null structure of the equations.

Indeed, one cannot propagate L? estimate on h' by performing naive estimates. It was
shown in [26] that F},,(h)(Vh,Vh) is composed of cubic terms which decay strongly, of
quadractic terms @, (Vh, Vh), which are a linear combination of standard null forms,
and other quadratic terms P(Vh, V,h) which contains semi-linear terms satisfying

|P(Vuh, Vuh)| S [VhIFy + (VeI Vh] + VA VA e

Since the wave gauge condition holds, the problem comes from the term |Vh|%,,. To
deal with it, the proof of [26] used the L' — L> estimate of Hérmander which gave that
|Vh|7 < (1 +1t)~'. We provide in this paper an alternative way for treating this issue,
which seems in fact necessary in order to deal with the top order energy estimates for the

Vlasov field (see Subsection Z.6]). The L? bound that we will have on h! is

2
M) = | VR Pl de +/ / A tnagar < ey, 5<n,
s, R A

where
(t ) SA+t—r) A<+ (14|t — r])b]l,n>t, (a,b) € Ri.

We then observe that for any (7,U) € T x U, P(Vrh,Vyh) satisfies the null condition
and that T'[f]ru, due to the presence of the good component vr in the integrand, decay
much faster near the light cone than |T[f]|. As a consequence, we will be able to prove
that

hl
XY (¢ / VR 3wyt da + / / v ’j“ i dadr < e (1+1)",
> 1 =+ ‘T T‘

where k < 1 can be choosen independently of §, allowing us to control sufficiently well
the error term |Vh|%—u. During the proof, we will take k = §.

Remark 2.6. These estimates reflect that, even estimated in L?, |Vh'|ry has a better
behavior than Vh' for t ~r. As no improvement can be obtained far from the light cone,
this property can only be captured if the L? norm of |Vh!|1y carries a weaker weight in
t —r than the one of Vh!.

Again, it is then important to prove that the structure of the source terms of the Einstein
equations are conserved by commutation with Eé. As noticed in [24], we have for a Killing
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vector field] Z ,
Lz (P(V,h,V, k) = P(V,Lzh, NV k) + P(V,h,V,Lzk),
Lz (me(Vh, Vk)) = QW(VEZh, Vk?) + QHV(Vha VEZk)-
Moreover, the structure of the commutator
Oy, £2)(hyw) = Lz(H)*PV oV ghyu,

is also preserved by the action of £ and the cubic terms as well as 0 h?w can be easily
handled. Similarly, one can prove that

‘CZ(T[f])/Jl/ = T[Ef:lp,y + good terms,
so that Lz(T[f]) enjoys the same improved properties as T[f] in the good null directions.

2.6. The top order estimates. After commuting the Vlasov equation by 71 , with |I| =
N and where N is the maximal number of commutation, a specific difficulty appears with
the error terms of the form

(t+ r)PlVLL (W) celOeaf],

where all the null structure is contained in the h!-factor. Since |I| = N, one cannot gain
t+r decay by expressing the good derivatives V in terms of the commutation vector fields
anymore. Since the estimate

/|@mmwm)s
R}

will hold, we will have

/// (t+ 7)ol [FLL (W) £2]0r 0 fldvdadr <
R3

Then, even the energy bound SQV’HV (LY (t) S 6(1 + t) would not allow us to close the
+6+n

€
8
2

(Lt 472 (1 [ = )

1
VEI hl 2
| |£,C dzdr

146
e(l+1¢t) =2
(A4 = ( )

energy estimates at top order. Indeed, we would obtain ||Z7f(t, Mry, Se(l+1)

leading to EV’HQV[EIZhl](t) < €(1 + t)!9F% For a technical reason and even though
IT[Z' f]|7u has a good behavior, this will prevent us to prove a better estimate than
52%1+V[£1 R'(t) < Ce(1 + )", Since § > 0, we could not improve all the bootstrap
assumptions. The idea then is to remark that ﬁg(ﬁlzhl)LL strongly decay near the light
cone, so that one can propagate the bound

VL (!
VL (h )|LLW1+27d$+/ / & %_,_Qq/dCCdT Se(l+p)m
Pt P 1+ ‘T ’

where 79 < 1 can be choosen independantly of all the other bootstrap assumptions.

2.7. Organization of the paper. In Section [3] we introduce the notations used in this
article. Useful results for the analysis of the null structure of the equations concerning the
commutation vector fields, the velocity current v and the weights preserved by the free
transport operator are presented. We also introduce the energy norms used to study the
solutions. In Section F] we study the consequences of the wave gauge condition and the
source terms of the commuted Einstein equations. Section[lis devoted to the commutation
formula of the Vlasov equation, as well as its analysis and in Section [6] we compute the
derivatives of the energy momentum tensor 7'[f]. The energy estimates used for the metric
pertubation are proved in Section[fland the one for the particle density is derived in Section
We set-up the bootstrap assumptions in Section @l In Section [0, we prove pointwise
decay estimates on the null components of A' and its derivatives and we use them to bound

9The case of the scaling vector field leads to additional non problematic terms.
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all the source terms of the Einstein equations but for the contribution of T'[f] in Section
1l In section (respectively Section [[3)), we improve the bootstrap assumptions on h'
(respectively f). Finally, in Section [4, we prove the required estimates on the L? norm
of T[f] in order to close the energy estimates.

3. PRELIMINARIES

In this section, we set-up the problem and introduce basic mathematical tools and
notations.

3.1. Basic notations. We will use two sets of coordinates on R!*3, the Cartesian
(t,z', 22, 23), in which the metric i of Minkowski spacetime satisfies n = diag(—1,1,1,1),
and null coordinates (u, u,ws,ws), where

u=t4+mr, u=t—r

and (wy,wq) are spherical variables, which are spherical coordinates on the spheres
(t,r) = constant. These coordinates are defined globally on R'*3 apart from the usual
degeneration of spherical coordinates and at » = 0. We will use the notation V for the
covariant differentiation in Minkowski spacetime. We denote by ¥ the intrinsic covariant
differentiation on the spheres (t,7) = constant and by (e1,e2) an orthonormal basis of
their tangent spaces. Capital Roman indices such as A or B will always correspond to
spherical variables. The null derivatives are defined by

L=0;+0, and L=0,—0,, sothat L(u)=2, L(u)=0, L(u)=0, L(u)=2.

With respect to the null frame {L,L,eq,es}, the Minkowski metric has the following
components

77(L7 L) = U(L7 L) = 77(L7 eA) = n(Lv 6,4) =0,

n(L,L) =n(L, L) = -2,  n(ea,ep) =dap.
We define further V = (V, V,, Ve, ), the derivatives tangential to the light cone, as well
asU ={L,L,e1,ex}, T ={L,e1,ea} and £ = {L}, which will be useful in order to study
the behavior of certain tensor fields in null directions. For that purpose, we introduce for
a (0,2)-tensor field of cartesian components kqg,

khow = > RV = Y [kaVeW
Vey,wew vVey,wew

Vhhw = Y Ve@WW) = Y [k vew?,
Ueld,vey,Wew Uel,vey,wew

Ykl = S VR (VW) = S ‘aﬂ(kaﬁ)wvawﬁ‘.
TeT Ve, Wew vel,vey,wew

If V=W =U, we will drop the subscript UU. For instance, |k| := |k|u,-

As we study massless particles, the functions considered in this paper will not be defined
for v = 0 so we introduce R? := R3\ {0}. We will use the notation D; < Dy for an
inequality such as Dy < CDy, where C' > 0 is a positive constant independent of the
solutions but which could depend on N € N, the maximal order of commutation, and
fixed parameters (4, v,...). We will raise and lower indices using the Minkowski metric 7.
For instance, x# = x,n"* and, for a current p,

pr=-2p"  pr=-2"  pa=pt

The only exception is made for the metric g, where in this case, g"” will denote the (u, )
component of g~ 1.

Finally, we extend the Kronecker symbol to vector fields, i.e. if X and Y are two vector
fields, 6% = 0 if X # Y and 6% = 1 otherwise.
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3.2. Vlasov fields in the cotangent bundle formulation. Our framework for the
study of the Vlasov equation and the Vlasov field is adapted from the one developed
in [I6] and is thus based on the co-tangent formulation of the Vlasov equation. The
presentation below follows closely that of [I6], but takes into account the fact that we
consider here massless particles only.

Let (M, g) be a smooth time-oriented, oriented, 4-dimensional Lorentzian manifold.
We denote by P the following subset of the cotangent bundle T* M

P = {(m,v) cT*"M ggl(v,v) = (0 and v future oriented} .

Note in particular that for v to be a future oriented covector, necessarily v # 0. P is a
smooth 7-dimensional manifold, as the level set of a smooth function.

In the massive case, P is often referred to as the co—massshell. By an abuse of language,
we will keep calling P the co-massshell, even in the present massless case. We will denote
by 7 the canonical projection 7 : P — M.

Given a coordinate system on M, (U,z%) with U C M, we obtain a local coordinate
system on T* M, by considering the coordinates v conjugate to the x® such that for any
relUCM,anyveliM

v = vadx”.

We now assume that there exist local coordinates (z®) such that 2% = t is a smooth
temporal function, i.e. its gradient is past directed and timelike. In that case, the algebraic
equation

vavggo‘ﬁ = 0 and v, future directed

can be solved for vy by

= (o) (05 = g0+ g ) <o.

It follows that (z%,v;), 1 < i < 3 are smooth coordinates on P and for any = € M,
(vi), 1 < i < 3 are smooth coordinates on 7~ !(z). Note that the requirement that v # 0,
implies that v; € R3\ {0}. We thus define R3 := R3\ {0}. All integrations in v can be
performed using the (v;) coordinates in which case, the domain of integration will always
be R3.

With respect to these coordinates, we introduce a volume form dy;-1(,) on 7 1(x)

defined by
/—detg!

dpt— = +——dvy Advs A dvs.
Hor=1 () vggﬁo 1 2 3
For any sufficiently regular distribution function f : P — R, we define its energy-
momentum tensor as the tensor field

(3.1) Toplfl(z) = /1( )Uavﬁfduﬂ—l(:v)-

For the above integral to be well-defined, one needs f(z,-) to be locally integrable in v, to
decay sufficiently fast in v as [v| — 400, as well as |[v|f to be integrable near 0, in view
of the fact that the volume form dy,-1(,) becomes singular near v = 0. All distribution
functions considered in this paper will always be such that these properties hold. Moreover,
we will also require f to possess additional decay in x and v, so that we can perform the
various intergration by parts needed. In any case, one can assume for simplicity for the
computations to hold that all distribution functions are smooth, compactly supported,
with a support away from v = 0, and then use the standard approximation arguments to
obtain the results in the non-compactly supported case.
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The Vlasov field f is required to solve the Viasov equation, which can be written in the
(%, v;) coordinate system as

1
(3.2) T, (f) := g va0,s f — ivavﬁaﬂgaﬁaw f=o.

It follows from the Vlasov equation that the energy-momentum tensor is divergence free
and more generally, for any sufficiently regular distribution function &k : P — R,

V“Taﬁ[k‘] = /Tg(k)vgdp,r1(x)

v

3.3. The system of equations. We decompose the metric as

Juv = N + h,ul/ = N + h;ow + h;lu/?

M
Wy = x[—) =0,
ob X<1—|—t>r 8

is the Schwarzschild-part, and x : R — R is a smooth cutoff function such that x(s) = 0
if s < % and x(s) =1if s > % For the inverse metric we will use the decomposition

where

r
1+t

The relation between h! and H; is made precise in Section @Il Define the reduced wave
operator

M
g,ul/ _ nuu + H,uu, HW — X< ) T&,ul/ + H{W — (ho),ul/ —|—ny

0O, = ¢*0,05.
In wave coordinates (z°,z!,22 23), we have Oy2z” = 0 by definition, so that (see [25]
Section 3])

(3.3) Yvelo,3], . (g‘“’\/\ det g\> —0.

The massless Einstein-Vlasov system then reads

(3.4a) Oghty, = Fu(h)(Vh,Vh) — Oght, — 2T [,
(3.4b) Ty(f) = 0,
where

1
T, = gaﬁva(?g - §3xiga5vav53w,

V[detg™t|
T[f];w = RS fvuvywdmdvzdvg,
and the co-mass shell condition
g_l(v, v) = g"vv, =0
is satisfied. Moreover, according to [25, Lemma 3.2] the semi-linear terms can be divided
in three parts

Fyu (R)(Vh,VR) = P(V 4h, V,h) + Qu(Vh, VR) + G, (B)(Vh, V),

where P(V,h,V,h), Q. (Vh,Vh) and G, (h)(Vh, Vh) are (0, 2)-tensor fields, the indices
(u,v) refers to their components in the wave coordinates system (t,z), and P,Q,G are
defined as follows.

e P contains the source terms which do not satisfy the null condition and is given
by

1 !/ ! 1 / !
(3.5) P(Vuh, V k) = 2% uhaan® Oy ksp — 51 177 80, hap 0 ko g
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e () is a combination of the standard null forms and is given by
(3.6) Qu(Vh,Vk) := 0" 0uhs,du ks, — ™ 0P (9uhsuds kary — Oprhsudakan,)
+ 020 (3ot 1 Oakpy — Oaheor gDk,
+ 10 (O harp Daksy — Dahrp ki)

1
+ 2770{0{ 55 (8ﬁ’hozo/a kﬁl/ auhaa/aﬁlkﬁl/)

1
t 51" 0 (O haw Oukey — Ouhao Oprkay) -
e Finally, G, (h)(Vh,Vh) contains cubic terms and can be written as a linear com-
bination of
(3.7) H0¢h,0phr, — H P HP0ch,,05hys,
where all the indices are taken in [0, 3].

The null structure of the quadratic terms are of fundamental importance and is described
in the following result.

Lemma 3.1. Let k and q be (0,2)-tensor fields. Then
|P(VE,Vq)| < VElrulValru + [VElcelVal + [VE|[Vlze,
|P(VE,Va)lTu +1Q (Vk, Vq)|
[P(VE,Vq)|ce +1Q(VE, Va)|ce
Proof. According to (&) and since ntL = nk4 = 0, we have for any (V, W) € U?,

\P(VvE,Vwa)| S IVvklrulVwaltu + Vv (E) Lol Vwal + IVvEIVw (@)Ll

This implies all the inequalities which concern P(Vk, Vq). Note now that, for any cartesian
component (u,v), Q. (Vk,Vq) can be written as linear combination of

No(hagags Pagas)s Nag(Pxirg, Pagas)s 0<a<B<3, (AN, A3,M) € [0,3]%

where at least one of the \; is equal to p or to v and

No(9,9¥) = —0;00u) + 01601% + D20001) + D303, Nap(9,1) = 0ap0pth — 05hp0at)
are the standard null forms. They satisfy (see [34, Chapter 2] for a proof), for any a < 3,

No(¢,¥)| + Nag(d9)| S IVIIVY| + [Vl Vi,

AR ZA

\VE|Valru + [VElrulVd|.

O

3.4. Commutation vector fields for wave equations. Let P be the generators of the
Poincaré algebra, i.e. the set containing

e the translation@ Ou, 0< <3,
e the rotations Q= xiﬁj —299;, 1<i<j<3,
e the hyperbolic rotations Qo =t + 270, 1<k <3,

which are Killing vector fields of Minkowski spacetime. We also consider K := P U {S},
where S = /0, is the scaling vector field which is merely a conformal Killing vector
field. The elements of P are well known to commute with the flat wave operator [, =
—07 + 02 + 05 + 05 and we also have [, S| = 20J,,.

We consider an ordering on K = {Z!, ..., Z!} such that Z'! = S and we define, for any
multi-index J € [1,11]" of length n € N* ZJ Z7v...Z7n. By convention, if |J| = 0,
Z7¢ = ¢. Similarly, VJ will denote Vs, ...V s,.

101 this article, we will denote 0,:, for 1 <14 < 3, by 0; and sometimes 9; by 0o.



MINKOWSKI STABILITY FOR THE MASSLESS EV-SYSTEM 19

When commuting the system (B.4al)-(B.40]), we will use the Lie derivative to differentiate
the metric ¢ in order to preserve the structure of the equations. In coordinates, the Lie
derivative Lx (k) of a tensor field k:gl Ba" with respect to a vector field X is given by

(8.8) Lxkfign = X (K§Luon) = E250n 9, X 0 — oo — G150, X
kﬁ%Q “n 051X + - +ka1 a" wagm

For Z7 € KVI, we define L(k) = L, ... Lz (k). Note that that for n € N, we have
the equivalence relation

(3.9) SVEE)| < D 1Lhk)] S D VAR
[J]<n |J|<n |J|<n

The following standard lemma can be obtained using

i i
1 .
(310) (t—T‘)L:S—x—QOi, (t—FT)L:S—Fx—QQZ, €A = — X'QZ’]’,
r r r
where Ci{ are bounded smooth functions of (w,ws), and
t z! x! t x7
t—r)0 = —0 0; = — S Qoi — Qij.
(=)o =375 — 7t T T Y T

Lemma 3.2. For any sufficiently regular function ¢ : [0, T[xR3> — R, there holds
V(tx) €0, T[xR?,  (1+|t—r))|Ve|+(1+t+7)Ve| S D |Zg|.
ZekK
The purpose of the following result is to generalize Lemma to tensor fields.
Lemma 3.3. Let k,,, be a sufficiently regular tensor field defined on [0, T[xR3. Then, the
following estimates hold, where Z7 € KI'|. For all (t,z) € [0, T[xR3,
Lk — Lk
sy wHs Y AL v < 3 22
JI<1 =] gt T

For all (t,z) € [0, T[xR? such that r > %,

k
(312) [Vl S —— 1 3

1+t+r |J\§11+|t_r|’
|kl e = 1L7k| 7,
(B13)  [Vkler S5t > [T [VHer S 20 T+i+r
[J]<1 [J]<1
|l er 2P - L2k e
(3.14) \Vk\ungrlglm, ‘Vk‘ﬁﬁs|;11+t+r-

This implies in particular the following weaker but more convenient estimates, which hold

for any (W, W) € {(U,U),(T,U),(L,T),(L,L)} and for all (t,z) € [0,T[xR3,
Lok L2 o |Lk|
(3.15)  [Vhlpy S Y — 2+ YW VE|,, S Y 2
‘J|§11—|—t—|—r 14t —r ‘J|§11+t+r
Proof. By Lemma 3.2 and since, for any Z € K, |Vzk| < |[Lzk| + |k|, we have

L+ [t —r[) VKl + A+t +7) [VE] S D Vzk| S K+ L2k,
ZeK ZeK
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which implies (8.I1]). Suppose now that r > % Define the operation “—”, by
L =T, T =U, U =Uu.
With this notation, we claim that for V € {£, T, U} and V € V,

1
3.16) YU elUu, VyV = X < -
( ) cu, U Z axA, |aX|NT’

Xev—
t+r It —r|
= < < 7
(317) VZeK, [ZV]=) bwW+ > dxX, |bw|S »ldx| S ——
Wwey Xev-
Indeed, the first inequality comes from VW =V W =0 for any W € U and V., L =

—Ve, L = <4 as well as V., ep = FgAeD — 2—17,51]33(L — L), where FgB are the connection

coefficients in the ey basis of the sphere of radius r. The second one follows from

[0y, L] = [0, L] =0, [0s,ea] =0, [S,L]=—L, [S,L]=—L, [S,esl=—ea,

Q. L] = [Qj, L] =0, [Qij,ea] = —ea(Q))es — Qllea,es]"ep, Q) = (Qj,en),
t— i t i
[QOZ"L] = —T<ai7eA>eA - x_L7 [QOHL] = i<8ZA7eA>eA + w_La
r r r r
8i7
[Qoi,ea] = —7< QfA> ((t+7)L— (t—7)L) + t(0;, €B>F1153A€D,

[0;, L] = —[0;, L] = %(ai — %iar)

and the fact that [0;,ea] = C’i%, where Cil are bounded functions of z.
For U,V,W € U we have
Vu(k)vw = Vulkvw) — k(VgV, W) — k(V,VyW).

Using ([3.16), we obtain, as 1+t +r < r on {r > %}”

k|- + [kl -
Y. Vkwvwls ) W kvw)| + Eow + K-

Vey,wew Vev,wew 1+t+r
\Y N kly—y + |E|lyp—
Yo [Vewvwls D |V(/<;VW)\+‘ ‘vlw Flow-
+i4+r
Vevy,wew Vevy,wew

where V,W € {U,T,L}. It then only remains to bound |V (kyw)| and |V (kyw)|. Start
by noticing that, by Lemma [B.2],

(L[t =D IV vw)| + (L4t +7) [Vkvw)| S Y IV2(kvw)]-
zZeK
Now, for Z € K, we have
Z(kvw) = Lz(k)(V,W) + k([Z, V], W) + k (V. [Z,W]),
so that, using (317) and that 1 +¢+r < ron {r > £},
1+t —rl

Vz(k < |Lzk k

Vey,wew

(1kly-w + [Elpw-) -

O

The following two results will be useful in order to commute the Einstein equations
geometrically.
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Lemma 3.4. Let k be a (0,2) tensor fields, so that Vk and VVk are respectively (0,3)
and (0,4) tensor fields of cartesian components

(Vk) = a)\k,ul/, (VVk)EAuV == agaAle.
For all Z € K, we have
Lz (Vk) =V (Lzk) and L7 (VVEk)=VV (Lzk).

Proof. Both relations follow from (B:8) and the fact that 0,27 is constant for any (a, 8) €
[0,3]? and Z € K. Let us give more details for the first one. For cartesian components
(a, 1, ), we have

L7 (VE) gy = Z Oaku) + 0a(ZN)0Nku + 0u(Z)0akiny + 00(Z7) Dakiyin
and, since (VLzk),,, = Oa (Lz(k)uw),
(VLZK) gy = 00(Z)00(K) + Z0a(kyw) + 00 (8,27 + 8u(27)8a (krv)
+ 0000 ZMkpx 4 0(Z) (k)

To derive the equality VLzk = Lz VE, it only remains to remark that 0,0,7 A =0 for all
0<a,p <3 O

Apv

apy

Lemma 3.5. Let k and q be two sufficiently reqular (0,2)-tensor fields. For any permu-
tation o € &g, the (0,2)-tensor field R°(Vk,Vq) defined by

RS, o, (VE,Vq) = 70300y,

(e5Ke%) o(1) VA (2)Xa(3)

Vg g s a0
satisfies

VZeK, Lz(R°(Vk,Vq) = R°(VLzk,Vq)+ R°(Vk,VLzq) —465R° (Vk,Vq).
Proof. Let Z € K. Using that the Lie derivative commute with contractions, we get

Lz (R7(Vk,Vq)) = Lz(n )My V,,  k v
+ na3a4 ﬁz(nil)a‘t}af; vaa(l)k

A (4) qao(f}) A (6)

\%

Ay (2) X (3)

Ao (2)0a(3) ¥ Ao (1) 400 (5) Q0 (6)

+ 770!3044na5a6ﬁz (Vk)ao-(l)ao'(Q)ao'(?)) V%(4) q%(s)%(ﬁ)

+ 7704304477045046Va0(1)kaU(Q)aU(S) Ly (Vq)aa(4)a0(5)aa(6) .
The result then ensues from Lz(n~') = —205n71 as well as Lz(Vk) = V(Lzk) and
Lz(Vq) =V (Lzq), which comes from Lemma .41 O

3.5. Analysis on the co-tangent bundle. Asin [I6], we will commute the Vlasov equa-
tion using the complete lift Z of the Killing vector fields Z € P of Minkowski spacetime.
They are given by

o~

O = O, 0<p<3,
Qij = 2'0; — 27 9; + 0;Op; — VO, 1<i<j<3,
Qoxc:tak—l—xk@t—i—]v]@vk, 1<k<3
and they commute with the flat massless relativistic transport operator T, := |v|0; +

0101 + v295 + v305 (see [I6, Section 2.7] for more details). Even if the complete lift S of
S satisfies [T, S] = 0, we will rather commute the Vlasov equation with S, which verifies
[T, S] =T, for technical reason (see Lemma 3.9 below). We then introduce the ordered
set

Py := {Z/ZePyu{s} = {Z',..., 2"},
where Z!! = S and Z' = Zi if i € [1,10], so that for any multi-index J € [1,11]",
Z7 =77 ... Z'". For simplicity, we will denote by Z an arbitrary element of Py, even
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if the scaling vector field S is not the complete lift of a vector field X#0,. of the tangent
bundle of Minskowski spacetime. Similarly, we will use the following convention, mostly
to write concisely the commutation formula. For any 7€ I/P\)O, if 7 % S, then Z will stand
for the Killing vector field which has Z as complete lift and if Z=2=5 , then we will take
Z = 5. The sets

{Q12, 13, D23, Qo1, o2, Qo3, S}, {12, 3, Qo3, Qo1, o2, Q. S}

contain all the homogeneous vector fields of K and @0. As suggested by Lemma [3.2] 0,,¢
has a better behavior than Z¢ for Z an arbitray element of K. It will then be important, in
order to exploit several hierarchies in the commuted Vlasov equation, to count the number
of homogeneous vector fields which hit the particle density f in the error terms. Given a

multi-index J so that Z7 € KVl and Z7 ¢ @'J‘, we denote by J¥ (respectively JT) the
number of homogeneous vector fields (respectively translations) composing Z”/ and Z7.
For instance, if
Z7 = 9,01289,0,,  JT =3 and J'=2.

The following technical lemma will be in particular useful for commuting the energy mo-
mentum tensor T'[f] and then the Einstein equations. It illustrates the compatibility
between the commutation vector fields of the wave equation and those of the relativistic
transport equation.

Lemma 3.6. Let ¢ : [0,T[xR3 x R3 — R be a sufficiently reqular function and Z € P.

Then,
z( [ o) = [ 25 s([eir) = [ sets
w0l T e T x o SO

Proof. Let, for any Killing vector field Z € P, Z% := Z— 7. We have,

W\ [ (2N g [ e (Y v\ _ dv
Z</Rg‘”|v|> - /Rgz<|v|>d” /RSZ () S</Rg‘”|v|> e Tl

It then remains to note that,

i)Z%_w Q(ﬂ)zﬁiﬂ/’ §<£>:§omﬂ o
“<|v| B TAJel) T Tl \l) Tl T B

and, by integration by parts in v,
g o I
iOp. — 00y ) | — | dv = 0, Oy | — |dv = — dv.
., oo =) (55 ML Crr) K M

In order to treat the curved part of the metric as pure perturbation, we define the one
form

O

w = —|v|dz’ + vidz! + veda® + vsda?, v = V]v1]2 + |v2]? + |vs]2.
Using that wy = w,U" = n(w, U) for any vector field U, we directly obtain
) ,Ii

(3.18) wo = —|v], wr=wo+ x?wi, wy, = wo = —-wi, [Y0] == VwawA.

As [16], we introduce the set of weights

ko = {w, /0 < p<3Yu{ztwy}U{z'w;—2iw; /1 < i< j <3YU{twy+a"wy /1 < k < 3}
and we consider, as suggested by [10, Remark 2.3],

t4r)? t—r)?
( 2)wL+( )wL.

m := (t2 4+ r)wy + 2a'w; = 5 L
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All the above weights are obtained by contracting the current w with the conformal Killing
vector fields of Minkowski spacetime. They are preserved along the flow of T, and will be
used in order to obtain strong improved decay estimates on the distribution function. In

particular, m has to be compared with the Morawetz vector field (Hr) L+ (= ) L when
used as a multiplier for the wave equation. Note that m < 0, so that we often Work with
We now define z as an overall positive weight, by

N

m2

(3.19) ZW el

3€ko

so that

(3.20) Viecky, —<z and <22

Note also that T, (z) = 0 and moreover, since % =1, > ek 3l S [v[(T+t+7) and
lm| < |v|(1 4t 4 7)2, we have
(3.21) 1<zS1+t+r
The following lemma illustrates how the null components of w and the weight z interact.
Lemma 3.7. The following estimates hold
|wy| 22 lwi| < <
wd Y (1|t —r)? wd Y (14t+7r)%
Wl < Vullwel,
from which it follows that

Mo 2 g 1<—2
wd Y 1+t+4r 1+t —r|

2

Proof. Since wy, <0 and wy, < 0, we have

1+t 2 1+t —r? t 2 t—r)?
tlts L B R (R T 23

which proves the first two inequalities.
For the third inequality, we use the mass shell relation for the flat spacetime

lwr | +

AB
0 =n""w,w, = —wrwr, + " wawg,

from which it follows that
i

X
|? = |n*Pwawp| < |wp|jwp| = lwi| [wo — Wi < Jwp|w’.

The fourth estimate then ensues from the third and the second one. For the last inequality,
we use w’ < Jwp |+ |wi|| £ /Jwp]w®+ v/wr|wP and then apply the first two inequalities.
O

The following Lemma illustrates the good interactions between the weights 3 € kg, m
and the vector fields Z € K.

Lemma 3.8. For all p € [0,3], 1 <i<j <3 andk € [1,3], we have

ST, ISEI Sz |Qu2)

SZ’ ‘QOK(Z)

<z
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Proof. Consider a vector field Y = Y8, + Y;'8,, and use B20) in order to get

5 <w0mw+§: ( )ms—rKUN+§: ( )«

3€ko
A straightforward computation reveals that for all 3 € kg, Z € @0, there holds Z (3) €
span{kg}, and consequently
|v]

(3.24)  9(m) = 22Fw,, i(m)=—-2(z'w’ —tw'), S(m)=2m, Q;(m)=0.

(3.22) ‘}/;(z)

(3.23)

For the weight m, one can check that

We then obtain the first three inequalities of the lemma by taking Y = Oy, S and ﬁij in
B22) and using [3.23)-(324). For the Lorentz boosts, we use the decomposition

k

" xd A xj T~ Tk A
(3.25) Qor = =00, + = (L0 - Z0y)
ro\r r
Now, note that for 1 < k < 3,
~ : 1 w
(3.26) Qo (m) = xFwy + 227 2w, + (t? — rHwy, QOk <| |) ﬁ

We then deduce

xd ~ . 9 9 x4 ) ) ,Ik
= Qog(m) = 2trwg + 2ra’w; + (* — r*)—wy = 2trwo + (> + r°) —wy
T r ,

a q
= m—m+2trug + (1 + Tz)x_wq = m— (t—7)%w + (t — T)Qx—wq,
r r

so that, taking ¥ = %qﬁoq in 322) and using B20), B23) as well as (1 + |t —7|) < 2
(see Lemma [B.7]), we obtain

m|  (t—7)°

3.27 Q —_— < z.
(3.27 “on() 5+ g

We also obtain from (3.26]) that

RPN zF ~ 2 —r2 ;
(3.28) Ton(m) - Ton(m) = (27 w® — zFw?),

r

22 Jj k ) .
= ! (x (tw® — 2*uw?) — x —(tw’ — xjw0)> .
t T T

Since |t — r| < z and using that (z/w® — 2Fw’) € kg and (tw’ — z'w®) € ko, we obtain
from the last two equalities
RPN PPN t —|— T
—Qor(m) — —Qp,;(m)| S|t —r < |v|22.
o (m) — S8 )| 5 -l gLE
0

Combining this last inequality with (3.22]), applied with Y = %Q% - %on, and ([3.23),

we get

RPN k

= Qon(2) = =0 (2)

(3.29) -

< 2.

~

The estimate |Qoz(z)| < 2 then directly ensues from @25), (27) and (F29). O
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3.6. Decomposition of 0,,. In this subsection, we state the decompositions and estimates
that will allow us to deal with error terms of the form 0,:¢d,,4 which appear in the
commuted Vlasov equation (see Section [l), where ¢ is a function on M and 1 is a function
on P. We start by introducing the notation

Vo) := vlzb({“)xl + (%QIbaxQ + ({“)031/1813.

The v derivatives are not part of the commutation vector fields and will be transformed
using

Qo 1,
3.30 Oy, = — — — ('O + 10, ,
(330 R )
so that, for 1 a sufficiently regular solution to the free relativistic massless transport
equation w"d, Y = 0, |V,9| essentially behaves as (t + )|V ,9|. In the following lemma,
we prove that the radial component

xZ

(Vo) = 00
has a better behavior near the light cone.

Lemma 3.9. For the radial component of V, the following estimates hold

B30 VeI ||Z1zw\ O

Let A denote a spherical fmme field index. The angular part verifies the weaker estimates

z4+1
(3.32) ‘(va)A‘ ‘Zzp‘ \Vmw\ ‘(Vyz)A‘ ST
Proof. Since
(3.33) L Oy = S Bgi — (1 + 10,) = O — — 5+,
r rlvl ] rlvl ] |v]

the assertion ([B31I)) follows by Lemma For the first inequality of ([332]), recall that
D5 — 29 i), where le;‘» are bounded

r x

the vector field e4 can be written as e4q = CA < -

functions of z, so that, using (IBBIII),

CENIN\EONEDS

1<J

Z o - o, ‘N| P Z 24|+ 5 V1.

The second inequality of ([32)) is obtained by applying the last estimate to ¢ = z and
using again Lemma B8] O

Similar to the case of the wave equation, we can then deduce that Lt enjoys improved
decay near the light cone. More precisely,

[t =7l
eV mw|+1+t+ > 1Zul.
ZGPQ

(3.35) |Ly| <

This can be obtained by combining the previous Lemma with the relation

(t+r)L=2S+ %QOi =S5+ x?ﬁm — vl (Vo9)".
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3.7. The energy norms. We define here the energy norms both for the distribution
function f and the metric perturbation h'. First, for any (a,b) € R? we introduce the
weight function

1
W= b = { g T2T
1+ Ju)b, t<mr

Then, define, for all sufficiently regular function 1 : [0, T[xR3 x R3 — R and (0, 2)-tensor
field k,

¢
(3.36) E®*[4](t) ::/ / Y] |v|de3dx—i—// / id lwr|dvwldzdr,
s JR3 0 Js, Jrs 1+ |ul

t b
a =, |2 Wy
Egb [k (t) ::/ \Vk@wwgder// |Vk|vwil+|u|dxdr,

=, |2
k Vk b
£k (t) := / IV bdx—l—// VK[ dadr,
s, L+t+r 1Tl

where V, W € {U,T,.L}. IfV = W are equal to U, we omit the subscipt UU. For

a,b € R*, an integer n > 0 and a real number ¢ > 2 zn, we define the energies

(3.37) ELll() = Y ERF (24750 sz] (t),

[<n

) = Y (5””’ £4K)0+ [ 1950 dx)

|J]<n

EVRIE) = D EVP[LEE] (D)

|| <n

EXL R = Y &Lk (1)
|| <n

5;;;21:[/{](15) =Y ELILLE] (1)
[J|<n

Remark 3.10. During the proof of Theorem 21, as we will take £ > % and since 1+ |t —
r| < 2 according to Lemma[374, the energy norm EL[f] will control fEt Jrs ‘Zlf‘dvdx for
any |I| <n.

3.8. Functional inequalities. We end this section with some functional inequalities,
starting with the following Hardy type inequality, which essentially follows from a similar

one of [26].

Lemma 3.11. Let k be a sufficiently regular (0,2) tensor field defined on [0, T[xR3.
Consider 0 < a <2, b>1,a> -1, and VW € {L,T,U}. Then for all t € [0,T[ there

holds +o00 2 +o0o 2
/ LI e < / [VE[Hyy WPr2dr.
r=0 (L+t+r)*(1+[t—r]) r=0 (L+t+r)®

Proof. Let VW € {L,T,U} and (V,IW) € V x W. Then, applying the Hardy type
inequality proved in [26, Appendix B, Lemma 13.1], we obtain

/+OO |kVW|2 2d7’ /+00 |a (kVW)|2 b 2d7‘
rmo (L ttr)e(T+ft—r2 e r—o T+t

Since Vy,V = V. W = 0, we have |0, (kyw)| = |Va, (k)yw| and the result follows from
the definition of |Vk|yw. O

The following technical result will be useful to prove boundedness for energy norms.
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Lemma 3.12. Let C > 0, % > 0, & > 0 such that K # & and g : [0,T[xR?> — R, be a
sufficiently reqular function satisfying

t
Vtel0,T] / / gdzdr < C(1+1t)".
0 Jx,
Then, there exists CE > C such that
t T d dr < k(1 tmax(Oli Ii)
Vtelo, / / 1+7_ T < Ci(1+1)

Proof. This follows from a integration by parts in the variable 7,

/Ot /E %dm Jo fz(l +sTa)c dxds]o ) /Otﬁ /Or/sg(s7x)dxd8d7

<O+t cE4+C- ﬁ/ (1+7)F e ldr
0

<C+CK
|R — &

>(1+t)max(0/i Ii)

O

Recall the decomposition ([22)), where x is a smooth cutoff function such that y = 0 on
] — 00, %] and x =1 on [§, +oo[. It will be useful to control the derivatives of the cutt-off
X7 Which is the content of the next lemma.

Lemma 3.13. For any Z”’ € Kl with | J| > 1, there exists a constant Cy > 0 such that

T CJ
z’ < — 1
<X<t+1>>‘ S Uttt TEEE

Proof. For any p € [0,3], we have 9z (z#) = §; and for any homogeneous vector field
Z € K, Z(z*) = 0 or there exists 0 < v < 3 such that Z(z") = +2”. Hence, in view of
support considerations, there exist two polyonomials Py, (t,z) and P,,(1 +t,7) of degree
n1 and nsg, such that

(1 (71))] = matisomtesnay mowem

Since1—|—t—|—r§rand1—|—t—|—r§t1fi_ ™ §% the result follows. O

We will need the following, weighted version, of the Klainerman-Sobolev inequality.

Proposition 3.14. Let k be a sufficiently regular tensor field defined on [0, T[xR3. Then,
for all (t,x) € [0, T[xR3,

1

|k|(t,z) <
(1+t+7“)(1+|75—7“|) |W0L|2 \J|<2

Zt)

Proof. 1t is sufficient to prove the proposition for scalar functions ¢ since we can apply
the inequality to each cartesian component of k£ and then use that

S IVER| S Y L4k
|7]<2 |J]<2
Recall the classical Klainerman-Sobolev inequality

(3.38) (o)) S A+t+r) A+ =) D (1270 s,
|J|<2
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and that y is a smooth cutoff function such that y = 0 on | — oo, i] and Y = 1 on

[, +00. Consider first (¢,z) € [0, T[xR3 such that |z| < 1. Applying B38) to ¢(t,y) =

o(t,y) - <1 - X (1%)) gives, using Leibniz formula and Lemma B13]

(1+8)*? “a
9l(t,2) S > |7 @ a0 L

1
(L+t+r)(L+]t—r)2 52,

As 1+ Swit,y) S (141)~® for all |y| < L we obtain the result for the region
considered. Consider now (t,z) € [0,T[xR3 such that [z| < 1 and let us introduce 7_ :=

(14|t — 7“‘2)% for regularity issues. Applying the classical Klainerman-Sobolev inequality

b _a
B3]) to x(r —t)72¢ and x(t —r+ 2)x (f—L) 72, we obtain, for all (t,z) € [0, T[xR3,

1 —a 2|z )

181610, 2) £ 7 e ~ Lol + 2 (£ ) e ) + (e - Dol

1 5 2 NERE
< / A <X(t—r+2)x< >7’__5¢> dx
(1+t+r)(1+\t—r\)%|§2 H 1+t
1 NPT
z7 (X(T—t)T_E(jS) dz
(1+t+r)(1+]t—r\)%J|ZQ /zt
Note that

o |ZK <X(12__|:¢)>‘ < H%STS%’ which can be obtained by following the proof of

Lemma B.I3l In particular, we have r—! < (1+¢+7)~! on the support of the two
integrands on the right hand side of the previous inequality.

3

¢ Ot —71) =1, 0t —71) = =, Yyt — 1) = 0, Qy(t — 1) = —Z(t — ) and
S(t—r)=1t—r,so that

1 ¢
VK| <2, ‘ZK(t—r)|§<1+—+—>]t—r].
roor

o X'(r—=t)+ X (t—r+2) < QHX/HL“]ligr—tg%v so that ¢t —  is bounded on the
support of x'(r —t) and x/(t —r + 2),
b _a
o (=07} +x(t—r +2)r <2,
‘We then obtain

/Zt z7! <X(t —r+ 2)X<12—It> T_%¢>

which implies the result. O

2

2
d <§(/ 21| whdz,
xS Zt{ (b‘wx

[]<2

+ ‘Z‘] <X(r - t)r,% ¢>

Furthermore, we will need a slight improvement of the Klainerman-Sobolev inequality
for massless Vlasov fields originally proved in [16].

Proposition 3.15. Let (a,b,c) € R? and f: [0, T[xR3 x R3 — R be a sufficiently reqular
function. Then, for all (t,x) € [0, T[xR3,

1
c t d < ¢
/RSZ £t 2, 0) Joldv S (L+t+r)2(1+ [t —r)wh 2 /zt /R%Z

v [11<3

/Z\If‘ lv|dv wbda.

We point out that the constant hidden by < depends linearly on (|a| + |b] + |c| + 1)3.
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Proof. As we do not have the inequality |Z!(z)| < z at our disposal if [I| > 2 and since
wg is not C? class, one cannot apply a standard L' Klainerman-Sobolev inequality for
velocity averages to z¢ fwg and derive the result. In fact, one just have to slightly modify
one step of its proof.

Remark that [Z(w?)| < wl for all Z € Py (this follows from |Z(t — )| < 1+ |t — 7).

Hence, since ]2 (29| < 2¢ according to Lemma B.8 we obtain, applying Lemma [3.0]
(339) VZePy 2 (/ zcyfuv\wgdv> < / | Jolwbdo +/ |2 f|lolwtdo.
R3 R3 R3

Following the proof of [8, Proposition 3.6], with f formally replaced by 2¢|v|fw?, and using
(339) instead of Lemma[36] each time where this lemma is applied in [8, Proposition 3.6],
we get the result. O

4. PRELIMINARY ANALYSIS FOR THE STUDY OF THE METRIC COEFFICIENTS

In this section, we recall standard analytical properties of the metric coefficients in wave
coordinates, independently of the Vlasov field. Most of the material of this section can
be found in either [26] or [27]. In order to be self-contained, we present here not only the
statements but also detailed proofs.

We fix, for all Sections @HGl a sufficiently regular metric g and its decomposition as

r M
(41) g=n+h=n+h"+h, where hfwzx<1+t>75w/, g l=nt+H.

We assume that g is defined on [0, T[xR3, satisfies the wave gauge condition (B3] and
verifies the following regularities conditions. For an integer N > 6 and 0 < € < i small
enough, M < /e and

(4.2) Vte[0,T[, V|J| <N, LL(h) €L*%), V[J|<N-3, Hﬁé(h)HL?oz < e

These conditions, which will be verified during the proof of Theorem 2] for a certain
N > 6 (see the bootstrap assumption (@.5) and the decay estimates of Propositions [0}
[[0.2)) and € > 0, ensure that all the quantities considered in the next three sections are
well-defined. In particular, the series of functions appearing below will be convergent in
L3(%).
Let us start by estimating pointwise the Schwarzschild part and its derivatives.
Proposition 4.1. For all Z’ € K|, there exists Cy > 0 such that for all (t,xz) € R, xR3,
M M

(43)  |L7(W0)| (t2) < CJm and VL (h0)] (t,2) < CJm'

Proof. Let Z70 € K|l and recall that ho, = X(#)%éuy. Recall also that JI (respec-

tively J&') is the number of translations (respectively homogeneous vector fields) compos-
ing Z70. By the Leibniz rule we have,

Jo (p0 130 Q " K (1
an lepan| s ¥ S izsn Y |22 (x()) ()\

0=p,v<3|I|<|Jo] |Q|+| K| <] Jo|
By Lemma [3.13] and a straightforward computation, we have
]l 1 T 1 x
r {i<em<3) 1 | Per(t,r, 7l

4.5 7Q - < O—1aziri—2) K (= < DR\l
w0 ()] = copl (0] < s

=gt QT+KT=JT
where Pyr(t,r,2) is a certain polynomial in (¢,r,2) which has degree K in (t,r). Ap-
plying this to Z7° = Z7 and using that 1+t + r < 7 on the support of h? as well as
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1+t+r St+1if % < HLI < %, we obtain the first estimate. For the second one, note

that
VEZO S D2 (Lo, L7(h0)]
0<p<3
and apply (&4)-EH) to Z70 = 9,27 for all u € [0,3]. O

4.1. Difference between H and h. In this subsection, we study the difference between
HM == g™ — p* and h* := haﬁno‘“nﬁy. For this, let us define

HY = g — " + ("), so that ¢" = (N + hlow + h}w)_1 = — (O™ + HIY.

Using the expansion in Taylor series of the inverse matrix function, we then obtain

H = —hagn™ + OM(|Wf) = —h" + O™ (h]2),
HY = —ifhign™ + O™ (W) = —(h')" + O"(|hP),  where
+o0 n +o00 n
O™ (h?) = > (1" hag, [ [P hag )™ = D (=1 0, [ (B 50",
n=2 i=2 n=2 i=2

The goal now is to compare H with h and H; with h'. In order to unify the treatment
of these two cases, we consider (9,h) € {(Hy,h'),(H,h)}. Recall now, as the elements of
K\ {S} are Killing vector fields and since S is a conformal Killing vector field of factor 2,
that, when acting on the contravariant tensor n**,

(4.6) VZeK,  Lzn Hw = —2050".
As the lie derivative commute with contraction, this implies
VZeK, Lz0)" =n""Lz(0)asn™ — 470" apn™ b = 1" hagn™.

Iterating the previous arguments, we then obtain

47 vzl exV 3cl ez, ™ = o+ S LYo,

[M]<|]]|
(4.8) VLz (b = VL0 + Y CuVLY m),
|M|<|J]
(4.9) VLzOF = YLz + Y CYVLY ()M
|M|<|J]
Moreover, using (4.0]), we also obtain that
(4.10)
+00 n
LLORP) =D (=10" > O L7 (Wag, [P Ly (Wag)n™,
n=2 [J1 |+t Inl <] ] i=2

where C:]]17~~~7Jn € Z. Consequently, since we have |£5 (h)| < & for all [K| < N —3 by the
condition (Z2), there holds

YIISN, leo) s > e |ekm|.
| 1]+ J2|<|J]

Similarly, one can prove that

YIISN, Ve e@)] s > |erm||vezm),
[J1|+]J2]<| ]

verou s Y |epm|[vezm|.
[J1|+]J2]<| ]

We then immediately obtain the following result.
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Proposition 4.2. Let N > 6, assume that ([@2) holds and consider (9,h) €
{(Hy,hY), (H,h)}. Then, for all |J| < N and (U,V) € U?, we have

Loy — L50ov] S D LY ®ov+ D] ‘ﬁél(h)Hﬁf(h)

|M[<|J] |J1[+|J2[<|J]
VEL @y - VELOov] S D IVEF G|+ Y ek |vezm),
|MI[<|J] [J1]+|J2|<|J]
VLy(S)ov = VL Bov] S D Ve Wov+ D] ‘ﬁél(h)‘ ‘Vﬁ?(h)‘.
|M|<]J]| [J1|+]J2[ <[]

Here L,(H)vv = L(H) P 1ayns,UTV?.

Remark 4.3. More precise inequalities will be required during the proof of Proposition
in the case where Z7 contains at least one translation, i.e. J© > 1. Since MT = JT
in the sums on the right hand sides of (AT)-@3) and that Zlgzgn T = JT in the one of

(£10), we have

i@y —L50v] S X o+ S |ehm||ehm

|M|<|J]| |J1|+|J2|<|J]
MT=JT JE+JT >min(1,J7)

VeL@y - VeRov] S Y (Ve v+ Y |ehm||vezm|
|M|<|J] |J1[+|J2|<|J]|
MT=JT JE+JT>min(1,J7T)
> |epml||edm||vezm).
|Jol+[J1l+]J2|<|J]|

Ver@wy -Verov] Y [Fe¥owl+ Y |erm|[Fekm|
|M|<|J] |J1|+|J2|<|J]
MT=JT JE+JT >min(1,J7)
> |epml||erm| |[Fezm).

| Jol+]J1]+[J2]| <[J]

4.2. Wave gauge condition. Using the wave gauge condition, one can estimate the bad
derivative L of good components L7 of the metric by good derivatives of the metric and
cubic terms. We emphasize that the result also holds for £7(H) since, crucially, we are
differentiating the metric geometrically.

Proposition 4.4. Let N > 6 be such that (L2]) holds and assume that the wave gauge
condition is satisfied. Then, for all |I| < N, we have

@11)  |VLEW)| 1 S VLR + DD |Lhh] VLR,
K]

(4.12)  |VLL(R

VL (h zli

S|l Ve + M
71+ K <]

<t
+t47r)?

Ner S ()] 7 + f

Remark 4.5. From the wave gauge condition, one can also derive
L( L J K
VLY oy S VLMt S |c4H|[VESH]
|1+ K[<|I]

It can be obtained by expressing [EI4]) in terms of H instead of h and by following the rest
of the upcoming proof. Note that a slightly weaker estimate could be obtained by combining

Propositions and[4.4}
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Proof. Remark first that we only need to prove these inequalities for {V LEIZ(h)
I(pl
‘VLﬁ (n°) |£T

O, (JR|?) in order to denote a tensor field of the form

Ow ’h‘ ZP nZ

‘ET and
since V = (V1, Ve, Ve,). In order to lighten the notations, we will use

where
e P, (h). is a polynomial in the variables (hag)o<a,s<3 of degree n.
e For all |J| < N, 3% £4 (P,(h)) and 312, VLY (P, (h)) are absolutely conver-
gent in L%(3;) and we have
(4.13) VSN, [VERP) s Y |ehm||vezm).
[J1]+]J2|<| ]|

This will be implied by the fact that g satisfies the condition (.2]).
e The tensor field O, (|h|?) can be different from one line to another.

Recall from (B3] that the wave gauge condition implies

Oy <g‘“’\/\detg\> =0, v € [0,3].
Expanding the determinant of g (the first order term is the trace), we have
det g = —1 —tr(h) + P(|h[?),

where P(|h|?) is a polynomial in the variables (hag)o<a,g<3 of degree at most 4 and of
valuation at least 2. Hence, using H* = —h*” + O*(|h|?) and the expansion in Taylor
series of the square root function, we getl"

1
(4.14) A% <h - §tr(h)77 + O(!h\2)> =0, v € [0,3].
5%
Now, observe by a straightforward calculation that for a general tensor field F},,, we have

(4.15) Lz (VHF)pda”) = VH(LF)uda” — 265 VH(F),,dz",

As Lz(n) = 205m, Lz(n™') = =265y~ for all Z € K and since the Lie derivative commute
with contractions,

(4.16) VZ €K, Ly (te(h)y) = Lz (naﬁhaﬁn) = tr (Lzh)n
The identities (£.14), (£15) and (4.I6]) yield, by an easy induction, to

1
(4.17) V|I| < N, v (ﬁlz(h) — §tr(ﬁlzh)77 + L}, (O(|h|2))> = 0.
pv
For a vector field U and a tensor field F},,, there holds the formula

(4.18) VHF)w = VEEF) Lo + VHF) v + VAF) av

Applying this identity to U =T € T, F = £L(h) and then F = tr(LLh)n, one has, since
nLr = 07

1 1
(4.19) VH(LGh)ur = =5V (C5h) 1 = 5V (L5R) pp + VA (L5R) 4o

(4.20) VH(tr(LLh)N) ur = —%VL (tr(LLR)) nor + VA (tr(L5h)) nar.

HRecall that the covariant derivative V is the one of the flat Minkowski spacetime.



MINKOWSKI STABILITY FOR THE MASSLESS EV-SYSTEM 33

Combining (4I7) with (£13]), (AI9) and (£20), we obtain
(4.21) IVLLY ()| o S [VLGA| o, + V(LR |+ Y | VLh||L5h|.
| JI+IK|<|]
The first estimate (ZI]]) then follows from
Vir(Lyh) = te(VLGh) = "N Ly () = =V Ly (M) + VLG (h)aa + VL, (h) BB.

‘We now turn to the second one. Note first that

1 r M . r M
(ho);w - §tr(h0)77m, =X <1——i—t> 7(5;”/ - mw), simce h;Ou/ =X (1—4-15) 75;“/-

As h = h%+ h! and S — N = 2004001, the condition (4.I4]) leads to

1 2M r
“(ht = <tr(n! h|? ' Sy = :
v (1= geetm e omt) sy (T )= vl

As the support of X’ is included in , we obtain, since Z” is a combination of transla-

11
[a 5]
tions and homogeneous vector ﬁeld,

2M r Darec,cape
EJ / dt < M—34=-=2
Z<(1+t)2X <1+t> )‘ ~ At trr)2

Using (£I5) and (£IG), we then get for all |J| < N and v € [0, 3],

VIJ| <N,

(4.22) v (ot — Lacdntyn + o4 (0(nR)) < e

. Z 9 r Z n Z o ~ (1 + t + T)Q.
Since ([@I9) and (E20) also hold if h is replaced by k!, the inequality (@I2) ensues from
(413) and (4.22]). O

4.3. Commutation formula for the Einstein equations. In this section, we compute
the source terms of the wave equation satisfied by the cartesian components of £ (h!). In
order to do it in a geometric way, we define, for any sufficiently regular (0, 2)-tensor field
k, the (0, 2)-tensor field (y(k) whose components in wave coordinates satisfy

Oy (B = Oylli) = ¢ 0ads(ka) = 6°'VaVilk) = (6°VaVsk)

jn%

since V is the covariant differentiation of Minkowski spacetime whose Christoffel symbols
vanish in the coordinates system (¢,z). Our goal now is to compute, for any Z7 € K1,
Oy(LLRY). The first step consist in determining the commutator Oy (L4hY) — £7(0,h1)
and then we will describe £7(C;h!). We start by the following technical result.

Lemma 4.6. Let K be a (2,0)-tensor field and k a (0,2)-tensor field, both sufficiently
reqular. Then, for all Z € K, we have

L7 (KOPVoVsk) = Lz (K)* VoVak+ K7V VsL(k)
Proof. We will use here that K O‘BV@V5k is obtained by contracting K with the (0,4)-

tensor field VVEk. Since the Lie derivative commute with contraction, we have for any
0 < p,v<3and for all Z € K,

Ly (KaﬁvaV5k> = Ly (K)aﬁ (VVE)apuw + KB (ﬁZVVk)aW,, .
l,I/V
It then remains to apply Lemma [B.4] which gives (EZVVk)aﬁW = (VVEZk)OcBW =
VaVaLz (k).

We are now able to compute the commutator.

12e refer to the proof of Lemma [B.13] for a more detailed estimate of a similar quantity.
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Corollary 4.7. For all Z € K, we have

0, (LzhY) — L2 (ﬁgm) = Ly (H)*PV,Vgh! — 265 H**V,Vh! + 265 O, (h').
For all multi-index |I| < N, there exist integers 5[[(, Q{LK € Z such that

Oy (c5h") = 25 (Oph') = Y Chuld(H) PV VoLl () + Ck O, (£5n").
||+ | K| <[1]
[KI<|1]

Proof. Let Z € K and recall that ﬁg(hl) = g*#V3V,h!. Then, applying Lemma B8, we
get

Ly (ﬁghl) = Lz(g7) PV oV sh +g*PV VL (hY) = Lz(g71)*PVaVsh!+0, (LzhY).
It only remains to use g~ ' = 57!+ H and Lz(n~!) = —20517 1, so that
Lz(g )PV Vsh! = —2650°PV, Vsh! + Lz(H)PV,Vsh!
= —2650,(hY) + 205 HPV ,Vgh! + Lz(H)**V ,V gh'.

For the higher order commutation formula, we proceed by induction on |I| (note that the
result is straightforward if |I| = 0). Let n € N* and assume that the result holds for all
multi-indices |Io| = n. We then consider a multi-index I of length n + 1 and we introduce
Z € K and |Iy| = n such that Z! = ZZ0. Then,

Oy (£5h') — 5 (Bgnt) = O, (£2(chn')) = £2(0, (£5n"))
+£7(0, (£pnt) - £ (O4n')).
According to the first order commutation formula applied to L2 h!,
0, <£Z (ﬁghl)) e (ﬁg (ﬁg’hl)) = —Ly(H)*PV VLD (hY) — 265 HOPV, Vsl (nY)
+205 O, (£3n').

All the terms on the right hand side of this equality have the required form since 1 <
|Ip| < |I|]. Using the induction hypothesis, we can write £z (ﬁg (E?hl) — Eg’ <ﬁgh1)>

as linear combination of terms of the form
Ly (LHH) PV VLEMY), L7 (T, (5RY)), I+ 1K< I, K] < ol

It remains to apply Lemma in order to deal with the first ones and the first order
commutation formula for the last ones (note that |J| + |K|+1 < [[y] + 1 = |I| and
K|+ 1< |I]). O

We now focus on Eé <ﬁgh1).

Lemma 4.8. Let k and q be two sufficiently regular (0,2)-tensor fields. Then, for all
Z ek,

Lz (P(VE,Vq)),, = P(VuLzk,V,q) + P(Vuk,V,Lzq) — 465 P(V,uk, V,q),
Ly (Q(Vk?, VQ))W = QW(VEZk, V(I) + QHV(Vk’ vEZC]) - 45§Quu(Vk5, V(I)-
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Iterating these relations, we obtain that for all |I| < N, there exist integers 6§K such that

L7 (P(VE V), = > Cix P(Vulzh ViL7aq),
|1+ K[<|I]
L7 Q(VEVD),, = Y, Clx Qu(VEZK VLG q).
[+ K[<|I]
Proof. This directly follows from the definition of P(Vk,Vq) and Q(Vk,Vq) B.3)-(B.06)
as well as Lemma O

We then deduce the commutation formula for the Einstein equations (B.4al).

Proposition 4.9. Let Z' € Kl with |I| < N. Then, there exists integers CL - and 6571(
such that, for any (u,v) € [0, 3]?,
Og (L5(WNw) = > Chy LLH)*PVVLE (')

I+ K|<[1]
|K|<|1]

—I — I
+ Z Crx P(VuLyk, VLG q) + Ch g Qu(VLyk, VLY q)
[T+ K<

+ 30 LLGn)ThI),, ~ £F (") 2L (T
|J1<|1]

The derivatives of T[f] and ﬁgho will be computed in Section [ and PropositionI1.2. For
the cubic terms, we have under the assumption (L2]),

A D SR 1o
[Ju|+] T2+ T3] <|1]

vl

vl

Proof. The commutation formula for the Einstein equations (3.4al) follows from an induc-
tion on |I| relying on Corollary [ 7land Lemma[L8 For the estimate on the cubic terms, we
obtain from (3.7)) and the definition of the Lie derivative (B.8)) that £, (G(h)(Vh, Vh)) u
can be bounded by a linear combination of terms of the form

(1 + ‘ZJOHGOBO {Z‘ba&h&@{ ‘ZJS(%S}L)\SRS

> ‘ZJleﬁl

)

where all the multi-indices are in [0, 3] and |Jo| + |J1| + |J2| + |J3] < |I|. Note now, using
39) and Lemma [B4] that

Ji proBi Ji K;
|zt < \ViH| s Y |ek|,
| K |<|Ji]
2500, < |VEVR S S |een = > |vepn).
| K51<]J] |K51<]J4]

Finally, without loss of generality, we can assume that |Jy] < N — 3, so that, using
Proposition and the assumption (4.2), ‘Z Jo [ 0‘050| < 1. This concludes the proof. [

5. COMMUTATION OF THE VLASOV EQUATION

The purpose of this section is to compute the commutator [T, Z! |, for Zl e @g'. The
commutation formula obtained here is more geometric than the one used by [I6]. In the
spirit of [8] for the Vlasov-Maxwell system (see in particular Subsection 2.5), we express
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the error terms using Lie derivatives of the metric instead of derivatives of its Cartesian
components. We recall the following notations

(w0aw1aw2aw3) = (—|v|,vl,v2,v3), |v|:\/v%+v§+v§

Av = vy—wy = vo+ v,

1
T, = v,9"0, — §va053iga58vi

and we consider for all this section a sufficiently regular symmetric tensor field H*” and a
sufficiently regular function 1 : [0, T[xR2 x R3 — R. We define the vertical parts S* and
Zv for Z € P a Killing, respectively conformal Killing, vector field, by

SY .= 0 and v = 7 -7

For instance, Q] = —w0,,. Recall also that, in order to simplify the presentation of the
commutation formula, we use the following convention. For any Z € @0, if Z # S, then
we denote by Z the Killing vector field which has 7 as its complete lift and if 7 = S,
then we set Z = S. Finally, we extend the Kronecker symbol to vector fields (X,Y), i.e.
6}/( =1if X =Y and 5}/( = 0 otherwise.

5.1. Geometric notations. In order to clearly identify the structure of the error terms in
the commuted equations, let us rewrite the two parts composing the operator T,. For this,
we will denote the differential in the spacetime variables (¢, x) of ¢ by di and we recall
that VH denotes the covariant derivatives of H with respect to the Minkowski metric. We
then have

dyp = 9apdat, v = w,dat, VH = OpH"™da @ Opu @ Oy

With these notations,

(5.1) v O = H(v,dy),

(5.2) Vavs0iH POy = Vi(H)(v,v) - Dy,

(5.3) CavgdHOE T = R (v, 0) - L,
Vo Vo

Similar identities hold if v is replaced by w = w,dz*. Note that the transport operator
can then be rewritten as

(54) Tyw) = Ty(w) — SVi(H)w,v) -0,
with
(5.5) Ty() = g '(v,dp) = Ty(eh) — Avdpp + H(v,dy))

and where T,, = [v|0; 4+ v'0;1) = wtd, is the massless relativistic transport operator with
respect to the Minkowski metric. Let us mention that the quantity (53]) will appear as an
error term in the commutator [T, ﬁok]. We now prove a technical lemma which contains
useful identities.
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Lemma 5.1. Let 0 = 0,dx" and 0= Eudm“ be two 1-forms and Z € Py. Then,

(5.6) H(Lz(w),0) +H(Z(w),0) = 63H (w,0),
(5.7)  Lz(ViH)(8,0) - Oy, tb + Vi(H)(0,8) - Z8,,)
— B3V (H)(0.8) - Du) + 62 VH(1)(0,7) - L0, 0,
Wo
(5.8) L (VAH)(0,8) - Z& 1+ VH(H)(0,8) - (“’*‘)
wo wo

= VH(L5(H)) (0,8) - £ o — O5VI(H)(6,0) :Z*O‘ +5§0k o E7H(1)(0,8) - 28 wO

Proof. As the Cartesian components of w do not depend on (¢,z), we have Lz(w) =
w,0, Z*dx”. We then deduce

(5.9) Lo, (w) =0, o¥(w) = 0,
(5.10) Ls(w) = w, SY(w) =0,

(5.11) Lo, (w) = —w;da? + wjdx Qi (w) = widz? — w;idz’,
(5.12) Lo, (w) oda” + wydt QY. (w) = —wydt — wodz®,

and then that
H(Lz(w),0) + H(Z%(w),0) = 62H(w,b).
In order to compute (571) and (8], let us introduce

Nz = Lz(ViH)(0,0) 0u1b+ Vi(H)(0,0) - 20y,
Qy = L7(VFH)(0,0) ZE 4+ VRH) (6, 9)-2<%>
wo wo

and remark, since V; = Ly, and V¥ = n“)‘EaA, that
[L2,Vi] = V(28] and (L2, V"] = 1"V 7.0,

Note now that [0,,0\] = [0y, 0y,] = 0 and 0, <w“> = 0 implies

%ay = vz (ﬁay (H)) (975) : avﬂ/} + VZ(IH)(&E) : 31)1-5#/1,
Q, = V*(L,(H)(0.0) .

Since [S,0y\] = —0x, [S,0y;] =0 and S™ <w“> = 0, we have

Rs = Vi(Ls(H))(0,0) 5vlzb+V<(%)(9,§)-6vi5¢—vi(7{)(9,§).3%%
Qs = V*(Ls(H))(0,0) L vﬂ(y)(g,a).&

wO Wo .

Hwg Hawp?

As [leaa)\] = —6];81 + 6é\a/€’ [le,avi] = _éfavl + 658% and le <Z—g> oL W _ gk one
gets
%le =V (ﬁﬂkl (H)) (975) ’ avﬂ/f + VZ(H)(97§) ) aviﬁklwa
— w
Qo,, = % (['ka (H)) (0,0) - —

w().



38 L. BIGORGNE, D. FAJMAN, J. JOUDIOUX, J. SMULEVICI, M. THALLER

Using [Qor, 3] = 3501 — 030k, [Qon, O] = 220, Qor (42) = 0 and Qo (%) = —o +

w4 w .
(uj)o)l;, we obtain

iRQO/& = vi (‘CQOk (7_[)) (9,5) : 8U1¢ + VZ(/H)(Hag) : 8U¢§0k¢ + VM(/H)(H’E) . Z_ga”k¢’

Qaye = V(Lo () (0,0) - 2 + ZETr(3)(0,0) - 2.

wWo Wo wWo

O

5.2. Commutation formula for 'Tg. We start by deriving a commutation formula for
the first part Ty of the transport operator. To this end, we first decompose it as

Ty(¥) = Ty(¥) + Avg~'(dt, dv) + H(w, dip).
The following lemma is a prerequisite for Lemma
Lemma 5.2. Let Z € ﬁo and 0 < p < 3. Then,
Z(M(w.dy)) = H(w,dZy) + Lz(H)(w,dv) +55H(w,dy),
Z (H(dz*,dy)) = ’H(dx“,d/Z\zZ)) + Lz(H)(da*,dy) + 0, (ZF)H(dx", da).
Proof. We have, as Z% := 7 — Z,

Z (H(w,dp)) = Lz(H)(w,dv) +H(Lz(w),dp) + H(w, Lz(d))
HH(Z(w), d) + H(w, Z*(dy)).

Applying the identity (5.6]) of Lemma BTl we get
H(Lz(w),dy) +H(Z(w),dp) = §ZH(w,dy)).
We also have, since Lz(dy) = d Lz(v)), that

(5.13) Lo, (d) + 07 (dy) = (D),
(5.14) Ls(dy) + 5°(dy) = d(Sv),

(5.15) Lo, (dy) + Q5 (dy) = d(Qy),
(5.16) Loy, (dv) + Qi () = d(Qoxt),

which leads in particular to
H(w, Lz(dv)) + H(w, Z9(dy)) = H(w,dZy)
and then concludes the first part of the proof. The second formula follows from
Z (H(dzt, dyp)) = Lz(H)(da*, d)+H(Lz(dzt), d)+H(dx, Lz(dy))+H(dzH, Z* (dw)),
the equalities (B.I3)-(EI6) and Lz (da*) = 9, ZHdx”. O
We then derive the commutation formula for the operator T‘g.
Lemma 5.3. Let Z € @0. Then,

Ty, 2)() = —Lz(H)(w,dv) — AvLz(g~)(dt,dy) — Z(Av)g™ (dt, dv)
15T, () — 265 H (w, dyp) — 265 Avg ™ (dt, de)) — 5§0kmg*1(dxk, dop).
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If ARS @Ioll, there exists integers C({?, Cﬁ,K and C;{,Jth,K such that

T, 20) = 3 ChZ9(Tyw)+ 3 ChxLi(H)(w,dZ5y)
lQI<|T|-1 ||+ K <[]
QF<rIr |K|<[T]—-1

Y Ol 2 A0EE (g e 25 ),
[J1]+]J2|+| K| <[]
IK[<1]-1

where the multi-indices J, J1, Jo and K in the last two sums satisfy one of the following
two conditions,

(1) either KT < IT,
(2) or KPP =17 and J* > 1, JI +J¥ > 1.

Remark 5.4. Combining the first order commutation formula with the identity (5.20)),

written below, one can check that ZK and Z° (respectively Z7, Z72 and Z\‘h) is built by
at most |I| — 1 (respectively at most |J|, at most |Ja2| and at most |J1|) of the vector fields
composing 21, so that KP < IP and Q¥ < IP. If K¥ = I?, this means that there is at
least one translation in Z!1 which is part of Z7 and either Z72 or 2J1, ie. JU > 1 and
JE+JF > 1.

Proof. Let Z € Py and recall from Subsection that
(5.17) [T,.Z] = 6T,

Applying the first equality of Lemma to H = H and the second one to H = ¢~ and
w =0, we get

(518)  Z(H(w,dy)) = H(w,dZvy)+ Lz(H)(w,dv) + 65H (w,dy),

Z (Bvg™(dt,dy)) = Avg™!(dt,dZY) + 7 (Av) g~ (dt, dy) + AvLz (g™ (dt, dip)
(5.19) + AvdZg(dt, dy) + Awg% g H(da®, dup).
The first order commutation formula directly follows from (EI7), (5I8]) and (519]). The

higher order formula can be proved similarly by performing an induction on |I|, using
(5.20) [Ty, 22" = [T4,2)Z" + Z[Ty, Z"]

and applying the first equality (respectively the second equality) of Lemma to ZK Y
and H = LL(H) (respectively H = L (g71) ), for well-chosen multi-indices J, Jp and
K. ]

Remark 5.5. Fxpressing the error terms in the commutation formula using v instead of
w, we find, since Lz(n~t) = —25577*1,

[Ty, Z)(v)) = 65Ty(y)) — Lz (H)(v, dvp) — Z(Av)g~(dt, dv))
— 265 H (v, dy) — 5§0kmg*1(dx’f, ).

5.3. Commutation formula for the transport operator. In view of Lemma it
remains to study the action of Z! on the term

~ SVilH)(0,0) -
= —%Vi(H)(w,w) Oyt — %\Av\zvi(H)OO Oy t) — AV (H) (dt, w) - Dy, ).

The following identities will then be useful in order to determine [T, Z! ]
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Lemma 5.6. Let Z € Py and (11,v) € [0,3]2. We have,

(5.21)
Z(Vi(H) (w,w) - 0y tb) = Vi(H) (w,w) - 0y, 24 + Vi (Lz(H)) (w,w) - Dyt
+ 05V (H) (w, w) - 1+ 52V (M) (w, w) - Z—Qavm
(5.22)
Z (Vi(H)M™ - 0,,40) = Vi(H)(dat, dz") - Oy, Z10 + Vi (Lz(H)) (dzt, da”) - Oy,1)
+ ONZHV () (da?, da”) - Oy, tp + ONZV V(M) (da, da?) - Oy,a)
14 A()k 14 w
- 5g‘vz(7—l)(dw“7 dw ) : 8’Uz¢ + 52‘ VA(H)(dxﬂa dw ) : w_;\ Ukwa
(5.23)

~

Z (Vi(H)(da", w) - y,10) = Vi (Lz(H)) (da*, w) - 1 + Vi(H)(da, w) - By, Zt)
£ ONZPVi(H)(da w) - Byt + 620V (H) (datw) - % .
0

Proof. We have, using again the notation Z% = 77 ,

Z (Vi(H)(w,w) - 8y,0) = Lz(ViH)(w,w) - By 1) + 2V (H) (L2 (w), w) -Aawzp

+2Vi(H)(Z" (w), w) - Op; 10 + Vi(H)(w, w) - ZOy,; 1.

The first equality (5.2I) then follows from identities (5.6) and (5.7) of Lemma G511 In
order to get the second formula (5.22)), notice, as V;(H)*"0,,¢ = V;(H)(dz#,dx”)0,, 1),
that

Z(Vi(H)™0p1p) = Vi(H)(dz*,da?)Zy, 0 + Lz(ViH)(dz*, dz”) Dy,
+Vi(H)(Lz(da"),dz")0u ¢ + Vi(H)(d2", Lz(dz”))Dy, ).

It then remains to use Lz(dx®) = dyZ%da* and apply (7). Similarly, we have

Z (Vi(H)(dzt, w)dy,b) = Vi(H)(dat, w)Z0y 1 + Lz(ViH)(dat,w)dy, 1)
+Vi(H)(Lz(dx?), w)0p, 1 + Vi(H)(dzH, Lz(w))Oy, ¢ + Vi(H)(dzt, Z (w)) Oy,

and the third identity (5:23]) then ensues from (5.6) and (B.7). O

We are now able to compute the first order commutation formula. In fact we will state
it in two different ways. The second one has the advantage of being more concise whereas
the first one will be more adapted to the problem studied in this paper and for the purpose
of deriving the higher order formula.
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Proposition 5.7. Let Z € Py. Then,

[Ty Z)() = —Lz(H)(w,d) — AvLz(g~")(dt,de) — Z(Av)g™ (dt, dv)
291 (0,0) - 0,0+ BT (211 - 0,0
+AOV; (Lz(H)) (At w) - By 1) + AvZ(Av)V; (Lz(H))® - 8,1
+Z(A0)Vi(H)(dtw) - 010 + 65 (T, () = 2H (w, dy) — 2Avg™" (d,des) )

+63 (Vi(H )(w, w) - By, b + | A2V (H)- ,,1p + 280V, (H) (dt, w) - 8vizp)
+0Z, (=g dabd0) 4 59 00) ) - 20,0
0k 0

4050 Ao (7 (H) (da* w) - 9, + AoV ()0 0,,0)
—~ w A’U w
+5§°’“Av (w (H) (dt,w) - w—’(j@um + 5V (H)™ . —“mm) .

Wo

Alternatively, expressing the error terms using v instead of w, we get
Tg. Z)0) = —Lz(H)(0,00) + 5V (L5 (H)) (0,0) - 906 — Z(A)g™ (01, d)
+Z(B0)ViH)(dt,0) 0,00+ 0T (1) (0,0) - 40,0
+62 (Ty(¢) — 2H (v, ) + Vi(H)(v,0) - 9,,¢))
50k A <g(dxk, db) — V; (H) (dz*,0) - 9,00 + ﬁvi(H)(v, v) - Z—éavkq,z)) .

Proof. The first commutation formula follows from Lemma and Lemma applied to
H = H and (p,v) = (0,0). The second formula can be obtained from the first one using
that v = w + Awvdt and

1 1 .
VHH (v,v) - T VFH (v,v) - O (— - —> V'H(v,v) - v;
wo Vo Vo wo
Av_, ;
= VMH(v,v) - O —UV’H(U,U) . ﬂ,
vo |l vo
since wyg = —|v| and Av = vy — wy. O

Remark 5.8. Fven if the second commutation formula might seem to be more convenient,
we will work with the first one for two reasons.
e The second and higher order formulas are not more concise when expressed in
terms of v instead of w.
o Working with w instead of v is more adapted to our method since no inequality

analogous to %—é' < (Hi%)? holds for the component vy. Indeed, according to

Lemma [512 proved below and || < +/|v||wi| (see Lemma [3.7), we have, if g
satisfies (AL2) and for € small enough,

1
oL —wr| = [Av| S —|H(w,w)| S lwil[H| + v/ |vl[wr|[H]c7 + [o]|HLL].

il
Although we will have, during the proof of Theorem[Z1), |wr || H|++/|v||wr||H |7 <
|v|ﬁ, the term |v||Hpr| will not behave sufficiently well near the light cone.
Because of the Schwarzschild part, |Hyr| cannot decay faster than (1 +t + r)~!
and no decay can be extracted from the weight z if t = r without a good component
of the flat velocity vector wr, or 1.
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Due to the new error terms generated by the Lorentz boosts, the following additional
identities are required in order to compute the higher order commutation formula.

Lemma 5.9. Let Z € Py, (\,v) € [0,3] and q € [1,3]. Then,
= wy, Wy, o wy,
Z{ VHH)(w,w) - —=0,,% | = VH(H)(w,w) - —=0y, Zt + V* (Lz(H)) (w,w) - ==y, ¥
wo wo wo
q Wy
+ Czk(w)V“(H)(w,w) : w—o&,kw,

7 <v“(%)” : —aw) = VHA(H)V - %avq% VR (L (M) - %aw
0 0

7>‘7V (0% w
+CFY W)V () w—’o‘avkzp,

2(vr o0 u)- Mo, 0) = V) 0) - 20, 2
0
V(L (H) (da,w) - 0,

q,A o W
+ Czk’a(w)V“(H)(dx , W) 0 v ¥,

N () and C%’)‘ (w) are linear combinations of ele-

: q
where the functions Ci,k(w)’ CZ]C@’B .

ments of {7& /0 < <3}.
Proof. Note first that

7] 7] 7]

+2VH(H)(Lz(w), w) -
wo wo

) 2V (2" (), ) - 2,

Z (9w w) - ) = L2V H) )

wo
w

+ VH(H) (w,w) - Z% <—“

wo

20 2 ) =00 20 () + Lo (9 e dat) -
VIR (Lo (da®), dat) - 4 TR, La(dat) L
7 <V“(’H)(dmA,w) : %> = VA(H)(d2, w) - 2% <%> + L7 (VPH) (A2, w) - 2
wo wo wo
+ VAH) (L (da?), w) - Z—g
+ VA(H) (dx)‘, L(w) + Zw(w)) e/
wo

Then use the identities (5.6]) and (58] of Lemma B1l L£z(d2?) = 0, Z*dx® and, in order
to deal with Z0,, f,

~ -~ w
00, 00,] = [5,00,] =0, Qs 0,] = =040y, + 6,00, [QOk,avq]:w—Zaka.
]

We are now ready to describe the error terms of the higher order commutator [T, 7! ]
in full detail.
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Proposition 5.10. Let Z! € ﬁlll. Then, [Ty, Z1(¥) can be written as a linear combina-
tion with polynomial coeﬁﬁczents m 5 , 0 <& <3, of the following terms,

(5.24) o ZN(Tyw)), bl <=1, If <17 -

(5.25) o LL(H)(w,dZ%y )

(5.26) o V,(LLH)(w,w) -8y, 25,

(5.27) o VNLLH)(w —BUC,ZKw,

(5.28) o ZMi(Av)LY(g 1)(dx“,dZK1,Z)),

(5.29) o ZM(Av)V (zQH)(dxﬂ,w)-aij@z),

(5.30) . 1(Av)ZM2(Av)VZ-<£QH>W-BUiZKw,

(5.31) o ZM(Av) vA<£QH)(d;w w) - —29,, 25,
wo

(5.32) . EMI(AU)EM%AU)VA(@H)W-ﬂ&,jfﬂp,

wo
where,

g €13, (uv)€[0,3)% |JIHIKI <], [Mi+[Mo]+Q+|K| < |I], |K| < |I]-

Moreover K, J, Q and My satisfy the following condition
(1) either K < IT,
(2) or KP =17 and then JT > 1, QT + M] > 1.

For the term (B27), J and K satisfy the improved condition

|J|+ K| < |1 -1 and KP < 1P,
Proof. The result follows from an induction on |I|, relying on
[Tg,ZZI] = [Tga ZZI] + [Tg B Tga Z]ZI + Z[Tg B Tga ZI],

Lemma as well as several applications of Lemmas (.6l and

The conditions on the multi-indices are easy to check when |I | = 1 (see Proposition
5.7). In that case there holds |[K| = K¥ = 0. So, if Z! = Z is a homogeneous vector field,
we have K < IP = 1. Otherwise, Z 71 is a translation O.rn and each source term contains
either the factor Ly, (H) or duu(Av). Moreover, K¥ < I always holds for the terms

of the form (B.27) since they do not appear when Zl = zu. One can check during the
induction, and more precisely when we apply Lemmas and (.9 that these conditions
hold for all I (the general principle is explained in Remark [(.4]). O

Remark 5.11. As mentioned in Subsection[2.4.3, we would not be able to close the energy
estimates on the Viasov field without taking advantage on the conditions on K¥ and I¥
given in Proposition [2.10

We also point out that the condition K¥ < IY for the terms [527) is of fundamental
importance. We would not be able to handle such terms if the case K¥ = I¥ was possible,
even if we had at the same time JT > 1.

5.4. Null structure of the error terms in the commuted Vlasov equation. The
aim of this subsection is to describe the null structure of the terms given by Proposition

BI0 We start by estimating Z™ (Av), which will be useful in order to deal with (5.28)-
(B.32).
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Lemma 5.12. Let N > 6, ZM ¢ @OM‘ with |[M| < N and assume that the metric g
satisfies the wave gauge condition and (L2)). Then, if € is sufficiently small, we have
(633 |ZV@o|$ S el + RlICLE) ey + ol Ch]ICE (H))

||+ K |<[M]
JT>min(1,M7T)

Proof. According to Proposition and ([42), we have
(5.34) VIJ| <N =3, V(tz)e€l0,T[xR3 |LL(H)| (t,2) < Ve
Hence, as g~ (v,v) = gaﬁvav[g =0, we get

|v§ — [ = [H(v,0)| S Velvl* + Veu,

which implies, since wg = —|v| and if € is sufficiently small,
1
(5.35) —2Jv| <wp < —§|v| and |Av| < 3|v|.
Consequently,
(vo — [v)Av = v§—|v]* = H"vw, = H(v,v),
so that, as |vg — |v|| > |v| and v = w 4+ Avdt,
H H
NS (|”’|”)| s | (ﬁw” + | Ao]|H].
v v

As |H| < /e, we obtain, if € is sufficiently small, that |Av| < 2|H(ﬁj"w)‘. Now, recall

from Lemma B2 that w?w4 < |v|jwg|, which implies

|H(w,w)| 1
|v] |v]

and the result holds for |M| = 0. The next step consists in proving an inequality which will

allow us to prove the result by induction in |M|. The starting point is the decomposition

0 = g tv,v) = g Hw,w)+|Av[*¢% + 2Avg7 1 (dt, w).
Now, using Lz(dt) = 5%dt + 55 dz* and (5.6), we get
Ok

(5.36) |Av| < S Herlol+ [ H P wawp|+Hllwr| S |Hlerlol+|H]jw |

Z (g7 (w,w)) = Lz(g™)(w,w) + 297 (Lz(w) + Z"(w), w)
= Lz(g7 ") (w,w) + 26297 (w, w),
Z (]Av[QgOO) = 27 (Av) Avg® + |Av* Ly (g7 H + 25§\Av\zgoo + 25§0k]Av]29k0,
Z (Avg™H(dt,w)) = Z(Av)g H(dt,w) + AvLz(g ) (dE, w)

+25§Avgil(dt, w) + 5fZZOkAvgfl(dxk, w).
It then follows that
QZ(Av)g_l(dt,v) = —Lz(gH(v,v) — 26897 (v,v) — 255% Avg~(dzF, v).
Iterating the process, one can prove that, for all ZM ¢ Png,

ZM@avg it s Y ek e+ Y Y |2 AeLhg et v)

|J]<|M| 0<p<3 |I|+|J|<|M]|
JT:MT IT+JT:MT
[T|<|M]|
Y 2wz @)k

[+ ]+ K| <[ M]
IT+JT4 KT=MT
(], K| <| M|
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Using both (5.34) and (5.35) we get |v| < 3|g~1(dt,v)| < 9|v|. Hence, as v = w + Avdt,
we obtain

(5.37)

71
5 L5 (g~ (w, )| Z (Av) N
O I DY ‘T\wg ] (ol+Z% (aw)))
|J|<|M]| [ |+[J [+ K[<|M]
JT=MT IT+J7 >min(1,M7T)

1,1 K[ <|M]
Consider now Ny < N — 1 and suppose that (5.33]) holds for all |I| < Ny. Then, let M be
a multi-index satisfying |[M| = No + 1. As Lz(n™!) = —205n71, we have
L7097 ) (w,w)| < L7 (H)(w,w)| + In~ (w,w)| = |Lz(H)(w,w)l.
Following the computations made in (536]), we then get

(5.38) %!ﬁé(g_l)(w,w)\ < 1Lz(H)lerlo] + L7 (H)l[we -

In order to bound the second sum in the right hand side of (B.37]), start by noticing that,

since Lz(n™1) = —255n7 1,

J i T
J/s -1 < ‘ﬁZ(H)’ if J 21
(2t 5 { (LJ(H)| + 7| i JT =0

Now, by the induction hypothesis,

<M, |20l s Y wijeha)| (1 |ekam)).
[11|+[12]<|1]
IT>min(1,1T)

so that, using [£2(H)| < 1if [Ig] < N — 3,

Z'en)] - e
> o L) (ol + 125 (av)) S D0 ol [L5(HE)| |£4(H)],
| +|J |+ K[<|M] H|+J]<|M|
IT4+JT>min(1,M7T) IT>min(1,MT)
]| K| <[ M]
‘ZI(AU)‘ -1 17K I J
> o 2Rl S pellep] |eg ).
[[+|K|<[M] I+ JI<|M|
IT>min(1,M7T) IT>min(1,MT)
[}, | K| <[ M]

The claim then follows from (537), (538]), the last two inequalities and

Yoo 1ZMaolm S Y wnllC ()l L (H) e+ vl L5 (H)|1£F (H)],

<[ M| ||+ K[ <|M]
IT>min(1,M7T) JT>min(1,MT)
which is a direct consequence of the induction hypothesis. O

In the next lemma, we deal with the remaining error terms given by (5.25]), (5.26) and
(527) by expanding them with respect to the null frame (L, L, e, e3).
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Lemma 5.13. The following estimates hold,

[#] ;
Hw ) S ol (= lIVel+ D 129] | + llHler VY
Z€ePg

+ Vvllwe|[HlTul Vi,

Vi(H) (w,w) - Dy )| S (willVH] + [l VHIer) | [t = rlIV] + Y 1Z¢]

26@0
+ (VIellwrl[FH] + ol FHlee ) | (vel + S 1201 )
Z\Eﬁo
w wr|? ~
v 0) - 500,05 (HEHIHI+ sl VHler ) @+ il + 3 120

ZePy
+ (VIolwrl VM) + [l FHlee ) | ¢+ )Ivel+ 3 12yl
ZePy
Proof. The first inequality follows from
H(w,d) = HEwp Ly + HE (wp Ly + wp L) + HE wpea () + waly)
+H M w Ly + HEA (wpea(y) + waLip) + HAPwaep ()
and from Lemma 3.7 as well as ([8.353]), which give

[t —r| 1 5
< d L < — |V —_— Z|.
wal & Vilwe] and L £ IV ey O 12
Z€Py

Remark now that for a symmetric tensor G**,

Gw,w) = GHwi+ " wi + ¢ P wawp + 26" wiwy + 265 wpwa + 26" wpwa.

Consequently, using again that |wa| < \/m , we get

(5.39) Gw,w)| < Jollwrl|G] + [v*(GleT,

(5.40) Gw,w)| < o/ [ollwe]|G] + [v]?[G]cc.

Recall from Lemma B.9] that

t—r|
|v]

(5.41) [(Vo))'| S

The last two estimates then result from (£.39), (5:40), (541 and
VilH)(w,w) 0t = Vo, (H)(w,w) (Vot))" + Va(H)(w, w) (Vo)

VH(H)(w, w) - Du %.

- _%VL(%)(w,w)% B %VL(%)(w,w)% + VAH) (w, w)

il il

1 ~ 1 .
Vol Y 12 [ s ﬁwr o 2 12l
ZePy ZePy

O

5.5. Final classification of the error terms. In this section, we list of all the error
terms that appear in the commuted equations in such a way that we will able to easily
estimate them when we try to improve all the bootstrap assumptions on the energy norms

of the Vlasov field.
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Proposition 5.14. Let N > 6 be such that the metric g satisfies [@2)), assume that the

wave gauge condition holds and consider Z! € @0” with |I| < N. Then, [Ty, ZN () can
be bounded by a linear combination of terms taken in the following families.
The terms arising from the source terms

(5.42) 120 (Ty@) |, ol <1 —1, I <17 -
The terms arising from the Schwarzschild part,
5.43 SK = Al——JEL——‘EZK
( ) 6],0 (1+t+7”)2 ,l/} )
5.44 Koo oy ‘
( ) ST.00 1+t+ vZ
4 SIE = ML ‘221{ ‘
(5 5) 6171 (1+t+7’ {‘CZ ){ ¢ )
LK v J | | 7oK
(5.46) S ]Wiifgl—{VEZULM‘ZZ ¢y
5.47 R VA Ll BN vz"
(5.47) (Cyd T 7 |L7(hN)| |[VZ5y
t— _
.4 JEK . | L(n! ‘ 7K
(5.48) S |U|71+t WC )| VZ7y
(5.49) SPE = M| [VLh(h! (szw
(5.50) SFM = MplL)) VLR V25,
where, 7 e ]IA”O,
o Q[+ |J]+|K| < |1, K| < |I] -1, KPP <1P.
The quadratic terms,
(5.51) e = \wL]\Vﬁé(hl)\‘ZZKw
(5.52) e = m\vgﬂf&T+WQWfDﬁ?%L
TILK | J 1 K
(5.53) A ﬂj:ﬂﬁh\VZ
JK ’t J 1 7K
JK
(5.55) ¢! ._.|m|5§iﬂ\£7¢szw
(5.56) el = \/]vaLHE%(hI)HVA
(5.57) erf = =l [VEL(Y)] V25,
(5.58) ¢l = |t—rllv]|VLy(
(5.59) SIS (t+r)\/|v||wL|{Vﬁé(h1){‘VEKQ,Z)
(5.60) el = ()| [V \u(v

where, 7€ I/P\)O,
o [J[+I[K|<|I], K| < 1] -1.
e K and J satisfy one of the following conditions.
(1) Either K < I7,
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(2) or K =17 and JT > 1.

w ~

(5.61) K = () |L|' 51| [vZ25y|
where

o |J|+ K| <1, K| < |I| -1, KP < 1P,
The cubic terms,
5.62 guar _ ol cY | |£5nh))| ‘ZZK
( ) 031,12 T+t+r | H
(5.63) G = o] LY (WY VLG (Y] ‘ZZsz
where, 7 e ]/I\”O,

o M|+ |J|+|K| <, |K| < |I] -1, KP <IP.
(5.64) L = ol |y (Y] 5] [V 25y,
(5.65) e = ft—rllol |£Y ()] [VELY] [V 25y
(5.66) MK = (e )| [£Y ()] |V LL (Y] \vi%( ,
(5.67) I (4 o] [LY (WY [V L4 (Y| ‘VZ%( ,
where

o [M|+|J|+|K| < I, K| < |I| - 1.

e K, M and J satisfy one of the following conditions.
(1) Either K < IF,
(2) or KP =17 and MT + JT > 1.
The quartic terms,
(5.68) €Pin " = (LG ROILY (NIIVLL DIV ZR Y,

where
o QI+ M|+ [J]+|K| < |1, |K| < |I] -1, KPP <IP.

Remark 5.15. To clarify the analysis, we have denoted by S or @, the error terms that

so that we

contains factors of E/Z\KT/J , and by & or &, error terms containing ‘V/Z\Ki/) ,
know that the last derivative hitting v is a translation.

Proof. Since g verifies ([2) and in view of Proposition 2] we will use throughout this
proof that

(5.69) VIQIE N =3, |eg(m)|+|ed )| < Ve

Consider a multi-index I such that |[I| < N. In order to clarify the analysis, let us introduce
a notation. Fix ¢ € [4,11] and multi-indices (J, K') satisfying the conditions presented in

JK

the proposition which are associated to &;’,". Then, for a sufficiently regular tensor field

k, denote by (’3?’5 [k] the quantity correspondmg to ¢ T but where h' is replaced by k.
For instance,

W) = 1ol |50 [T 25

We define similarly /Q\Eff[k], (’E?/I(J’J’K[k], /(‘:‘?/Iq’J’K[k] and (’E?ljg/[‘]K[k]. Then we make two
important observations.
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(1) For all g € [4,11], (’Ef’f [H] is a linear combination of (’Equ’K

terms (‘E%))’JO’K[h] and (’E?géMO’JO’K[h], where p € [14,17] and (Jo, K), (My, Jo, K)
as well as (Qo, My, Jo, K) satisfy the conditions presented in the proposition. This
follows from Remark 3], so that, for instance,

[h] and lower order

Z Jo,.K Mo, Jo, K

ol [CH(H)| 7 IVZRyl < Y &% ]+ > SV (OF
[Jo|<[J] | Mo|+]Jo|<|J]|
JIr=JT MT+JT >min(1,JT)

Similar relations can be obtained, using also (G.69]), for /Q\f{’f[H], M LK

Iq
“M,J,K M, JK
¢RI and €PN H).

(2) For all n € [1,3] and ¢ € [4, 11], we have

K K = K =~ JK

JK K
€y, + 6700

~ ~

This ensues from the decomposition h = h! + h? and Proposition EL1, which gives
that, for all |.J|,

M M
L (h° —_— L} (h° —_
Similar inequalities hold for G%I’J’K[h], @%I’J’K[h] and G?i]g/[’J’K[h]. For instance,

€l [h] S €1 [h) + S75 (W] + 671 + ST,
€y ) < €N ] + 675 + 675" + 6l
ey ) < e + &Y ] + 67 + 615K + 69 + &7 + 65y
For the quartic terms, wa have sometimes estimated one of the two factor of the

form |£10(hY)| by /e and (1 4+ 7+ r)~! by 1. We specify that two cases need to
be considered for QE%I’GJ’K[h]. Indeed,

(5.70) €7l " (1] < €y 01 + &75" + S5og + (¢ )lwr] LY (h)[VLZ (W VZE £,

Then, the last term is bounded by @{{( if KP < IP. Otherwise K = I and
MT +J7 > 1, so that it can be bounded by @f’? if MT > 1 and by @f’{( if JT > 1.

The remainder of the proof then consists in bounding the terms written in Proposition

510 by (542) and those of (5.51)-(5.68), with h' replaced by H. For that purpose, we
will use several times Lemmas and Until the end of this section, each time that
we will refer to one of the terms (5.51)-(5.65), h! has to be replaced by H.

e The terms (524)) can be controlled by those of the form (5.42]).

e The terms (B.25]) can be estimated, using the first inequality of Lemma [E13] by a
linear combination of terms of the form (5.53)-(5.50]).

e The terms (5.26) can be bounded, according to the second estimate of Lemma

(131 by terms of the form (5.51)-(5.52) and (5.57)-(5.60).
e Using the third inequality of Lemma [B.13] one can bound the terms (5.27]) by a

linear combination of terms of the form (B.51)-(E.52]), (B.51)-(E61) and
M@ E[H] = (t + r)|wy) ‘Vﬁg(H)‘LT (vé% KPP

Q|+ | K| < |I], |K| < |I| — 1. Applying Proposition [£.2] we obtain

K JK M,J,.K
D | BN T 1) S N e
[J1<|Q] |M|+]JI<IQ|
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so that, using the wave gauge condition (see Proposition [£.4)),

g/ KH] S Y () [TLI0| V2R + S € )
IJ1<IQ [M]+|J|<|Q

Use |wr| < v/|v||wr| as well as the decomposition h = h° + h! and the pointwise
decay estimates on h° given by Proposition E1lin order to get, since K¥ < I?,

LK JK M, JK
Rlury ™ [H] < 6f(,oo + Z e1,9 + Z e1,16 [h].
171<[Q [M]+]J]<|Q

Finally, it remains to estimate QE?/Il’g’K[h] through the inequality (B.70).

e Applying Lemma [5.12] one can control the terms (5.28]) by a linear combination
of

(lor 1EY (D] + ol €Y ()l ey + ol 124 (DL (D)) 12400~ IV Z5 ),

with |[M|+ Q| + |J]| + |K| < |I], |[K| < |I| =1 and KP < IY or K¥ = I and
JT + MT > 1. Recall the relation Lz(n™1) = —267n7!, so that
—if Z7 # 811 then £)(g7!) = LJ(H) and we obtain terms of the form (5.54).
For this, we use that [£E(H)| < 1 for all [R| < N — 3 in order to deal with
the quartic terms.
— Otherwise [£%(g7Y)| < |£Z(H)| + [n7!| and we still get terms of the form

(564) as well as, since [np~!| < 1, (E55) and (5.56).
e According to Lemma [5.12] one can estimate (5.30) and (5:32)) by terms of the form

L3 (H)I|LZ2 (H)| |V L (H)| |V 25,
with [Q1] + Q2| + [J| + |K| < 1|, [K| < [I| = 1 and K” < I”. Using that
VoZBy| < (t+n)|VZRe + Y 1225y,
2€P0

which comes from (541]), we finally get quartic terms of the form (5.68]) and, using

(E69)), cubic terms (5.63]).

e Finally, since for two functions ¢ and ), there holds
Vio- 006 = Vo,6(Vor)) +Vad (Vo)
1 1
Vi wy = —oVigwy — SViéwy + VApwa,

we can bound, using (.41)), the terms (0.29) and (5.37]) by
|ZM (M) ||V LY (H)||Z Z5 ) +
(1t =PIV E5 + 0+ DFELE + ¢+ ) 0 Lh )] ) 129 (A0 925,
with M| + |J| + |K| < |I|, |[K| < |I| =1 and K < I” or K = I and
M + JT > 1. The estimate
ZM@aols > eliel a1+ 1£20m))

[M|+|Q|<| M|
MT >min(1,M{)

which follows from Lemmal[5.12] leads to terms of the form (5.63]) and (5.65])- (5.68).
U

It will be convenient to introduce the following notations.
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Definition 5.16. Given one of the error terms QE?’Z.K, i € [4,11], listed in Proposition
5. 1], we define A as the quantity which contains everything o e but the -part
1, I,
|V2K1/)|. We define similarly, for n € [1,3] and p € [14,17], ALK UMK é\lyl";’K,

I.n > Ip
SM,JK Q,M,J.K .
Ql1713 and Q[I,18 . For instance

AL = WVLL(W ) er, A5 = (t+ )] |£F (R)]|[VLE(R)|

and the multi-indices I, J and K (respectively I, J, K and M ) satisfy the same conditions
as those of the term in’g( BEER) (respectively nyl’g’K EL6A) ).
We also define in a similar way the quantities %ﬁ), ‘Bfoo, %fZK, ‘Bf]K and ‘B?é‘]’K
~K K 2JK ~JK Q,J.K
from the error terms 6170, 61700, 6172‘ 6173‘ and 6176 , so that
K M|v| SIK Mol

Jpl JK N
T BT (1+t—|—r)2|£Z( ), Bis [w[IVLZ(h7)]

1,00

6. COMMUTATION OF THE VLASOV ENERGY MOMENTUM TENSOR

To evaluate the commuted Einstein equations (see Proposition 9], we will require the
null components of the tensor field £L(T[f]). In order to simplify the presentation of the

following results as well as their proofs, we denote by T'[¢)] the energy-momentum tensor
of the Vlasov field in the flat case, i.e.

Wy Wy

Tl = /R g,

This field is considered in the following.

Lemma 6.1. Let ¢ : [0, T[xR3 x R2 — R be a sufficiently reqular function. We have,

VZeP, LyTW) = TZ¢] and  Ls(TR]) = T[SY]+2T[].

Proof. The result for the Killing vector fields Z € P holds in a more general setting. More
precisely, if X is Killing for a metric h and T[¢] is the energy-momentum tensor of a
Vlasov field ¢ for the metric h, then LxT[¢)] = T[)? ], with X the complete lift of X, as
can easily be verified by choosing a local coordinate system such that X coincides with
one of the coordinate derivatives. For the scaling vector ﬁel, S = x0,, we have

s (Tw)) = S (TWlw) + 0uS Tl + 0,5 (Y]

7%

= [ S+ 2T

We now turn on the real energy momentum tensor 7'[¢].

13 The types of formula can be in fact generalized to any conformal Killing fields on a general Lorentzian
manifold.
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Proposition 6.2. Let I be a multi-index and Z' € K. Then, there exist integers CiK,
I\ I
CJ,KyM;lW and CJ,K,L,M;;W such that

E |v|\/| det g~ 1
EIZ(TW)]);W = CJKT ZK ( \{]T
|J|+ K< o "
v|y/|det dv
+ Z Ci’?ﬂM;uy/ UJ)\ZM(AU)ZK( 77 ||\/|0(179
0<A<3 R3 g0, ‘v‘

I+ K MI<IT]

|v]y/| det g~ \ dv

+ Z Cﬁ,K,L,M;;w/ ZM(AU)ZL(AU)ZK(TJZ))ZJ < gOa,U |U| :
||+ K|+ LI+ M| <|1] R

Proof. The formula is satisfied for |I| = 0 since w° = |v| and

|det g1 1 0 : 0.0 oy w'y/|det g~ 1]
UMUVW = (wuwy+5ﬂwyAv+5l,quv+5“5u‘Av‘ )goo‘—va

The result for arbitrary multi-indices I follows by induction, applying several times Lem-

mas and N
Recall that the metric g satisfies the decomposition (L) and the condition (4.2]).

Proposition 6.3. Let N > 6 and g be a metric such that [A2) holds. Then, for all
71 € KU such that |I| < N and V,W € U, we have, if € small enough,

LL(TW)vw| S ) / 125 () |’wTU’)W! ;

|KI<|1|
1 ~
(6.1) b X (e esen) [ 125 wilas
R N T B3
Proof. Note first that according to Proposition and the assumptions ({2,
(62) VIJI<N, L)< Y ILZM) YIISN=3 [L7(h)] < Ve
Q<]

Hence, using Lemma [5.12] we have

(6.3) VIMISN, |ZM@)] 5 Y 1egml
QI<|M|
Suppose that
R 0 det —1
“ QI<|]

holds. Then, from Proposition 6.2l and (63])-([64]), it holds
bl < 3 T2R@I],, - 3 el [ 125l

|K|<[1] |+ K[<|{]

D D ROl ST SRl 1] /R 2 (@)oo

|+ K[+ MI<|I]]Q|<|M] lQI<]J|

The result then follow from

L) < 1400 + 15 < —Y ey,

= 1+t+r
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which holds for any |J| < N and follows from the decomposition h = h" 4+ h'! and Proposi-
tion 1] It then only remains to prove (G4]). For this, note first that, using v = w + Avdt,

g '=n""+H, [B3) and B2,
290" n)| £ X PO+ 1220 < B+ Y lelledn)]
|Q1]+]Q2(<|Q) [71<1Q]
Similarly, using that det(g~!) is a polynomial of degree 4 in g"’, 0 < p,v < 3, we get
Z5(detg ™| 5 1+ D0 150,
[J]<|K]|

Using |H| < Ve, |Av| < Ve, v = w+ Awvdt, ([G3]), and that the determinant is a multilinear
mapping, we obtain, for e small enough,

1
9% val = ol = (14 [HPDIAV] = [Hw| = Jo] = CVelo] = SJol,
1 1
VIdetg T = |dety+O(H)? > 3.

The inequality (64) then follows from the Leibniz rule, |Z9(w®)| < Colv| and the last
four estimates. U

Remark 6.4. Note that a better estimate could be obtained for the good components of
LL(T[f]) in Propositions and [6.3 but the result stated in this section will be sufficient
in order to close the energy estimates.

7. ENERGY ESTIMATES FOR THE WAVE EQUATION

The aim of this section is to prove energy inequalities for solutions to wave equations
in a curved background whose metric g is close and converges to the Minkowski metric
7. These results can be found in Section 6 of [26] and we give here, for completness, an
slightly different proof. More precisely, the goal is to control, for some (a,b) € ]R%_ and a
sufficiently regular function ¢, energy norms

ab o 2 b ! 2 2 WZ
eol(t) = [ 1Vuolulr [ [ (L0 +¥0R) 2 arar

£ 1g](t) | 19ea0f*de + £40061),

i 202 t L2 2 b
Ea’b[(ﬁ](t) — / 1|Vt, ¢| wgdx _|_/ / ’ (b‘ + ‘W(b’ . Wa dCCdT,
s, L+t+r 0oJs, 1+7+r 1+ |ul

Remark 7.1. The bulk integral

_ [ 2 2 _Wo
R o= /0/E (IO + Y 9F) T dadr

will allow us to take advantage of the decay in t —r. Without an a priori good estimate
on it, we would merely obtain that

82 @+t [ |Viofulds < (140 sup £206)(r).
Tef0,] /2, T7€[0,t]
Note however that the bulk integral provides only a control on the derivatives tangential
to the light cone, i.e. L and ¥, and constitutes an important tool in order to exploit the
null structure of the massless Finstein-Vlasov system. The problem when a =0 or b =0
is that the energy estimate derived below (see Proposition[7.0) will not allow us to control
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R. Moreover, if a >0, the norm [ _, |V.¢[*whdx is strictly weaker than [ _, |V ¢[*dz,

which explains why we introduce Ea’b[gb].

We introduce the energy norm é“’b[qﬁ] in order to avoid a strong growth at the top order
which would force us to assume more decay on the initial data in order to close the energy
estimates.

We fix, for the remaining of this section, 7' > 0 as well as a function ¢ and a metric g,
both defined on [0, 7T[xR3 and sufficiently regular. We also introduce H := g~! —n~!. In
order to derive energy inequalities, we introduce the (1, 1)-tensor field

1
T, = ¢"0c00,6 — S1",9" 096050

Remark 7.2. The tensor field T|¢] is the energy momentum tensor of ¢, written as a (1,1)
tensor. However, we point out that since we lower indices with respect to the Minkowski
metric, T[¢|u # 0,0, ¢ — %guyga58a¢85¢. The (1,1) tensor field T'[p| appears to be well
adapted in order to prove energy estimates for the norms that we are interested in.

Let us now compute the divergence of T'[¢]. For this, it will be convenient to use the

notation

_ 1+M| Y i t>r
b . (14]ul) ’
= 14+ .

Ya 2 —5 Lwo) = (14 |uhdre, { b(1+ |u))®, t<r

Lemma 7.3. We have, for all a,b € R,
~ 1
0T, = DOy 0,0+ u(H")0ed - D¢ — §<9V(H9”)39¢ - 059,
O (Tlo)'t) = (ﬁg¢ 04+ D) 016 — SO (H) s aagza) of

—b

+(§|L¢|2 S| Vo[* = 2H 06 O+ 5 Hgffaeqs aaqza)

1+\u!
9 T[@]MOWZ _ 8M(T[¢]ﬂow3)
P\1+t+r T4+t+r
- 31L¢\2+lyv¢\2—2mfa ¢.a¢+1H903 ¢ - 0sh I
2 =7 g SO T At )2

Remark 7.4. In general, T, [¢] is not symmetric.

Proof. The first identity follows from straightforward computations,
T, = 0u(g")Oeudyd + 90,000, + 9" 09,0, 0

1
—50V<99“)89¢aa¢ — ¢%0,0p00,¢

= 400,06+ 0, (H)0:00,0 — 50,(H") 006050,

For the second one, start by noticing, as L(w?) = 0 and Y (w?) = 0, that

T[] 0wl = TlpE L(wl) = -2 <9—5 g¢8t¢——77—099089¢30¢>-

a a

1 +| |
Then, using the first identity and n%, = 5, one gets,

O <T[¢]M0W2) = Ou (T[] o) wh + T[] Ouw?,

. 1

= Oy ddwt + 8, (H")Depdppw’ — iat(H%)a@wU(pwg
wh
14 |ul

= (gLfagwm - ﬁg%amam)
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It remains to write g~' = 7! + H and to note that
1
(nfangsatqb - —?79”59¢30¢> = 1 Le(Le + Lo) — 1= LoLo — S|V

R U P
L

Finally, as L(1 +t+7)=2and L(1+t+7r) =Y(1+t+r) =0, we have

b 9. (TIpIH Wb b
o, (Tiap, =) — BlIW) oy s
1+t+4+7r 1+t+r (14+t+r)?
Then, writing again ¢~! = n~! + H and since n%, = %, we obtain

1 1 1
—2T[¢"% = gILl* + 5 |Vo* — 2H 0t - 06 + SH 0>~ 050,
which gives the result. O

We are now ready to provide an alternative proof of Proposition 6.2 of [26].

Proposition 7.5. Let a,b € R* , Cig > 0 and suppose that H satisfies

H CH+/€ H
e +|VH| < Hf Lzidd +|VH|ze + [VH| < Cuve
1+ [ul (L+t+7)2(1+ [u))=" 1+ Jul L+t+r
Then, there exists a constant C := Cy m}:{(‘ftbb) where Cy > 0 is an absolute constant, such
that, if € is sufficiently smalld, we have for all t € 0,77,

gab

(T.1) E%[)(t) < CE@](0) + CC \f/ £ 4, +C// B0 - 016 whdar,

[¢](7)
(7.2) E’6)(t) < CE“"[¢)(0) +CCH\f/ T( dr +C// ‘Dggb &ggb‘wodxdT

Finally, there also holds

o o r By - Oro
(7.3) E2b[g](t) < CEW[G](0) + CC \f/g d7+0// ‘117;1@@&

Proof. In order to lighten the proof, we will not keep track of the constant Cpy, which
appears merely when /e does. The (euclidian) divergence theorem yields

/ Tl lds = / ol sl - / t / 0 (161 o) dads.

Now, note that, for ¢ € [0, T,

1 1 1
“TI9% = —g" 0000 + 51°09" 00056 = 5|Veadl? — HOebdho + 5 H'0400,0.
As |H| < /e, we have, if € is sufficiently small enough,

1 3
(74) Z‘Vt7$¢‘2 S _T[U]OO S Z‘vt,$¢‘2-

MOne can check that € needs to satisfy a condition of the form C1Cr\/e(1+ a+b) < 1 min(1, a,b), for
a certain constant C7 > 0.
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The first inequality (Z.I]) then follows, if € is sufficiently smal, from the second equality
of Lemma [T.3] as well as

@5) [ [ (Geer+giver) (2 amr > 2RED ey

Iy
(7.6)
[ L
(7.7)

V

—b
Wq

atqzs——H@“aw ot 1 T

dzdr < Ve(a+ b)E™[¢)(t)

Lemo)(r)
0 1 + 7

)

+ve(a + b)

O (H") e - Dyp — %at(H%)am-aU(p whdzdr < /€€ [g](1)

ab[g
+\/_/ = 147 + T
In order to prove ([Z6), start by noticing that
200 00 = HMLo- (Lo + Lo) + H* Lo - (Lo + L) + Head - (Lo + Lo,
SHY 000,60 = SHAPeasend+ S HY\LOP + S HELLOP + HYLLLs

+H" Y Lopead + HEA Lpead,

which implies

1 = 1+ ju
00010 {1000+ 0,0| S [HLLINOP4 I < Ve vop VATl

1+t+r
This, together with f(f fET Vol|? 1+\ |dxd7' < (a + b)E¥*[](t) and
—b t t ca,b
/ / LA ful ¢|2ded7 < / ath / IVo|?wldzdr < (a—|—b)/ de
1+T+7° 1+\u! 0 1+7 po 0 1+7

finally gives us (Z.6]). Now, remark that
0, (H") 0008l S (VH|ee + [VH|)IVO + [VH|[V|8:6|

~

o VaAVeR | VTP
~Nol4t4r (14 u)iFe

0:(H )00 056| S IVHIcc|LoP + [VHIVeIIVol

. _ VAVOR el
' ~ol4t+r o (14 Jul)t e

The estimate (7.7) is then implied by

// — Y |V¢Pubdedr < /t Ve / IVo|2wldzdr
1+t+ ~ 1+7 ¢
gab
\/—/ 1—1—7‘
and

¢ Ve = 412, b ! X |2 wZ ab
/O/ZTW|V¢| whdzdr < ﬁ/o /Z VO adedr < Ve [9l®).

15This condition allows us to absorb the terms of the form éﬁga’b[qﬁ](t) in the left hand side of the
energy inequality.

(7.8)

(7.10)

IN
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We now turn on the second inequality (Z.2]), which can be obtained by taking the sum of

1) andX

0,0 0,0 al ab 500
£990[6](t) < 3E20[4)(0) + T /e[ +0f/

10l 4, +4// ‘Dggb &ggb‘dxdT

To prove this estimate, apply the euclidian divergence theorem to T'[¢]*; and follow the
proof of (). The identity [T4) does not depend of (a,b) and ([TH)-(TE) are trivial for
(a,b) = (0,0) as @) = 0. It then remains to bound sufficiently well the left hand side
of (7)) when (a,b) = (0,0). For this note that (Z8), (C9) and (ZI0) still hold in that
context and that

' L_ 2 ! = 112 Wg ab
/O/ZT (1+’u‘)1+a|v¢| dezdr < \/E/O /ET|V¢| 1+‘u’dxd7 < VeEY[B)().

Finally, (Z3]) can be proved similarly as (I)) by applying the divergence theorem to

b
T o3¢ (see Lemma [L3). Apart from the fact that each integral contains an extra

|1 +t+7r[~! (or |1 +7 +7|~!) weight, the only significant difference is that we need to
control

' b
- L Lo Mg o -2 0 - 16+ LH 006 - 0,0 ) — 0
/0 /ET <2|L¢| +2|W¢| 2H (95(;5 O + 2H Ogd - Oy (EEy dzdr.

In view of sign considerations and since |H| < /e, we can bound it by

/1+T/ ¢|21+w+ dxd7<\[/

which concludes the proof. O

Eab

8. L1-ENERGY ESTIMATES FOR VLASOV FIELDS

Let ¢ be a sufficiently regular function defined on the co-mass shell P and recall the
Vlasov L'-energy

(8.1) E“Y[](t) = /R 3 / (2, 0)] foldv wbda

/// TvawL]dv dzdr.
R | |

In this section, we prove the following L'-energy estimate for Vlasov fields.

Proposition 8.1. Assume the bounds

1
’VH!LTSl Ve \VH| < Ve \H|, < Ve +[ul) ’H’<M-

+t+r’ ~ 1+ ul’ ~ol4t4r T (A+t+r)z

For any parameters a,b > 0 and 0 < t; < to < o0 and any sufficiently regular function
i PN{ty <t <t} = R, we have, if € is small enough,

= E*Y[y](r)

EwnggQE“[K>+C¢' -

1)
dr +C / T, ()| dvwbdadr,
R3 JR3
where C and C are two constants such that C depends only on (a,b).

160ne can verify that the constant C' depends only on Cpr.



58 L. BIGORGNE, D. FAJMAN, J. JOUDIOUX, J. SMULEVICI, M. THALLER

Proof. We denote by D the covariant differentiation in (R!*3 g). Let 1 be a solution
to T,(1)) = G(¥). Then, )| solves Ty(|¢)|) = F(v), with F(¢)) = Ijg—le(w) verifying
|F'(¢)] < |G(¥)|. Then, by considering the energy momentum tensor of |¢| as in (B1]), a
computation shows (cf Lemma 4.11 in [15]), that

9" Dg (Toal[¥l]) = /1( )voF(w)duw—lm + /1( )\w!v“@a(vo)duw—lm

1 g

#3  ersiate™) 2

d,uﬂ_1 (m) .

2 vﬁgﬁo

This leads to
7D (wiBoalil)) = [ woPWldpe [ )wrvaaxa (00)dp-1o)
1

(82) #3062+ 670 ) T 1)

We apply the divergence theorem between the two hypersurfaces {t = to} and {t =1}

—/ Toag™ [IW]]w \/Idetg |de = —/ Toag®®[|¢|]w \/|detg |dz
{t=t2} {t=t1}
—/ go‘ﬁD5< Ton |¢|>\/|detgdazdt
t1 <t<to

and analyse the resulting terms. To this end, we note that it holds for € small enough

1
(83) o V |detg| < 2’

3 <
(84) |Av| S |wil|H|+ [v|[H] T,
1 5/ | det g7 1|
(8.5) §|U| < (v) T ong® < 2Jv],

where we used (5.36]) for (84) and the assumptions on H for (83) and (&85).
The boundary terms at t = t; are given by

d
/ Toag"[|¥]|wl/| det gldz = / / 1] vova g™ |v etg” de V| det gldx
{t=t;} t=t;} JR3 g

= /{ }/]R3 1 [vgdvw? dz
t=t; b

Thus, using ([84]) and the assumptions on H,

[, [tz otz
RS JR3

N

—/ T(]ag [[¥]]w \/|detg |dz
t=t;

S //W(tz’,x,v)llvldegdx.
R3 JR3

Consider now the last term on the RHS of (82]), for which we have

P05 Taoll¥l] = gELE)Taoll9l] = m / 0[00gEvodiin—1 ().
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Note that
UozgaL = UoznaL + UaHaL
= (vp —wp)n*E +wpn e + o  HYE + o  HEE 4 v HAE

1 1
= —§Av - §wL +wp HM + ApHML —}—vLHM —}—’UAHAL,

which we rewrite as

1

§‘wL‘ = vag™L + = Av LHLL—AUHLL—ULHM—vAHAL.
In view of the bounds on H, it follows that,

Ve

<
‘wL’NUQ’g 1+t+

so that using ([84]), we have

|U|\f (1 + Jul)

T+itr
It follows that the contribution of the last term on the RHS of (&2,
f{t1<t<t2} 9P 05w T[|¥|]a0+/| det gldzdt can be estimated from below as

wb (7
/{ 2 1o (\er crvrw)< )i -1 (o) /AT gl

t1<t<ty} 14 |u| Jr 1+t+
g/ g*P0g (W) T[] a0 /] det g|dadt
{t1<t<t2}

for some constant C' > 0, and, using (83))-(&5), that

[ el “a
Yl|lwry, & dxdt
{th<t<ts} JR3 1+ Ju|

< aﬁ & Ea’b[w] (t)
< Op(w)T[|P]]ao v/ | det gldzdt + /e ———=dt.
{t1§t§t2} t1 I+7

|wL| S Uag

The LHS of this last inequality will provide the spacetime term of E®®[¢)](ty) when we
sum all the terms at the end of the analysis. Note that it will arise with the same sign as
the boundary term at ¢ = ¢o.

Finally, we consider the contribution of the terms

1 (6% o
5/@%’@&@50”'(9 )vﬁgﬁod/’tw 1(z) /UWJ\U Oze (V0)dpir—1(y)

To this end, we decompose v,v50,:(g*?) on the null frame
vavﬁ(%go‘ﬁ =vLVL ((%H)LL—}—ULUL(?Z-(H)@—}—QUAvL&(H)AL—{—QUAUL(?Z-(H)AL—}—UAUBOZ-(H)AB
and we use Lemma in order to get

|0 (v0)| = [0y (vo — wo)| S [wrl[VH| + [0||[VH|z7 + o] H|[VH].

Using the assumptions on H, we derive, since |vavg| < |v||wr| by Lemma B.7]

clwrllv] | Velvl?

00030, 9| + [V Dge (v <\/_ )

where we note that the contribution of the first term on the RHS can be absorbed if € is
small enough into the spacetime positive term containing |wy| obtained above, while the
contribution of the second term can be simply estimated in terms of the energy.

O
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9. BOOTSTRAP ASSUMPTIONS

We consider the following bootstrap assumptions on certain energy norms which has
been defined in Subsection B7l Let N > 13, £ = %N + 6 and consider the parameters
O<205<’y<%. We have

e bootstrap assumptions for the Vlasov field: For all ¢ € [0, T,

(9.1) EY%IA0) < Cre(l+1)3,
9.2) By [f1(t) < Cre(1+1)3,
(9.3) EN[f1(t) < Cre(1+1)2*,
e bootstrap assumptions for the metric perturbations: For all ¢ € [0, T7,
(9-4) NI < Ce(l+6)%,
(9.5) EFTN) < Te(l+6)®
(9.6) EVNT ) < Crue(l + 1),
(9.7) ENF TN < Crue(l + ),
(9.8) ENTRMRY () < Cpee(1+1)°,

where Cf, C, Cyy and Cgp are constants larger than 1 which will be fixed during the
proof in Section As is usual for this type of proof, the above bootstrap assumptions
are satisfied with strict inequality for ¢ = 0 by our assumptions on the initial data and
provided that Cf, C, Cry and Crp are large enough. By standard well-posedness theory,
it follows that they are satisfied on some non-empty interval of time [0, 7, with 7" > 0.
Theorem 2Tl then holds provided we can improve each of the above bootstrap assumptions.

Remark 9.1. We point out that the (1 4 t)2° growth of the bootstrap assumption (9.4
(respectively ([QB) and Q1)) is related to the growth of the energy norm of the bootstrap
assumption (@Q2) (respectively (@3) and @3)-@5)). Similarly, the growth on (@Q3) is

related to the ones of (1)), @1) and ([@.8]).
The growth on the bootstrap assumptions (1)), @2) and (@.8) are independant from

all the other ones and could be choosen to be of the form (1 + t)", with n arbitrary small.

We deduce from the definition (337) of Eﬁf’t—) [f], the bootstrap assumption ([@.I]) and
the Klainerman-Sobolev inequality of Proposition that, for any |K| < N — 8 and for
all (t,x) € [0, T[xR3,

ot K b4 [t 2]
/ AH1-3 |v|‘Z f‘(t,x,v)dv < Z 7
“ 111<3 (I4+t+r)2(1+t—r])s
EY2 ()
Y @t
5
(9.9) - e(1+1)2
Yt (Lt —r))

z
8

7 -
8

Recall that ¢ — 2 = %N + 4. Hence, we obtain similarly, using this time the bootstrap
assumption (@), that for any |K| < N — 4 and for all (t,z) € [0, T[xR3,

e(1+1)3
(L+t+r)2(1+[t—r))5

(9.10) /R3 z4+§(N*KP)\v\ ‘EKf‘ (t,z,v)dv <
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The following result will be useful in order to improve the boostrap assumptions (9.6])-
([@8). The rough idea is that the L2-norm of [VLZ(h')(V,W)| and |V (LLh'(V,W)) | are

equivalent.

Lemma 9.2. There exists a constant C > 0 independant of C, Cry and Czr such that,
for allt € [0,T7],

AR S X () et |0 < coe

|J|<N—1(T,U)eT xU

51-}—7,1—1—7 hl Z Z 51+7,l+7 |:X<L> ﬁ%(hl)TU (t) < Cée(l—i—t)%
|J|<N (T, U)eT xU y

IN

ENZFIRY = > 5“2’“[><<L> LHMM L] |(t) < O + Cry)e.
JIEN :

Proof. For the purpose of keeping track of certain quantities, all the constants hidden
in < will be independant of C, C7yy and Cgrz. This convention will only hold during
this proof. In order to lighten the notations, we introduce k7 := £ (h!) for any |J| < N.
Then, observe that according to the triangle inequality, the lemma would follow if we could
prove the first inequality (respectively the last two inequalities) with N — 1 (respectively
N) replaced by 0 and h' by k”/ for any |J| < N — 1 (respectively |J| < N).

We start by an intermediary result. Let us fix (W, W) € {U,T,L}?,0<a <1+2y and
0<b<1+4~. Since

5t
)
,

1,
r {4t <r<
Mool = 1 <1 and ‘Vm <X<1 +t>>‘ S i

one has,
(9.11)

J ab r J
‘c:owv[]€ ] - SO,VW[X <t+ 1> k }
t wb
< / |VE Pwbde + / / |VE!|2—%—dzdr
{r<5t) {r<=5t} L+

o s [ WPt
[t <pctit) (I+t+r)2 wad {7 <retiny (I+7+7)21+ |u ’

Note that since the domain of integration of the four integrals on the right hand side of
the previous inequality are located far from the light cone, we do not keep track of] v
and W. Our goal now is to bound them sufficiently well for well choosen values of |.J| and
(a,b) in order to obtain

(t)

(912) VIJISN-1, |EDRK) - EDn X<til>k‘] t) < Ce,

N

(9.13) V|J| <N, Eorri TR = &5 X<ti1)k=f t) < Ce(141)%

9.14)  V|J| <N,

o )
e - g () ¢ o s e

1T s only near the light cone that certain null components of the metric enjoy improved decay
estimates.
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For the purpose of controlling the four integrals on the right hand side of (Q.11]), we will
use many times the inequality 1 + 7+ r < 14 |7 — 7| which holds on their domain of
integration. We start by dealing with the case |J| < N —1 and (a,b) = (27,1 + 7).

,1+2“/ 1
/ IVkJIQW;‘F’de < 1 / IVkJIQ 1+2’yd(L_ < g [h ]( )7
retil ! YA+ St “ ~ (1+’5)
1+’Y

<
Vk[2wit t gLt
// Vk:‘] 27 dedr < // [VE| 27 dxdr < / —[ ](T)dT
<T+1 | | <T+1 1—|—7- 14+~ 0 (1_|-7-)1+“/

Applying the Hardy inequality of Lemma [Tl and making similar computations, one gets

J J|2
/ LS L TP

2

vt gpctge (L4 r)2 2 T+ 1) Sz (T4 u))2
Y 1+27 11
< 1 / IVE 2wl de < En [h)0)
1+ Js, ! (1+1)

and
t J2 1+y t J2
k w. 1 k
/ / L s dadr < / B / B Ll switdadr
0 Jurrgcrr (L+747)2 1+ |uf o L+ Jicrer (14 |ul)

2

t 1

N I (r )
S/o —(1+T)1+7 dr.

We now assume that |J| < N and we introduce n € {0,~} in order to unify the treatment
of the remaining two cases. We have,

3,242
/ IVE Poi 0 de < 1 / Mwﬂ-%dx < w
1+v+n ~ (1—|—t)’7 rg%l 1+t+r 7 ~ (1—{—t)’7 )
1+v—n t 9
Ji2 714y +n 1 VK| 2+2
//TIIVkll dxde/ﬁ/Tlli’YdedT
<7t + |ul o (1+7) <rsi 14747
t £1:24+2v 1
[EE,,
o (L47)H
Applying the Hardy inequality of Lemma [B.I1], one obtains
/ B Ll S R / o W dz
v pcap (L b+ )2 0T S T g oo (Wt )1+ a2

N

242
1 / ‘Vk ‘ w2+2'ydx < g]f\\/f " W[hl](t)
00 Js, Trter S = Ty

and
1+
/t / FP @il / s k22 dardr
0 Juropctir (1+747) 1+ [yl ~Jo (LT Jrcrr (T4 7+ 1) (14 [u])?
27,242
<[4 S
~Joo (L)t
Now recall from the bootstrap assumptions (@.4]) and (@.5) that

Yt e 0,7, ENTIN () < 201+ 0% and  EFFFVRY(t) < 20e(1 + )+,
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Using also that 26 < v, we can deduce (Q.12))-([@.14) from the last estimates. We now turn
on the second part of the proof. Note that

o Vi L =ViL =0and V., L = =2, so that HV/{J\EL — \V(kiL)H < %\kJ\ET and
IVE |22 = [V(REI] S vl 27
° XHO;[:OandE’)rZ1+t+rif4r21+t.
4

1+42+,1 r 1427,1 r J
Eocc [X<—t - 1> kq =& [X<—t n 1) kLL:|

< / B L Y +/ / L e
{r>t11 (I+t+r)? 1+27 {r>r+1} (I+74+7r)21+ |u
According to the Hardy type inequality of Lemma B.I1] and the bootstrap assumptions

(@3) and (@.7), we havd™, since 20 < v,

Hence,

(9.15) (t)

dx

/ P o 1 / [k et
D EE——— 0V X
(o) (L e+ )220 ()7 oo (Lt 7) (14 [ul)?

< 1 / [VE|? W22 4o
~o (T4t > 141 1 (1+t+r) v
57,2421 1
el Ua O

{r>t+1}(1—|—7+7’)21—|—|u| ~ . (I4+7+7)2 ’Y

1
5 A W /E |Vk:‘]|7—uw1+7dxd7'

t 51+771+7[h1](7_)
< N, TU d < )
~ /0 anm oS o

The third inequality of the Lemma then ensues from (@.I4), [@I5) and these last two
estimates.
By similar considerations, one can obtain for [J| < N —1,

2,1+ r J 2,1+ r J
(9.16) 50}MV[X (H—J k } - > & ”[x <t+1> kTU:| (t)

(T, U)eT xU

Ce(1+ )27 < Ce,

L t L2 Wity
< / P Swyt Tz + / / 1+ s dxdr.
oy A 02D L Jsemy W r + 02 T [l
and, for |J| < N,

1+,14 r J 1+,14 r J
0.17) |et; ”[x(tﬂ)k]— g 7[X<t+1>kTU} (t

(T, U)eT xU

J J W
S A e A A
{r>t+1}(1+t+r K {r>zt1) (I+74+7r)214 |u|

18Note that we could avoid the use of the bootstrap assumption ([@7)) by taking advantage of the wave
gauge condition. The consequence is that the right hand side of the third inequality of Lemma could
be independant of C'ry.
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All these integrals will be estimated using the Hardy inequality of Lemma [3.11l For those

of (@.16]), we have

J|2 J2 1+2y g 71+2“/ (¢
/ |k | 1+’de < / |k | Wy 2d£l? S [ ]( )
{r>t+1} ( e (

14+t+7)2 W2y L+t)7 (1 + |u) (1+t)
14y

/ / | | 5 2 dzdr < / / |V | :;jldxdT
0 {,,2%}(14—7%—7*) 1+ |ul . (I+7+71)?

T12, 1+2'y tg%1+2“/ B (r
//Vk| ddTrS/ ()
0

1+ 1)+ (1+7)t

Using the bootstrap assumptions (@4 and 20 < -, we have
=, 142 =, 142
g RM() /t g () T
(I+t) o (147t ~

The first inequality of the Lemma follows from these last three estimates, ([Q.12]) and (@.16]).
For the integrals on the right hand side of (@.I7), one has, according to the bootstrap

assumption (@.5]),

Ce.

/ ’k‘]‘ 1+’de / V{?J‘Q 242y b
{r>t1y (L+t+7)? R R w1 (Tt +7)(1+ Ju])?
S EPM() < Te(1 + 1),

t 172 wity L2
/ / | | - 1+ dxdr g / / |v | — 3/+7dxd7'
0 J{rsey (L 4+7+7)2 1+ Jul (I+71+7)

t &2+ 1 o
< /—N M0 g < Te o
0 1+7

The second inequality of the Lemma then ensues from the last two estimates, ([@.I3]) and

@ID. O

10. POINTWISE DECAY ESTIMATES ON THE METRIC

We prove here pointwise decay estimates on h' and its (lower order) derivatives using
the bootstrap assumptions (@4) and (@.6). The Schwarzschild part h° can always be
estimated pointwise using its explicit form. This will then allow us to obtain asymptotic
properties on h = h' + hY.

Proposition 10.1. We have, for all (t,z) € [0, T,

o—
(10.1) [VLL(RY)| (t,2) < (Lt A fe—r)™2,  t>=r oy g
) | UGBS \/_{ (I+t+r)° A4t —r)7t “’ t<r’ I < ’
§— 1
10.2) |22 (t2) < (1+t+7) (1”’5_”)2 t=zr JI<N-_3
(102 [£z(h)] (t.2) 5 \/{ A+t+r) A+t —r)7, t<r’ < ’
5—2 1
(10.3) VL2 (h! (I+t+7) (1+|t_7“|)2 tzr J <N —4.
NEARIIURIRS \/{ (L4+t+r)02(1+t—r))77, t<r’ <

Proof. The first inequality directly follows from the bootstrap assumption ([@.4]) and the
Klainerman-Sobolev inequality of Proposition B4l applied with a = 0 and b = 1 + 2.
Let |J| < N —3,0¢€S? (u,v) € [0,3] and

ut+u u—1u
o () o> L300 (52 50)
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so that £L(h1)(t,r8) = (t + r,t —r). We start by considering the exterior of the light
cone, i.e. we fix (¢,7) € [0, T[xR* such that r > t. Hence,

3
L7 (& r0)] S DD et + 1t =)

p=0v=0

t—r
/ u@uu(t+7”, u)du—i—cpw(t+7a7 —t—T‘)
u

=—t—r
t—
< / VL )|<t+g+“,t+g a) du + [ £5(h)] (0, (¢t +1)6)
u=—t—r
_ \/E /tr du N \/E
M) Sy (U ) (L)Y

Ve

<
(At r) (14 | —t)

We can now treat the remaining region and we then fix (t,7) € [0, T[xR? such that r < ¢.
We have

3
|LL(h)(t,10)] = Z Z

t—r

/ Oupy (t + 1myu)du + @ (t+ 1, 0)‘

t=r t+r4+u t+r— t+r t+r
< Jpl Jrpl
< /uo |VLy( h)\( TR e>du+|£z(h)|< 5 9>
—r 1
<L/’* du ¢ < yelirlt=rhe
YA+t )0 S (4 Ju)z @ HEET)T Y T (Lt )0

For the third estimate, we use the inequality (3.11]) of Lemma 33 and the estimate (I0.2)).
U

In order to obtain the decay rate of L% (h), for [J| < N — 3, it remains to study h°
and its derivatives. The following result is a direct consequence of Proposition 1] and

M < (e

Proposition 10.2. For all Z7 € KV, there exists C; > 0 such that for all (t,z) € Ry xR3,

Cry/e Cyy/e

10.4 7(hO)| (t,z) < —— d T (t, ) < ——.
104) o) (o) < S V)] () €
Remark 10.3. In the interior of the light cone, the behaviour of E%(h) 1s clearly given

by L4 (hY). In the exterior region, note that L%,(h°) has a weaker decay rate than L} (h')
when r > 2t but a stronger one when t ~ r.

We can improve the decay estimates satisfied by certain null components of ' through
the wave gauge condition. According to Proposition 4] as well as the pointwise decay
estimates given by Propositions 0.1l and (recall that h = h® + h'), we obtain the
following results.

Proposition 10.4. For any multi-index |J| < N, there holds for all (t,z) € [0, T[xR3,

€ €
NI— - -
u+ TS T S T

e(1+[u]) 3 (WEK n|” +M>.

2—20
(Ltr > o (1+ |ul)?

(10.5) VLLM o S (VLR
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Remark 10.5. This inequality will be used several times in this article. Apart from its
application dumng the proof of Propositions [12.8 and[13.4 below, we will always bound the

Jpl Jpl
term !Vﬁ h ‘Tu by ‘Vﬁ h ‘
Proposition 10.6. The following improved decay estimates hold. On the TU component,
we have for all (t,x) € [0, T[xR3,

LAt > <N 3
T, < - '

(1+t+7r)
(1+t+r)

wlo« tolon

(10.6)  |[VLZ(R")| 1, S ﬁ{

On the LT and LL components, we have for all (t,z) € [0, T[xR3,

L+t 4+m)2 214 [t —r)2 0, t>r
(10.7) [VLL(AY] . < ( , 12 J < N —4,
‘ ‘ﬁTN\/_{(l%—t—i—r)% (1+|t—r|)75, t<r’ 7l <
Jl L4+t4+r) 101+ |t —r))2TY, t>7
(10.8) \Ez(h)\wfif{ El+t+7“§ ot ( it Lo SN -y,
1y L+t+r 2’Y+51+ t—r))2 ™, t>r
(10.9) |VLL(h \wa{ EHH?@ . Mf ¢ —rl)2 ol WIsN-s

Proof. We start by the TU-components. According to Proposition [[0J] the estimate
([06) holds in the region r < &2, If |z| > &L, the Klainerman-Sobolev inequality of

Proposition B4 gives, for |J| < N — 3, since X[ 400 = 1
27

(x{g) muctine )

It then remains to bound the right hand side of the previous inequality. Let us fix p € [0, 3]
and (T,U) € T x U. Using Lemma B13 we get, for any || < 2,

|7 ((3 ) vt Jou ({r=t))

Using the notation [Z;Z3, X] in order to denote [Z1, [Z2, X]] for any vector fields Z1, Z
and X, we can bound the right hand side of the previous inequality by

0- ¥

|K|+|L1|+|L2|<2

(I4t+r)w’ \V£z< DS D D |2
0<p<3  |I11<2
(T,U)eT xU

125

14y

< 29V LL(W)rr) wy?

&0 gl

Lty

LEV Ly (W) (25, T), (2", U))w,

({251}
Note now that

e cither [L7,V,] =0 or there exists v € [0, 3] such that [Lz,V,] =£V,.
e Following the proof of ([B.I7) and using

VZ eK, [Z(r)|+|Zt+r)| S1+t+r, | ZE—7) ST+ |t—7],

one can prove that for all r > £ and |L| < 2,
=Y bW+ Y dxX,  [ZRU]=) by,
weT Xeu Yeu

< 1+|t—r|
~ 1+4+t+r

where |dx| and |by| + |by| < 1 since 1 +¢ 47 < r on this region.
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ol
We then deduce, since 11:‘;7" <w?,(1+1t)"%, that
2
1 t— Ity
) L B LT
K| <] J]+2 2({r= " L2({r=44})
1
=7 14271, 1 2
< o) ENET )
(1+1)7

The pointwise decay estimate (I0.G]) then follows from the bootstrap assumptions (@.4))
and ([@.0) as well as 2§ < 7.

Now consider the £7 components and assume that |J| < N —4. The first estimate can
be obtained from the wave gauge condition (I035]) and the three inequalities of Proposition
[[01 For the second one, fix 8 € S? and consider, for T' € T, the function

u+u u—u
o) £500r (S5 5 00)).

so that LL(h') 7 (t,70) = @(t +r,t — ). Since VL = VT = 0, we have
Jpl u+u u—u J1 u+u u—u
.p(w) = L (L4000 (S5 5500) ) = (V) (S5 5500,

Let now (t,7) € [0, T[xR% such that » > ¢. Using the estimate (I07) and the good decay
properties of the initial data, we obtain

t—r
L5 (W) pr(t,r0)| = [@(t +rt —1)| = / Aup(t +ru)du+ ot +r,—t —r)

=—t—r

\/E t—r du I
S ATt 2™ /u_t_r Ar ™ +|LZ(h")r| (0, (¢t +1)0)

L e ) e S S
(1+t+47)2-20 (1+t+r)tr ~ (1+t+r)Htr-0"

On the other hand, if r < ¢, we have

A

t—r
CH ) (6, r8)] = Il + 1yt —1)] = auso<t+r,u>du+so<t+r,o>1
u=0
Ve o 5 o1 t+r t+r
< V-
< (1+t+r)225/ (1+|u|) du—i—‘ﬁ (h') L| 5 0
3
—r|)z" _ st
L Lk NG < gl r!>2 g

(I+t+7)22  (1+t+r)ltr=0 > " (14t +r)ltrd

Finally, (I0.9) directly ensues from the estimate (314) of Lemma[B3 and [[0R) if r > 1
and from Proposition [[0.] otherwise. O

Remark 10.7. Note that using Proposition [{.2 as well as the pointwise decay estimates
given by Propositions 101, 102 and 1.6, one can check that

H € H = €
ALy iom N L e\ (P
1+ Jul L+t+r)2(1+u)) 2 1+ [ul I1+t+r
so that we will be able to apply the energy estimates of Propositions [7.0] and [81] for well-
chosen parameters a and b.

The estimate |VH |z < \/E(}ﬂf;rgg, which can be obtained in a similar way, will also

be useful.
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When h' is differentiated by at least one translation, we can improve the pointwise
decay estimates given by Propositions [[0.1] and 0.6l Note that certain of the following
decay rates could be improved, in particular in the exterior of the light cone.

Proposition 10.8. Let J be a multi-index satisfying |J| < N —5 and JT > 1, i.e. Z7 is
composed by at least one translation. Then, for all (t,x) € [0, T[xR3,

I (4.0 Ve
vzl o) < (L4t +r) =8+t —r)2

Jrpl T \/E
[£2(h)] (t.2) 5 (L4t 4+ 7)1=3(1 + [t — 7])2

YVLL(h! ,r) < Ve i
Ve () S (L4t +7)20(1+ [t —7])2
NG
(L4t 47221+ |t —r|)2

14|t —r))2
1LY o (8 2) S ﬁ%’
(141t 47)3-2"

)

<
)
NS
=
=
\]
E/
A

)

e (@) S Ve

Proof. By assumption, there exists p € [0, 3] such that the translation 0, is one of the
vector fields which compose Z7. Since [Z,8,] € {0} U {£d, /v € [0,3]} for all Z € K,

there exists integers Cé’” such that

chhty = S0 N of Lo L3,
0503 |Q|<||-1

We can then assume, without loss of generality, that £ (h') = L, Eg(hl) with |Q] < N—6
and p € [0,3]. Using BII) and that [Z,0,] € {0} U{%0, /v € [0,3]} for all Z € K, we
obtain
(L [t =) [VLZAN] + A+t +0) [VELRD| S D |£) Lo, £3(01)]
|J1]<1

S DYDY ‘ﬁayﬁ?(hl)‘-

0<v<3 | J5|<N-5

Similarly, using (BI3]) and B.I4]), we get

Ly ﬁQ(hl)‘

J 1 ‘ Pz

\Vﬁz( )|LT ~ o l+t+r +0< <3 |4|<1
<v< 1=

|25 Lo, 50 [£o,2 ()|

|V£%(h1)| g LT g KT.
LL |legl 1+t+r o;m;\w 14+t+r

All the estimates then ensue from Ly, = Vy, and Propositions [0.1] and (I0.7). O

epcteson,
1+t —7] '

11. BOUNDS ON THE SOURCE TERMS OF THE EINSTEIN EQUATIONS

The aim of this subsection is to bound the source terms of the commuted Einstein
equations which are given in Section We will control them sufficiently well in order
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to close the energy estimates but more decay in ¢ — r could be proved for certain terms.
We start by the semi linear terms

LY (F(h)(Vh,VR)),, = LL(P(Vh,VR)),,+Ly (Q(Vh,VR)),, +Ly (G(h)(Vh,VR)),,
Proposition 11.1. Let I be a multi-index with |I| < N. Then
€

LLFE(h)(Vh,Vh)| S + = Ve in
L2 | (14t +7) (1+t+r)13(1+|U|)”|J§|I| )

\/_ Ji1l
+ VLh
1+t+T \/1+|u J|;[| Z ‘

Vel + Jul)2 g1, [E2h
<\V£Zh |+ T+ 7al )

1+t+7r)2-2
( ) |JI<|1]

1 Jpl
I < € Vel + Jul) s, 1Lz
L2F MRV S Gy T A D = Ve |+ T

\/_ Jpl
- VLh
(14t +7r)1=3/1 + [u] J|Z<:I|

1 1
I . Vel + Ju)? (L e
[LZ2F(h)(Vh,Vh)| o S Crtrrt  (QritrED = vean'| + 1+ |ul

NG
MDD ety wu

IJ\<|II

VL,

Proof. Let |I| < N and recall from Lemma [ that there exists integers 657 x such that

Lo (F0)(Vh V), = > ChuP(Vulyh VoLEh) + C) kQu(VLsh, VLY D)

|+ K|<|1]
+ L% (G(h)(Vh,Vh)),,
Moreover, according to Proposition and the split the split h = A0 + h!,
PACORADIEEDS ST e ‘vzfgh’f‘ (w%hq‘ .
3:%,q€{0,1} ||+ K|+| Q<[]
We start by dealing with the cubic terms and we define for j, k, ¢ € {0, 1} and multi-indices
J, K, Q such that |J| + |K|+|Q| < |I],
Wiy = |egni| [veknt| |vegn).
Using the pointwise decay estimates given by proposition on h? and its derivatives,
we have
~0,0,1 ~0,1,0 ~1,0,0

~0,0,0
(L1 Jiko + ke T Iike t ke

3

€2 € EMhl‘
< + W +|27 :
(I+t+r)° (1“*’")31\%10 Zh] 1+t+r

Finally, using also the pointwise decay estimates given by Proposition [0 on h! and its
derivatives (at most one of the multi-indices J, K and @ has a length larger than N — 3),
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it follows
(112) 3Gk, + I 3 S s S (VYR + ez
: J7K7Q J7K7Q J7K7Q ~ (1_‘_1&_‘_;’«)275 Z 1 +t+r ’
|M|<|T]
LY n!|
11.3 ghbl < N VLY nt | Z .
(11.3) Q™ (1t 4 7)22 |MZ<|I| VLz I+ 1+ |u|

The inequalities (ITJ)-(IL3]) provide a sufficiently good bound on the cubic terms for the
purpose of proving the three estimates of the Proposition. Consider now the semi-linear
terms @ and P. Start by decomposing h into h® + k! so that, using the pointwise decay
estimates on h° given in Proposition 0.2}, we get for any null components (V, W) € U?,

€ Ve
|Quw (VLLh,VLER)| S Gt T A (|VLzht| + VLS R')

+|Qvw (VLLA, VLS R

)

¢ Ve
|P (Vv Lyh, VwLEh)| < (EEEEs TR e (|VLyht| +|vLgnt|)

+|P (VvLyh', Vw Ly hb)|.
It then remains us to study the last term of the previous two inequalities for (V, W) € UU
(respectively (V,W) € TU and (V,W) = (L, L)) in order to derive the first (respectively

the second and the third) estimate of the Proposition. For the quadratic terms P, recall
from Lemma [31] that if V= W = L, the null condition is not satisfied. More precisely,

|P(VLLR', VLERY)| S [VLR 1, [VLER
+ [VLLR [ VLERY + | VLG [ VLS R,

Hence, using the pointwise decay estimates given by Propositions [0l [0.2] and 0.6 as
well as the wave gauge condition ([ZIZ), we find that for any null components (V, W) € U?,

(v Ejhl’v rEpl < Ve vLMpt
P (VvLs wLzh')| (L+t4+7)173 (1 + [uf)z |MZ§|II‘ i
Ve > [ven]

+
R vt

1
Vel + [up)2? Myl ~a,k1
+ (1414722 Z VLY R+ Z 36.4¢ -
[ M|<|I] [ K[+ QI+ M|<|]
k,qe{0,1}

Since (1 + |ul)Y < (1+ |u|)%77 and according to (ILI)-(IL3]), this bound is sufficient in
order to prove the first estimate of the proposition. Now we deal with the T components
of P and the UU components of @ together. According to Lemma [3] and the pointwise
decay estimates of Proposition 0.1 we have for any (T,U) € T x U and (V,W) € U?,
| P (VoLyh, VuLEh)|+|Quw (VLLh, VLS R)|
< VLI VLS R+ | VLG [VLg R
~ (1+t+r)2el”2 (1+t+r)=0/1+ ]yl

Note that this inequality need to be improved in order to prove the third estimate of the
Proposition, i.e. for the case T'=U =V = W = L, but is sufficient for the first two

|M|<|1]



MINKOWSKI STABILITY FOR THE MASSLESS EV-SYSTEM 71

estimates. Finally, applying again Proposition [0.1] and Lemma B.1], we obtain
\P(VLLYR VL LHhY)| + |Qrr (VLR VLY RY)|
S IVLLBOIVLE W 7w + VLR ru|V LS B

< Vevl+]yl Mp1 Ve oMl
~ (1 + t + 7")275 Z ‘VEZ ‘ + (1 4+t 4+ 7")1_6 /1 + ‘u’ Z |V’CZ |77/{'
[MI|<|1] [MI|<|1]
This implies the last estimate of the Proposition and concludes the proof. O

Next we consider the Schwarzschild part h°.
Proposition 11.2. Let I be a multi-index such that |I| < N and (u,v) € [0,3]%. Then,
£ E) [ SVt Yy Y S o
A R e L S N (R |JZ<:1| -

1%

Proof. Recall from Subsection the definition of the tensor field ﬁgho and start by
decomposing [, in U, + H%V,Vy. Then, as Dn% =0, we have, for all 0 < p, v < 3,

= 0y _ WM T\ M o0 r\M
00 =040 (5) s 5)) B 0 ) 2o

According to ([3.9]), there holds

> |eh (O00)

0<p,v<3

s Y % ‘Zl<ﬁgh9\£>‘.

nv
0=AE=3(QI<|T]

Fix then |Q| < |I]. One can easily check, by similar computations as those made in the
proof of Proposition 1] and in view of the support of x’/, that

= b)) () o ()~ ()

|JI+IK]<IQ)
<

€
—0=1 .
SR U
and using ([3.9), we have

Similarly, since 1+ ¢t 4+ r < r on the support of y(

Z ‘ZJHUG

|JI+IK]<IQ

T
)
r \ M Ve
z% (9,0 — ) ) S LLH|.
(o0 (< (750) 7)) |5 iy 2, oo
|71<1Q
By Proposition ©2] the split h = h?4+h! and the pointwise decay estimates of Propositions

[[0TI0.2] we get
S| S Tyt X lek]
~l4t+r
[J1<I1] [J1<I1]
and the result follows from the combination of all the previous identities. O

We now estimate the error terms arising from the commutator ﬁg (E%hl) — E% (ﬁgh1>.

Proposition 11.3. Let n < N and J, K be multi-indices such that |J| + |K| < n and
|K| <n—1. For VW e {U,T,L}, there holds

\/E\vcghl\vw .S Vel LS|,

3
Qe TTEET G (Ut ) (1 ul)?

1 Qp1

(1+ Juf)= 01y, L2
e VLR + )

ﬁ(1+t+7~)2f25 & [vezr] 1+ [ul

LHHY IV VLEW| <Y

~
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For the LL component, we have the improved estimate

Qp1 Qp1
J (1B Kpl < \/EWEZh |££ \/_(1‘*‘\“’) Q1 ‘Ezh ‘
‘ﬁZ(H) VaVskz (h )‘LENQZ;n L+t+r +(1 +t )2 [vezh H L+ Jul )

Proof. Start by noticing that for V, W € {U, T, L},

|(CHY PV VALE WD S D [LFH |, [VEo LER!
0<A<3

Applying LemmaB.3 and using that [Z,05] € {0}U{£0, /0 <v < 3} aswell as Ly, = V),
yields

‘vw + MéH‘ Wﬁfkﬁghl‘vmz'

£5H|,,
1+ |ul

\chH

‘ﬁé(H)aﬁvaV/sﬁIz((hl)‘vw S D m

IQIS|K|+1

(vzghl( + vegn|.

Applying Proposition [£.2] which makes the transition from H to h precise, and then using
the split h = h' + k0 as well as the pointwise decay estimates given by Propositions [0.2]
for the Schwarzschild part A%, and [0.1}, for !, one obtains

\LLH N1+t+ + Y 1cY Rl

|M|<|J|
J Ve My VIl .
s H’Lﬁ<m+ Syt ee e Sl
M} MI<]J]
We then deduce that
Q Q
cymevsesen| < Y YAV (e [VEZM b
o |M|+]Q|<n+1 (L+t+7r)(1+ |u) 1+ [ul
|M,|Q|<n
D S R = s o)
2 _ 1
|M|+|Q|<n+1 (L+t+r) L+t+r (1+t+r)1-91 4 |u|)2
[M|,|Q|<n

Note that one factor of each of the quadratic terms in h' can be estimated pointwise since
N > n > 12. Hence, using the decay estimates given by Propositions I0.1] and I0.6] we
obtain the following bound

LHH) Y,V L5 (h ‘ S

IM|<n|Q|<N—5

+<( Ve IR () )Zwﬁghl‘vw

Lht+r)A+ful) - A+t +r)=0 1+ ful) J 2=

+<(Evl+|“| PR ) 3 (\chhler'E hl').

Ltt+r)20 (Tt +r)22 e 1+ Jul

£ n! | [VEGH!

1+ |ul

bow

In order to estimate the first term on the right hand side of the previous inequality, we
use the pointwise decay estimates of Propositions [[0.1] and [[0.6] which provides

Ve

14t 4 7r) =8 (1 + [u])2

99 % -
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and, if V=W =L,
(1+[u))>
(1+t+4r)2-20°

The asserted bounds now follow (note that we use 0 < % and that we do not keep all the
decay given by the last estimates.) O

VLER |y S Ve

Finally we bound the error terms coming from the commutation of ﬁg with the contrac-
tion with the frame fields T'U or LL and the commutation of [, with the multiplication

by the characteristic function x (ﬁt)

Lemma 11.4. Let ky, be a (2,0) tensor field and (T,U) € T xU. Then
1= 1 e/ 14 |u

< LTk + S I g
r r r(l+t+r)

1
Vel + |ul)?
r(14+t+r)-9o [VEl.

18y (kr) = Oy k) TH0”

1

- ~ — 1
‘Dg (k?LL) - Dg (k;w) L 5 ;‘VMTM + ﬁ’k‘ +

Proof. We will use in the upcoming computations that

~ 2
0, = —a§+af+;ar+vAvA+Haﬁaaaﬁ, YU elU, VoU=0
and that, for any U € U, there exist bounded functions agy and by, such that
1 A 1
(11.4) VAU—;ZaUyV, VaVv U_T—ZZbU,VV.
Veu Veu

These last relations can be proved similarly as (B.I6]). As a consequence, we immediatly

deduce that for any (T,U) € T x U,
2 2
<0 (k) + G () + 20, ru) — ( ~08(05) + 02(0) + 20,(0) ) TV = 0
and, using also Proposition combined with the decay estimates of Proposition [T0.1]

1
1 1 1 2 1
< ik G < YU ok Dy

Haﬁaaaﬁ(/{?TU) — Haﬁaaaﬁ(kul/) 7“_ 7“(1 Tt 7“)1_6 7“_

These two estimates are sufficiently good in order to prove the two inequalities of the
Lemma (recall that (L,L) € T x U). It then remains us to study the commutation of
the frame fields with V,VA. If (T,U) € T x U, one has, since V4VA(k,, )TFUY =
VaVAR)T,U),
VaVAkry) — VaVA(kw)THUY = Valk)(VAT,U) + V a(k)(T, VAU)
+ k(VAVAT, U) + k(T, VAVAD).
The first inequality of the Lemma can then be obtained using (IT4) and |V k| < [VE|.

For the second one, we apply the last equality to 7' = U = L and we remark that, using
again (IIA), |[Va(k)(VAL, L)| < 1|Vk|7y. This concludes the proof. O

Lemma 11.5. Let ¢ be a sufficiently reqular scalar function. Then

(15 () o 1)

<
Slpgtacty ((1 Ft+r)? A4t
Proof. Let us denote x( merely by x. Start by noticing that

=)
(11.5) Oy (x¢) = Oy (x@) + H"™ 9,0, (x9).



74 L. BIGORGNE, D. FAJMAN, J. JOUDIOUX, J. SMULEVICI, M. THALLER

Using that [, ¢ = ——LL(rqﬁ) + Ag, one gets, as Vax = 0,
(11.6) Oy (x¢) = xn(¢) + 0y (x) ¢ — L(x) L(#) — L(¢) L (X) -
Now, according to Lemma B.13] we have
1 ) 1

ALT)  Veax] S 7 beez <y and [Viax| S AFitr? ti<ish
We then deduce that
(11.8)

0,006~ LOO L)~ L) L] S g lne e o+ 0y

n = = ~(14t47)2 iStm<st " 14t aSesst

We now focus on the second part
(11.9) H“Vau8V(X¢) = XHﬂV8M3V¢ + HﬂyauaV(X)(b + Huyau(X)8V(¢)-
Using again ([I7), we obtain, as |H| < 1,

9] Vel
H"™9,0, HM L (0)] < 1
| 9uu(x)0 + ()0 ()] < (1+t+r)2 {i1<#7<3} o T+t+r { So<iy
The result then follows from the combination of this last inequality with (m), (T3],
([II]) and ([IT9). O

Remark 11.6. Note that the error terms given by Lemmas [I14] and LA are of size \/€
whereas the source terms of the Finstein equations are of size €. For this reason, we will
have to consider a hierarchy between the different energy norms considered for h'. In

particular, when we will improve the bootstrap assumption on E}Vf%’}ﬂ[hl] (respectively
Extiriipl , the terms given by the previous two lemmas will have to be bounded inden-
N,LL

pend(mtly of Cry and Crp (respectively Crr).

12. IMPROVED ENERGY ESTIMATES FOR THE METRIC PERTURBATIONS

12.1. Energy for an arbitrary component of h'. The aim of this subsection is to
improve the bootstrap assumptions on the energy norms & 5.} e [h'] and 57’2+2W [h']. We
start by the first one. For this, recall from Remark[Z5lthat we can apply the second energy
estimate of Proposition to LL(h') for (a,b) = (v,1 + 27) and for any |J| < N — 1.
Consequently, by the Cauchy-Schwarz inequality and the bootstrap assumption ([@.4]), we
obtain for all ¢ € [0, T,

%1+2v
SR (1) < CERT IY(0) + C/e / Envr ()

_
1+7
g'\/,l+2fy %
e, / dT// 1+7) (D (L5h ‘wé+27dxd7
lJ|<n—1170 1+

28 2 142

(12.1) < Cet C3(1+1) +— ) (D (c h)‘ Wit dadr,
|J\<N 1

where C > 0 is a constant which does not depend on C. We are now ready to prove the
following result.

Proposition 12.1. Suppose that the energy momentum tensor T[f] of the Vlasov field
satisfies, for all t € [0,T7,

> // (1+7) [LL(T)) witPdedr < E(1+1)%

|I|<N—1
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Then, if C is choosen sufficiently large and if € is small enough, we have

VYt e [0,T], e

1—
W) < SOl +1)*
Proof. In view of the commutation formula of Proposition 9], the analysis of the source
terms of the wave equation satisfied by E%(hl) uv» Which has been carried out in Section
[Tl and the inequality (I21]), we are led to bound sufficiently well the following integrals,
defined for all multi-indices |J| < N — 1.

! 1
Jo = / / +7 dxdT—i—e / / +7 (1+]u\)1+27dmd7-,
{r<7'} 1+T+T ror) 1+T+r)
~J ‘VEJhl‘TZ/{ +2y
= 1 o
B 6/0 /r( ) A+7+m)2 01+ a0 D
! Jl
3 VLt o
- ! dxd
K 6/ /r( ) A+r+r2 D1 +u) 0 0
2
1+7 ) ‘EJhl{
o L/ /‘ (7 r)i® (ﬂ_FWD‘VEZh| T ) Tdadr,
1+7
% = (Bt 1+2
N R R
1+7'
% 7(h") 142
J5 B / /,,_ 1+T—|—'r 2— 25(1_|_|u| ‘Ez(h ‘ﬁﬁ 'dedT
I = // (1+7)|L5(T ‘ Wi dzdr.

Let us precise that,
Proposition [[1.2] gives the terms Jg and 33‘]

[
e Proposition [Tl gives the terms Jo, 37, J7 and J7.
e Proposition I1.3] gives Jg, 3/ and 3‘5]
° Jg is the source term related to the Vlasov field, it is estimated in Proposition
14,10
According to (IZT), the result follows if we prove, for any |J| < N —1 and all g € [1,6],
Jo < €2, VIJ|SN-1, 3/ <EQ+4)%.

For later use, it will be useful to bound Jy by an auxiliary quantity Jo. Since 1 + 2y < 2,
one easily finds that

(12.2) Jo S Jp = ——dr S € — S €.
r= 1+7+r) 0 (1+7)2

We fix |J| < N — 1. Using the bootstrap assumption ([@.0), we get

t n 52%14—7 [hl](T)
~J € J1 1+ Con-—1,7U
J < /0 7(1—}-7’)15/ |VL7h |7—uw2 Tdzdr < /0 T dr

t 1+T)5
< 2 ( d < 21 t26
s @[ arat 5 S

By the crude estimate (14 |u|)?” < (147 + )72 and then bootstrap assumption (0.4,
one obtains

N
™

1+2v
/ / Vi L dadr S VT < A0+
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The Hardy type inequality of Lemma [3.11] yields

t ﬁ[(hl)‘Q
~ < € J(p1y|2 ‘ Z 142y
J3 < /0 (= /ET<{V£Z(h )"+ T+ a)? ) “o dzdr,

t € 2
5 /0 m/ﬁ ‘Vﬁ%(hlﬂ w(1]+2fyd$d7'.

We then deduce, using the bootstrap assumption (@) and 66 < 3, that
rcanairy! t (1 25
(12.3) 7 < e/ ot B [2 ]i:)dT < 62/ 7( +T2) A7 S é2.
o (I+7)* o (1+7)*
The next term can be estimated easily, using agin the bootstrap assumption (9.4,
t E’YleFQ'Y hl
ji 5 6/ N-1 [ ](T)dT 5 62(1_|_t)26
0 1 + 7

For 3‘5] , the first step consists in applying the Hardy inequality of Lemma BIIl For this
reason, we cannot exploit all the decay in w =t — r in the exterior region (for simplicity,
we do not keep all the decay in ¢t — r that we have at our disposal in the interior region as
well). We have

D’hl w1+2g 26 vﬁjhl wit2y
R
S +t+r) (1 + |ul)? (1+t+7)1-20(1 + |u)®
Now, recall from (I0.5)) that
I < 1Tl € ¢
{V£Zh {,CE ~ {VKZ}L ‘ (1+t+74)4 ]ITS% + (1+t+7")6
2
(1 + [u]) kp12, |£Z0Y
—_— VLW | + ——= |-
(I+t+r)22 = VL b (1 + |u|)?
Then, remark that, since 1 + |u| <1+ 7+,
|V£‘]h1‘ ARl —y 1+27
// TSR e S <ERTT0.

so that, according to the bootstrap assumption ([@.4]) and the previous computations,

3 < €N RN () + T + P
|KI<]J]

Finally, the required bound on ’Jg is given by the assumptions of the proposition. This
concludes the proof. O

In order to improve the bootstrap assumption (@.4]), one then only has to combine the
previous result with Proposition [4T15], which will be proved in Subsection

We now turn on 60'7\;2+2V [R]. In the same way that we derive (IZ.I]), one can prove
using the third energy estimate of Proposition [0 the Cauchy-Schwarz inequality and the
bootstrap assumption (@.0), that, for all ¢ € [0, T[

(124) EVFRY (1) < Ce+ Cex (1 + 1) + / / \ WXt dadr,
|J\<N T
where C > 0 is a constant which does not depend on C. This last estimate, combined

with Proposition [14.15] and the followirig result improves the bootstrap assumption (O0.0))
if € is small enough and provided that C' is choosen large enough.
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Proposition 12.2. Assume that for all t € [0,T7,
Z / / (L+7+7) LT | wg/““/dxdT < E(1 4.
II|<N
Then, if C is choosen sufficiently large and if € is small enough, we have
vt e 0,7, EVFTRIRN(t) < Ce(1+1)%.

Proof. The proof is similar to the one of Proposition [2.11 In view of the commutation
formula of Proposition and the estimates obtained on the error terms in Propositions
MLINIL3 the result would follow if we bound by €2(1+%)? the following integrals, defined
for all multi-indices |J| < N.

. 1 1 2+2“/

Jo = / / dxdT—i—e / / + [ul) g dadr,
{r<7} 1+T+7“) (1+’ ‘ {r>7} 1+T+T)
2T |V£Jh1|77/{ 2+2'\/
= dxd

I // (1+7+7r)29(1 + |u)> Yy e
. veght)?
Jg = | w2t dzd

’ //1w+ﬂ%uw> o

3] = // ! (14 [ul) [VL£Lh!|* + m| 227d2d
N A S (s Ty v Z T4pa ) 99T
RJ . ! 1 Jp1y|2, 242y

Jy = € ey |V£Z(h )| w3 dzdr,

o 1

A T2 2+2

Jg = L7 (h") Tdzxd
5 //T A+ 747231+ [u])3 7 | ‘LL LAt

~J J w2+2’y zdr.
%fﬂéwmmwvdd

Note first that, using ([Z3), Jo < Jo < 2. We fix [J| < N for the remainder of the proof.
Using the bootstrap assumption (Iﬂ), we directly obtain

J(pl t 8724271

/ / [VEZOL 2421 gar e/ I D g < oy
1+7 1+71 + r ~ ) 1+7 ~

By the bootstrap assumption (@.7)) and v > 34, we get

147,14+
J E‘V£Jh1‘77/l 1+’yd$d’7’ Le gN,%/Z/{ V[hl](T) dr < 62 ! (1 + T)(SdT < 62
i3 i (1+ 7)1+~ 5 W1+y 0 (1+7.)1+7—5 ~ 0 (1+7_)1+7,5 ~ S

Since 1 — 2§ > 0, the bootstrap assumption (@3] gives

VLL(WY|T W2t .
/ / {1+T—|—T 1jr|u|dxd7 S ETTIN £ S0t o”

Using first the Hardy type inequality of Lemma B.11] as well as the inequality 1 + |u| <
1+ 7+ r and then the bootstrap assumption (@.5]) as well as 70 < 1, we obtain

o _ t £1 h1 ‘
~J < ~J - € 1 ‘ 2+2’yd d
Jy 5 I3 /0 (1+T)245L71+T+T<{v | +71+]u\) xdT,

2 242
(12.5) < /t € / [VLy(hY)) W22 dedr < e/t £ y[hl](T)dT < 2
o (L+7)2 )y, L1dr4r 7 ~ oo Q4T -
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Applying the Hardy inequality of Lemma B.11], we get

1+2
~J < / / {EJhl‘El: wli’Y’y dCEdT < / / {v'cjhl‘ﬁl: 1+2’ded7_‘

1+t—|—7’225(1+|| 1+t+ 225 1+'Y

242~
. 1+2fy _ o wy . . . .
Using ([0.5) and w;y " = Tiars we obtain, using the previous computations,

S H+T+ ) Iy < e+ ).
[K|<|J]

Finally, by the assumptions of the Proposition and Lemma 3.12]

1+7+7r, . 2 9.9 ) .
// 147 ‘ﬁZ(T[fm wv+ Tdzdr S €(1+1)

Qo

O

Remark 12.3. The proofs of Propositions[12.1 and[I2.3, combined with (IZ1)) and (I12.4),
give the bound

ENYTIWY () + EFTHIR () < Qe Cer(14 )

As a consequence, the constant C can be choosen independantly of Cry and Crr, provided
that € is small enough.

12.2. TU-energy. In this subsection we improve the bootstrap assumptions on the en-
ergies 512\7%11+7Yu [h1] and 5]1V+77'Z7/}+7 [h1]. More precisely, we prove the following result which,
combined with Proposition [4.I5] improves (@.0)-(Q.1) provided that e is small enough and

C7u choosen large enough.

Proposition 12.4. Suppose that the energy momentum tensor T[f] of the Vlasov field
fulfils

12.6 vVt e |0,T], 1+T E dedT < €&
Tu ~
[1|<N

Then, there exist a constant Cy independant of €, Cyy and Crp and a constant C' inde-
pendant of €, such that, for all t € [0,T7,

IN

1
EXL W) < CoCye(l+ 1)’ + Ce3(1+ 1),

1
ENTTRY () < CoClye(l+ )% + Cez (1 +1)%
Remark 12.5. Note that Cry has to be fized sufficiently large compared to C but there
18 no restriction related to Crp.

In order to simplify the presentation of the following computations, all the constants
hidden by < will not depend on C'74 nor on Cz. This convention will hold in and only in
this subsection. We mention that all the energy norms which will be used here are defined
in Subsection B71 We start by the following result.
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Proposition 12.6. There exists a constant Cy independant of €, Cyy and Crp such that,
for allt € [0,T7],

5]2@_711?“%1]@) < Coe + CoCTue% (1+1)°

1
2 2
! [ 1
+ Z CoCrye2(1+1)2 / / (1+7) < <t+1> E%(hl)TU> WQ,;LVd:ch ,
|J|<N-1 g
(T, U)eT xU
ENTTIRN(E) < Coe(1+ )% + cocme%u +1)%
2 2
+ Z C()C72—u€ (141)° (1+7) <X<t+ 1) LL (WY ) vadxdT .
|J|<N
(T, U)eT xU

Proof. As these two estimates can be obtained in a very similar way, we only prove the
second one. In order to lighten the notations, let us introduce ¢7;; = X(H_l)ﬁ‘] (hY)ru
for any |J| < N and (T,U) € T x U. We can obtain from the first energy inequality of
Proposition and the Cauchy-Schwarz inequality that,

14,1 J
4 [od] (6) S £ [94] (0) + Ve / e

t51+%1+v J
/ [P7y / / (147) ‘D (¢70) ‘ wﬂrzdxdT
0 T

+ 1+7

According to Lemma [I.2], the smallness assumption on h'(t = 0) and the bootstrap as-
sumption (@7, we obtain, using also Cyyy > 1,

EFIY [61,] (0) S ENFTINO) +e S EFTTRN0) +e S 6

/t E o )(r) | / ENgia () + €1+ 1)
0 1+7 147

ENBTRN® S DD DD EIGI() + (1 + )%
(TU)ETxU |J|<N

dr < Crye(l —i—t)%

N

It then remains to combine these last four estimates. O
Proposition [2.4] then ensues from the following two results.

Proposition 12.7. Assume that (I2.0) holds. Then, there exist a constant Cy independant
of €, Cryy and Crp and a constant C' independant of €, such that the following estimate
holds. For any |J| < N —1, (T,U) € T xU and for all t € [0,T],

/ t [asn, (v () et 2

w2,y Pdzdr < Coe+ CE(1+1)°,
Proof. According to the commutation formula of Proposition and the result of Section
[I1 the proposition would follow if we could bound sufficiently well the quantities Ji
defined below, for any multi-index J satisfying |J| < N — 1 and any null components
(T,U)eT xU.

Those arising from the commutation of the wave operator with the cut off function (see

Lemma [[T.5]),

e

(I+7+71)? (1+7+47r)t

2
o) (‘V (ﬁ%(hl)TU)‘ |£%(h1)TU|2> w;ijd:cdr

1
2
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Those coming from the commutation of the contraction with TU and the wave operator

(see Lemma [IT.4]),

t J (12

3 = // (Hﬂww;ﬁdxdf
0 J{r>=1} r
t 1+ Jul

33 J 2 +v

- ! L dzd
v /0/{7"2"'?[1}( +T)r2(1+7+r)2—25‘v z(hH)PPw xdr,

N ! VL (R
gt P s

Those coming from the contraction of [J GLL(hY) 0 with TRUY,

v = //r<’r} 1“‘7'1":’_7”7)-)?96?‘7—‘“’ //r>7’} 1‘::—"7‘—7”) (1 + ful) 7 dadr,
e [ B (o O
2
3 = 6/ / (1+7) 1+T‘Zf;2 Z?(‘Hy e wydadr,
% = 6/I/ (+) 1+T’+£%)(2‘h—12‘)6‘(ﬁf+ e e
39 = / / T (147 ’vli](hi)k)f” 2 dadr,

31J0 = //(1+T)|£é(T TU‘ w2+7dxd7
0 Js,

Note that we used that ‘ X <1L+t>‘ < 1 for these last terms. Moreover,

e Proposition [Tl gives us the terms J¢, 3¢ and J7

e Proposition leads us to control J¢ and J¢.

e Proposition gives the terms fjg, 38‘] and 39‘]

° 3{0 is the source term related to the Vlasov field, it is estimated in Proposition
We fix |J| < N —1 and (T,U) € T x U for all this proof. Let us start by dealing with
3L, k € [5,10]. Using [IZZ), we have J5 < Jo < € and J{; < €% holds by assumption.
According to the bootstrap assumption ([@.0]), we have Ejzvl’llf%u [W1](1) < Crye(141)°, so
that

J(pl e eI RY)(r
/ / |V£ (h") In, IdexdT < E/ M(ﬁ < O (1 +1).
0 1+7

For J, we start by applying the Hardy inequality of Lemma BI1l For this reason, we
cannot use all the decay in t — r in the exterior region. We have

J(pl 1+
/ / L5 (W) 7 w1l / / VL ()2 o dpdr
1+T+7“1 26(1+’ ‘ 1+T+T1 1+ + 1+ »)1-26 1+2'Y

Using (I0.0) yields
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where Jy is defined and bounded by €2 in (I2.2) and

VL, (P s
= // Arrtr o 1+%dxd7’

Since J% < 38‘] , it only remains to deal with fjg and 55 As 5§ < v, we have, using Lemma
3.12] and the bootstrap assumption (@.4]),

‘VﬁJ Bl ’2 142y )
dedr <
3 < // 1+Tv2é1+|u|x7~€

Finally, we use (IZ3)) in order to get 3 < JJ < €2

Let us focus now on ‘51, 42, \jg and \j Slnce these integrals are of size € (and not
€2), we cannot use the bootstrap assumptions (LG)-(@8]) in order to control them as it
would give us a bound larger than Cyy/e(1 + t)°. We will use several times the inequality
1+ 74 r < 5r, which holds for all r > TT‘H (and then on the domain of integration of all
these integrals). Since [V(LL(h')rv)| S [VLL(RY|[+ 2L (AY)| and 14+ 747 S 147 —7|

for all r < TTH, we have

~T ! 1 Tz, Lh(hh? dz -
U <1+T>1+V/{ SSI;}QWZ(’”’ ) T

We also have

g [ [ L
~ o Jo AT sy (14 ful)? “
Hence, by the Hardy type inequality of Lemma [3.11] and using the bootstrap assumption
@) as well as v — 2§ > 0, we obtain

o LENS IR ()
~J o~ < Jp1y2, 142y < -1 <
Ji +J5 3 /0 (1+T)1+'7 /ET ’Vﬁz(h )‘ wﬁf dr N /0 —(1+T)1+'7 dr S €

Since 1 — 46 + v > 0, we get from the bootstrap assumption ([@4]) that

J ¢ 1 Jrn1y|2, 142 5%1+2W[h1]( )
~ < - - V Y < _Av=r v N7 <
J3 X A (1 n T)2_25+,y /{7"2 11'7} ‘ ﬁz(h )‘ wy dadr N A (1 T T)2 20+~ dr ~ €.

Finally, Lemma 312 combined with the bootstrap assumption (@) and v > 34, gives
Sl (Rb)|2 1+2“/
/ / VEZ(OF w dzdr < e
>4 (L+7) 1+|u|

Proposition 12.8. Assume that (I2.6l) holds. Then, there exists a constant Cy inde-
pendant of €, Cry and Crp and a constant C' independant of €, such that the following
estimate holds. For any |J| < N, (T,U) € T xU and for allt € [0,T7,

[ Laon (s (i) esomm)

Proof. The proof is similar to the one of Proposition I2.7] According to the commutation
formula of Proposition [£9, Propositions TTIHIT.3] and Lemma TT.4HIT.H] it is suffient
to bound by Cpe + Ce*(1 + t)* the following integrals, defined for any |J| < N and

O

2
w1+7dmd7' < Coe + CE(1 +1)%.
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(T,U) e T xU.
t
y
0 Hi<n<
t £J hl
I3 = // (1+7)7‘ 2(4 ) 1) dadr
0 J{r=741) r

¢ 1+ |ul
J . J 1\12, 1+
Ji = / /{7">T+1}(1 —i—7’)702(1 +T+T)2725|V£Z(h )| w1+;/d$d’7',

V (£ (h! 2Ll (W o2
) (ILEAIIL | I ot

/= ‘V£J(h1)’2 Wit
j4 o / /T>T+1} T 1+ded7
T = / / (1+ 7)dadr / / (1+7)(1+ ‘UI)I‘LdedT
5 {r<7} 1+T+7") (1+ ‘U’ 1+’Y (o) 1+T+7“) 5
1+7— 1—|—|u|) ‘ﬁ](hl)P )
J . e L IELEDRY s
T / /T 1+7+7r)4 46 VL7 (RO + (1+ [u])? 1+7dxd7—
V(b))
J = 1 | A 1+’y
7i 6/ /T( ) (14+7+7)220(1 + |u|)w1+,ydxd7-7
t J (1l
J o._ LS (RN %, .
Js = 5/ / (1+7') (L+7+7)220(1 + [u])? wi ) dadr,
/o= ‘V£J(h1)’7‘u 1+
Jg = / / 147 0t 7tr) 1+zdxd7

T = /0 / 1+ 1) [L5(T o [P wldadr.

We fix, for all this proof, |J| < N and (T,U) € T xU. Using (12.2)), the hypothesis (I2.6])
and the bootstrap assumption ([@.1), we have
27,1
LEN T R](T)
147

For jSJ , as previsouly for similar integrals, we cannot keep all the decay in t — r when we
apply the Hardy inequality of Lemma B.I1] (the problem comes from the exterior region).
We have, since 1 > 24,

dr < CTu€2(1 —i—t)2‘S

]|

J5 ST0 S €2, T S €, Ji < 6/
0

14y

Jrnl 14+~v—-26
// L7 (W) 2w s // VLY (MY [Ze Wity ~dadr.

(1474 7)1720(1 + |u)? (1+747)1720 (1 4 |ul)?
Using (I0.5) yields

TS Ta+To+ > TE
[K|<]J]
where Jg < €2 according to (I2Z2)) and, using 1 + 7 47 < 1 4 |u| as well as the bootstrap
assumption (O.7),

IVLy( hl)’TuW%n Ly, 14y 1 2 25
' //T T+7+r)i- 25(1+|u|)25d$d7 < e€ngy ) < Crue(l+1)

Note now that J7 < 7! s and, using (IZ3), J& < ﬁf < €2. Consequently,
jé] + j7J + .,78J < (1 + CTM)EQ(l + t)Z(S.

We now turn on jfj , jz‘j , j3J and j4J which are of size € and then cannot be bounded
using the bootstrap assumptions (0.0)-([@.8]). Recall that the inequality 1+7 47 < 5r holds



MINKOWSKI STABILITY FOR THE MASSLESS EV-SYSTEM 83

on the domain of integration of all these integrals. Since |V (L% (hY)ry)| < |VLL(AY)| +
el (hh) and 1+ 7+7 S 1+ |7 —r| for all r < ZHL we have

1 J (1 1y)2 |E%(h1)|2 da
/1+T {1+T<r<1+7}1+7+7~<|wz(h W+ ar ) Ty

We also have

jZJ < /t 1 |£J(h1)|2 2+'yd7_
“Jo 14T Sy (L7 7)1 [ul)? “
¢ J 12
j3J < / 1 / ’Vﬁz(h )‘ w2+7d:ﬂd7'.
~Jo (L4 7)22 [r>1i7) 1+74+7 7

Applying the Hardy type inequality of Lemma BTl and using the bootstrap assumption

(E5). we get

37,2427 1
T VLG (hY)]? 2 < /t e 25
+ + 1+
T +T+ T /1 T/ o dr < ; T, dr < e(1+t)

Finally, the bootstrap assumption (.0 gives

t J(p1Y]2 2+w
= Ve () dedr < EFPRY(E) < e +1)¥
. N//rzly} T e T ovdm S &0 S 1+ )

N

O

12.3. LL-energy. The purpose of this subsection is to prove the following result which,
combined with Proposition [[£TI5] improves the bootstrap assumption ([@.8]) provided that
€ is small enough and Cf, choosen large enough.

Proposition 12.9. Assume that the following estimate holds

(12.7) Z// (1+7)|L5(T ])\iﬁwh%dxm < &2

|J|<N

Then, there exist a constant Cy independant of € and Crr and a constant C independant
of €, such that,

1
vt e [0,7], ENZENRY(E) S Co(l+C2p)e(l +1)° + Cez (1 +1)°.

Remark 12.10. For the conclusion of the previous proposition, it was crucial that C and
Cru were fized independantly of Crr (see Remarks and [12.3).

In order to simplify the presentation of the following computations, all the constants
hidden by < will not depend on Cgp. This convention will hold in and only in this
subsection. The following result is the first step of the proof.

Proposition 12.11. There exists a constant Cy independant of € and Crr, such that, for
allt € [0,T7,

(12.8) EXTZF'RY(E) < Coe+ Co(1 + Crr)ez (1 +1)°

INARSIRCCE D

1
2 2

1
whzydxdT

+ Y Go(1+CE) e (14}
[J|I<N
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Proof. In order to lighten the notations, let us introduce ¢’ := x(z77)L%(h')Lr for any
|J] < N. We can obtain from the second energy inequality of Proposition [Z.5] and the
Cauchy-Schwarz inequality that,

51+2’Y, [¢J] ( ) < €1+2% [(bJ + \/’/ 1+21’+¢:—J]( )dT

t 51—{-2’)/,
/0 1+T // (1+7) (Dg¢ ‘ w1+2ydxd7

According to Lemma [1.2], the smallness assumption on h'(¢t = 0) and the bootstrap as-
sumption (@.8]), we obtain

_l’_

e[ (0) £ ENEFINI0) +e S EFTII0) +e S e

1+427,1
t51+2v,1[¢J](7_)dT S /t ENJrE’Y [hl](T) +Ed7_

< (CLE + 1)6(1 + t)(s,

0 1 + T 1 + T
142v,117.1 1427, J
ELTIIE) S ST eI +
|[JISN
It then remains to combine these last four estimates. O

We are then led to prove the following proposition.

Proposition 12.12. Assume that (IZ1) holds. Then, there exist a constant Cy indepen-
dant of € and Crr and a constant C independant of €, such that, for all t € [0,T7,

//THT o (x (77 ) b0

Proof. Let us point out that C'z, will only appear when we will use the bootstrap assump-
tion (@.8]). In order to prove this result, we are led to bound sufficiently well the following
spacetime integrals, where the multi-index J will satisfy |J| < N.

Those coming from the commutation of the wave operator with the cut off function (see

Lemma [IT.5]),

J t
21 = / /
0 Hi<s

Those coming from the commutation of the contraction with LL and the wave operator

2
whhdxdT < Coe+ CX(1 +1)°.

-

J(pl 2 J(pl 2
}(1 +7) < ‘v(gﬁ_fg_h+)i§2) { ’(fi_(}; _)|_L7]j)‘4> W%+2vdxd7'.

=2

(see Lemma [TT.4]),
\ﬁJ( Bl
£ = / / >T+1} 1) =E Wl dadr
1+ |u
J . Jp1y2, 1
»23 = / /{T‘>T+1}(1 +T)r2(1+7+7“)2_26’v£Z(h )’ W1+2,yd1'd7,

' VLG ()3
g = //{>T+1}(1+7’) Zr2 Tuwh%{dxdr
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Those coming from the contraction of [J gLL (WY, with LMLV,

B = //{r<7'} 1+T%1-j’_)7()fj-d|z| 1+2’y //{r>r} 1j:4:") (1+|U|)d$d7—’
& / / ey <1+‘Tv+£:>2h125‘<§”+| jetsadadr
o= J ey T o VEH O e tnr,

el — /0/{QT}(HT)|£g(T[f])LL|2wi+27dde.

More precisely,

e Proposition [T gives us the terms £5, £ and £7.

e Proposition [[1.2] leads us to control £5 and Sg .

e Proposition [[1.3] gives the terms 26‘] and Sg .

° 2@7 is the source term related to the Vlasov field, it is estimated in Proposition

14, 15

We start by the easiest ones, £5, £, £7, Eg and Eg. First, according to (IZ2]), the
hypothesis (IZ7) and (23],

L5 < Jp < € Ly < €, 3 <33 < €

We obtain from Lemma B2 the bootstrap assumption ([@.7) and 26 < 1 — 20, that

t
€ 'V R e 2
£J</7/ VL (h! Ldzdr < €
[ AT ET‘ z( HTZ”l—Hu’ T =€
According to the bootstrap assumption (O.8]), we have
LERE ()
J £L 2 5
/ / ]Vﬁ ’L£w1+2,ydxdT / H—TdT S CELG (1 + t) .
We now focus on £/, £4, £/ and £7. Since these integrals are of size € (and not €2),
we cannot use the bootstrap assumption ([O.8) in order to control them as it would give

us a bound larger than Crre(1 4 t)°. We will use several times the inequality 1 + 7 +
r < 5r, which holds for all » > TTH (and then on the domain of integration of each of

these integrals). Using the inequality |V(£%(hY)rr)| < [VLL(RY)| + L|£L(RY)| and that
L+7+7r S 14 |7 —r| for r < ZH, we have

t 1 1 |LL(hY)|? dx
£J</7/ 7<Vﬁ‘]h12+ Z > dr.
L Jo (T 7)t (Hrepctin) 14747 VEZ() 1+ u)?) 1+ |ul) g
Note also that

IVIES /t : / L2 00 w2tV dr,
2 Jo W™ Jpsieey T r+n)(+ )2

o1 VL (R
J < S =2 7 7102 dad
£3N/()(1+T)2 25/{>1+7} 14747 Wo, AT aT.
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Consequently, applying the Hardy type inequality of Lemma B.11] and using the bootstrap
assumption (@.0)), we get, since 1 — 2§ > v and 26 < v,

to1 VL (RY)]?
J J J < A 247 4
21 +£2 ++£3 ~ /O (1 +T)1+'Y /E T+r+7r Wy T

t5°%2+2v Bl t 25
S / N [ : ](T) dr S / 6(1 + 7—1) dr g
o (d+7)t* o (L+7)H

Finally, as (1 + |u|)'™ < (1 + 7 + 7)™, we obtain, using Lemma [BI2] the bootstrap
assumption (0.7)) and 26 < v, that

t 1 o w;
2J</7/ VLL(RY)|2 Y dedr < e

€.

O

The proof of Proposition I2.9] follows directly from Propositions I2.11] and I2.12], which
concludes this section.

13. IMPROVEMENT OF THE BOOTSTRAP ASSUMPTIONS ON THE PARTICLE DENSITY

13.1. General scheme. In this section we prove the following proposition.

Proposition 13.1. There exist an absolute constant Cy > 0 and a constantd C > 0 such
that, for all t € 0,77,

(13.1) B3 [£](t) < Coe+ Cex(1+1)%,
(13.2) B4 L [f](t) < Coe+ Ce2(1+1)2,
(13.3) E4[f](H) < Coe+ Ce3(1+ 1)z,

This improves in particular the bootstrap assumptions ([Q1))-(@3) if € is small enough and
provided that Cy is choosen large enough.

Remark 13.2. One can check during the upcoming computations that the initial decay
hypotheses on f could be lowered. We made the choice to simplify the presentation and
then to work with energy norms weighted by z®, where the exponent a is as simple as
possible.

In order to unify the proof of these three inequalities, we introduce for any multi-index
|I] < N the quantity

2
= = < —
(13.4) 0 = { (+3 = 35N+9, [I|<N -5,

{ = 2N +6, [I| > N — 4.

According to the energy estimate of Proposition Bl we have

t B0 [zz\f\fglpz\lf] (1)
147

BH (A3 21f] (1) < BR[0T 2] 0+ CE [ o
0

t
< L
0 Jx, Jr3

where C is an absolute constant, which in particular does not depend on Cy. In view of
e The definition ([B37) of the energy norms Eﬁ'i) [£], EY_,[f] and E&[f],

e the smallness assumption on the particle density, giving E&s [zg\f =31 g1 f1(0) <

E L [£)0) S e,

~ 1
T, <z£\1\*§IPZIf> ‘ dvw$dadr,
8

19Contrary to C, the constant Cp does not depend on CY, C, Cry and Crr.
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e the bootstrap assumptions ([@I)-(@3), which give

thsvs L= ZIf Em %
\[/ \/—/ m §{€%(1+t)

1+T e2(1+1)

, if [I| <N,
Hf I =N

NI NI

e the Vlasov equation Ty(f) = 0, leading to
N 9 . .
(13.5) T, (417317 27f) = (fm - gIP> An=ET () 2T 4 2t [y, 2T (),

Proposition I3.1] is implied by the following two results.
Proposition 13.3. Let I be a multi-indez of length |I| < N. Then,

3101 5q e2(1+1t)2,  of I <N,
///R i ITy(2)] 12" fldvws ded N{EQ(Ht) S = N

Proposition 13.4. Let I be a multi-indez of length |I| < N. Then,

t . 1 3 ;
/ / / ngfglpHTg,ZI}(f)‘defdde < 2(1+t) 5 ff!I!<N,
0 Ju, Jr3 E €e2(1+1)z+0, §f [I| = N.

13.2. Proof of Proposition I3.3l Since the weights z are preserved by the flat relativis-
tic transport operator T, i.e. naﬁwaaﬁ(z) = 0, we have, using the notations introduced

in Subsection 5.1

l\'}l»—‘ to\oq

(13.6) 1@@)::Awfimmd@+4ﬂw¢u)—%vxﬂx%vyam&

By a direct application of Lemmas [3.7] and B.8] we have

w —~
Vo] + 1t — 7l Vea(2)] + (¢ + 1) Vﬁ’m(zm S 26 S 14z S -
26@0

and recall from Proposition 0.7 that?d

1+t —7] Ve

H| < Hpr < et —" vH § L
= Ve = 1+t —r|

VH VH| < ——— VH < —_—
\VH .7 + | |N1+t+r, | |L5Nf(1+t+r)

We can then bound the first term of (I3.6) by using (5.36]) and the last two ones by
applying Lemma [5.T3] so that we obtain, since |wp| < \/|v||wg|,

[Avg™H(dt,d2)| < [Av|ln™t + H||Vew(2)] < (H|lwe| + [H|c7]0]) Ve (2)

|v||H |z z Velv|z
- H <
+ [l |Ul+|t—r| = 1+t+r

_Velvlz

J 14+t+7r’

|H(w,dz)| <
T+t+r

and
Vi(H)(v,0) 0y, 2| < (Jwpl|VH| + l|VH o7 + o [VH]) > |Z(z)
Z\Eﬁo
+ [t = r|[VH||wr||Vig(2)] + [v[[VH |7t — || Ve (2)]
+ t{VH\ |vl[w] Vi (2)| + to|[VH |22 Vi (2)]

Velwrlz | Vellz
YAt —r] 14t+r

20Note that apart from the last one, all these estimates could be improved.
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We then deduce that

(13.7) T, ()] < Velwp|z I Velv|z

T+t—r] 1+4+t+7r
Consequently, for a multi-index |I| < N, we get, according to the definition (33T of the

energy norm E&" [f1,

~ 1
3 s / / /Ra (1 —\i-/;hii-r . 1_\|{E‘tﬂf‘r’> zz‘l‘_glp‘zlf’defdmdr

¢ s ZK‘” IZIfI , wr| 1
\/E/ 7'—|—\/_// / =31 |ZIf| dvw$ dzdr
0 R3 5

1+71 + |ul

N

41

t & f
svef 20 s s w0

The result ensues from the bootstrap assumptions ([@.2)) and ([©@3)).

~

13.3. Proof of Proposition I3.4l The starting point consists in bounding the commu-
tator [Tg, Z1 ] (f) by a linear combination of the terms listed in Proposition [5.141 Then,
in order to close the energy estimates and to deal with the weak decay rate of the metric,
we will have to pay attention to the hierarchies related to the weights z which have been
built into the Vlasov energy norms E4® s[f], EY_1[f] and EY[f]. Before performing the
proof, let us explain the strategy, Wthh w111 be illustrated by the treatment in full details
of the integral arising from the two families of error terms

el = lwul VLR |225¢| = 1|22
erl = ()l VL] o [V25 7| = i [925 ),

where Z € Py, |J| + |K| < |1, |K| < |I|] -1 and
e cither K < 17
e or K =17 and JT > 1, so that Z”/ contains at least one translation Oy

We will then have to bound sufficiently well
t s 1
7 = / / / wi | |VL(RY)] 24n=51" ‘ZZKf‘ dvw? dzdr,
0 Jz, JRS 8

t . . 1
T [ [ €l [FEp0)] 23 (V25 | v} dadr
0 JE; JR s

Apart for the error terms 651 and 652, there is two cases to consider.

Step 1: if all the metric factor can be estimated pointwise, e.g. !Vﬁé(hlﬂ for @f{( and
VLT (hY) |££ for (’Ei’ﬁ), so that |J| < N —5 according to Propositions [0.J]and [0.61 Then,
the particle density is estimated in L' through the following result.

Lemma 13.5. Consider Z € Py and let I and K be two multi-indices such that |[I| <N,
|K| < |I| —1 and K < I¥. Then,
o if K < IP, we have E&3 [zz\l\*gfpﬂL%VZKf] < EM‘[]‘] as well as
Es [zfm*%fPZZKf <E[/)-

21The cubic and quartic terms contain several metric factors.
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o Otherwise K¥ = I” and we have Es's zz\’\_%IPV/Z\Kf < E m[f] as well as

1]
Exd |88 22K ) <E ).
Proof. This directly ensues from the fact that VZK (respectively 727K ) contains K¥
(respectively at most K© 4 1) homogeneous vector fields and that U1 < {41 since
|I| > |K|+ 1.

We need to consider two subcases for the most problematic terms, the quadratic and
some of the cubic ones (see Proposition [5.14)), in order to deal with a non integrable decay
rate.

e If ZK contains less homogeneous vector fields than A ,ie. KP < I” then the
terms containing the factor 77K f are good since we control the energy norm

of 31" 77K f and the pointwise decay estimates on the metric provide an
integrable decay rate. For Z, we obtain from the pointwise decay estimates of

Proposition [0 Lemma [I3.5] and the bootstrap assumptions (Q.1])-(Q.3]),

t S 1
VDS / / / Ve . S —31° ‘ZZKf‘ g [dvw dadr
g (1+7+7)1-0(1 + |t—r|>* :
< \/_/ / / S ‘ZZKf‘ d’l)wstCdT
R3 \UI

¥

< \/gEéé[szfgfpf/Z\K](t) < Vel () S { E

(1+1)3, if|I| <N,
(144370, if|I|= N

Nlw W

€

For the remaining quadratic and cubic terms, which contain the factor vZK 1,
the pointwise decay estimates on the metric do not provide an integrable decay
rate. The idea is to take advantage of the fact that we control the L' norm of
Zhn _§IP+%V/Z\Kf and to gain decay through the extra weight 275 and Lemma 37
For J, we use Proposition [[0.6, the inequality 273 < (14 |t — r\)_% which comes
from Lemma B7 that 6 < v < L, Lemma and the bootstrap assumptions

6’
@I)-@3). We have

¢ 7 —r[z Y Ln=317+3
< " 0
j ~ / / \/E( + T) (1 4+ 7+ 74)2+'y—6 /R% |/U| Z%

~ 1
vZK f( dvw§ dzdr
8

1 2
[T —r|2"775 0-21P42 | g 5K 5
< / o, \[(1+T+T)1+v g ’U’Z e ’ ‘VZ f‘degdde
Eid g 2P 2o DK I
g [n3 v 2 f}m B 1/10)
) - B VI
N\/—/ 147 dTN\/E/O L+ .

_ §(1+t)%, if |I| <N —1,
E(1+1)3H0, if I =N
In summary, we have proved first that
< Vewil Lok < Vel
Il S 1+ |ul’ e TN e

and then we have applied Lemma [13.5]
e Otherwise all the homogeneous vector fields of Z! are contained in ZX, i.e. I¥ =

KP. Then at least one of the metric factors is differentiated by a translation

and we can obtain an extra decay in t — r (see Proposition B.3]). For Z and J,
this means that Z7 contains a translation 0, and that we can use the improved
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pointwise decay estimates of Proposition [[0.8] We then get, using also Lemma
13.5] and the bootstrap assumptions (@.])-(@3)),

1
(L+[t—r])> / 4 7211)‘ 7K ‘ s
T T 1| 8 T
/ T\/_t—l— )(1 [+ r)E %|v|z 30 \VZ5 f deédxd

by
CER =37V 2R | (r) B 17](7)
I
1+T)%*25 dTSﬁ/o e

€3 (1 +t)%, if |1 < N —1,
E(1+1)3H0, if [[]=N

N

\/
S

For 7, as we merely control the energy norm of z‘17173 31" 7’ZZKf, we use the
2 2 2 2
estimate 24717317 < (1 + ¢+ )3 2017377 ~3 which comes from ([F2I), so that

Z<// / \[ =517 -3
- JR3 1+T+T (14|t — |)
~ 1
\/E// / sz—afp—ﬁ‘zzf(f‘ Wl g dudr
0 Ju, Jr3 L+ful s

\@Eé%{zé’m*%f’)*%??Kf](t) < \fEfH‘[ flt) < { ‘

s 1
ZZKf‘ lwr,|dvw? dadr
8

IN

(1+1t)z, if|I] <N,
(14050, i [1] =

IN
INEENIEY

W Njw

€

In summary, we have proved first that

25T K Ve|wi| JK Vel

(1+T+r)39l171 < T+l A0 S T

and then we have applied Lemma

Step 2: if one of the metric factor cannot be estimated pointwise. In that case, the error
term considered contain a factor where h' has been differentiated too many times so that
we cannot apply Propositions [0.1] and [[0.6] anymore. For 7, this means that |J| > N —4.
For Z, we could have dealed with the cases |J| € {N —4, N —3} during the first step but for
simplicity we treat them here. Since |J| 4 |K| < |I| < N, we necessarily have [I| > N —4
and |[K| <4 < N —9, so that the Vlasov field can be estimated pointwise. Note also that
if [J| = N then |[I| = N. Moreover, since £ + 3 = {|k|+1, we will be able to gain decay

through the weight z and Lemma BT using |wr| < (1+t|7+27")2 orl< 1+|t ok For Z, we get,
applying the Cauchy-Schwarz inequality in (7,z) and since |wr| < /|wg||v],

J (1l
/ / |Vﬁ h ‘ ‘U‘ZH—K‘J\—%IP
I+7+7 Jrs

~

~ 1
77K f( dvwldedr <
8

N

2

vLLRY| 1 57 5
// ‘ ?dxdT// (1+747r) / |v|z1+£\1\_§1P‘ZZKf‘dv widzdr .
1+T+7° 8 R3 8
For J, we have
VEJ ) ~ i
(1+7) ‘ ‘LE ‘U\zzH\f\_%IP VZE fldvwddadr <
(1+ |7 —r|)?2 s ~
1
VL (hY) 1 2
// T47) ‘ |£ ?dxdT// T+7) |v|z2+€‘” 3° ‘VZKf‘dv wgdxdT.
(I+Jupt s R3
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Remark 13.6. We point out that (’Ef’ﬁ) 1s the most problematic term and that its treatment

is more complicated than the ones of the other error terms. In particular, it is this term

which prevents us to prove that ENHQV [A(t) < e(1 4 1),

We are then led to prove the following lemma, which will also be useful for all the other
error terms.

Lemma 13.7. Let I and K be two multi-indices satisfying N —4 < |I| < N, |K| <4 and
KP <IP. Then, for all Z € Py, we have

t
0o J=, R3
K ! 244, —21P
Aj :=//(1+T+r)/ |v]z* 41175
0 . R3

Proof. For the first integral, note that L =51" < S =571 Hence, by the
Cauchy-Schwarz inequality in v, we have

t
Af(g/
0

2
~ 1
ZZKf‘dv widedr < (1 +1),

8

AK

2

VZKf(dv widzdr < E(1+1)°.

00| 0ol

(1 +T+T)/ |v|z£‘”+17§(lp+1) ‘/Z\/Z\Kf‘ dv
R}

L (S,)

dr.
L)

/ ol =307 | 225 | du
R}

00l ool

Since ZZX contains at most I” + 1 homogeneous vector fields, |K| < 5 < N — 8 and
U1+ 3 =L+ 3 = {41, we obtain from (@) and the bootstrap assumption (.I) that

which give us

€

/ |U|ZZ‘I‘+17%(IP+1)‘Z\EKf‘(T,CC,’U)dU S —,
R3 (1+7+r)*2

IN

/ \v\zz\””’_%(lpﬂ) ‘ZEKf‘ dvw
R}

00l ool

ESZIA) S e(l+1)2,

LY(S,)

A s e[ < aey
€ € .

The bound on .Af can be obtained in the same way using this time that VZK contains
at most I¥ homogeneous vector fields. O

We can then bound Z using the bootstrap assumptions (@.5). For any |J| < N,

1
2

IS ~Y

t ¢7:2+2y7p1
/ ETTIN o q
0

t edr 9 NE 3 5
T 2040 < e+,
E=E s clr] s el

1+7)220°

The treatment of (’Eﬁg, and then 7, is much different for the case |J| = N than for
N —4 < |J] < N —1. In both cases, we need to use an energy norm related to special
components of h! in order to close the energy estimates. Assume first that |J| = N,

which implies [I| = N. Then, using sup,cg, f_:r‘f_r:‘ S147,v9< 1_16 and the bootstrap
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assumption (9.8]), we obtain

1
t FLL ()| ! :
1 2 S EE i dadr - AR
/o( +T)/ZT (4 Ja)p idrdr A

VLL(hY)
’S‘ ) // N1+| I‘“ Loy dadr - A

J S

1
2

< et b et s b

We now turn on the case N —4 < |J| < N — 1. Apply first the inequality (314, so that

L2 (h1)% 1 w3
dxd
//T T+74+7r)(1+ |u)? % rer AI

1
2

\J <N

Then, we bound A% by using Lemma [[37] and we apply the Hardy inequality of Lemma
BII Note that once again we need to be careful since we cannot use all the decay in
u = T — r in the exterior region. We obtain

N

VERIEHDS L7 MEr s goa
~ € (T4+7+7)(1+ |ul)? Wy LT

[Jo|<N

1
2

5 VLY (hY) 2

< 5 LT 1+6

S e(1+1)2 E // Tp— 2+dd7’
[Jo|<N

Fix now |Jy| < N and use the estimate (I0.5]), which was obtained using the wave gauge
condition, in order to get

/t ’vﬁJO(hl)‘LT 1+6d1’d <// ‘VEJO hl ’77/{ 1+6d1’d +// edzdr +I
0 Js, THrEr T 4Tt 2 (LT

. t
where, according to (IZ2), [, fr<r(1ffi:)5 < e 13) <eand

1+ |ul Qr11y2 ’ﬁg(hl)P Wl 0
/ /T 1+7+7)3 (147 +7)3-2 (‘V£Z(h )+ (14 |ul)? 2+8dmd7'

Using first that 1 +7 < 14747, 6 < v, v < 1+ % and then the Hardy inequality of
Lemma [3.1T], we get

Qp1y2
1 Qrpiy2 , [Lz(h7)] 242y
p3 / 1+T2 25/271%—7'%—7” ('Vﬁz(h” ) dedr

|QISN

IQISN

5,242y

/ / ‘Vﬁg(hl)’2w2+2fydxd7_ < /t SN [hl](T) dr
E: 225 v ~ 225 :
GI=N 1—|—7’ e, l+7+7 o (1+7)

We then deduce from the bootstrap assumption (@) and 46 < 1 that I < e. Finally, as
v < %, Lemma [B.12] combined with the bootstrap assumption (@.1) and v > 36 give

£J0 hl ﬁJo hl
// v ’Tu witldadr < // v ’Tu Y qzdr S e
T+r+r 2+l (1+7)7=0 1+ |ul

We then deduce from the previous estimates that J < 65(1 + t)i for all |J| < N — 1.
In summary, we have used the Cauchy-Schwarz inequality, applied Lemma [I3.7] and then
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proved that

(13.8)
2 2
18K o 1o LK
t HZ ol 1%[171 HL°°+HZ "ol 1Q[I’loHLoo €
/ / L “drdr <
0 . 1+7+4+7r €

We now analyse the other error terms.

, if |I] < N,
(14 t)H0 if [I| = N.

NW N

13.3.1. The terms arising from the source terms. Since Ty(f) = 0 we have Z1o (Ty(f)) =0
for any |Iy| < |I| and all the error terms of the form (5.42]) are equal to 0.

13.3.2. The terms which do not contain h'. We start by dealing with the error terms
2P 2 2P
Zhn=st 65(0 and zA17s1 65(00 since their treatment is different from the other ones.

Lemma 13.8. Let K be a multi-index satisfying |K| < |I| —1 and K¥ < IY. Then, for
any Z € Py,

t
// / =317 <6§<’0—|—6500) dvdzdr < { ¢
0J%,JRS €

Proof. As the Schwarzschild mass satisfies M < /e, we have

N an=31" \ZZK f|
o -21° <6K Sk ) < Velv|z v K 1zz JU
2173 rotSro) S T (VI

(14+1¢)2, 4f[I| <N,
(L+t)2™0, if|I| = N.

W W
[SIE SIS

Note now that zéUV%IPIEZKf] SA4+7+ r)%zg\”*%(lpﬂ)lle(f], so that Lemma [[3.5
gives us

1+7
It remains to use the bootstrap assumption (@.1)), [@2]) or ([@.3)). O

l
t - tE [ f1(7)
// / =317 (65{0+6ﬁ)0) dvdzdr < \ﬁ/ L
0 /2, JRS 0

13.3.3. A sufficient condition for Proposition[I3]] to hold. The two examples treated just
before suggest us to prove the following three results, where we use the notations intro-
duced in Definition The first two ones concern the case where all the metric factor
can be estimated pointwise. In the last result, we deal with the case where one of the h'
factor has to be estimated in L%. Let us start by the easiest terms.

Lemma 13.9. Let Q, M, J and K be multi-indices satisfying |Q|+|M|+|J|+|K| < N-5,
|K| <|I| =1 and KP < I?P. Fiz also Z € Py. If for all (1,2,v) € [0,t] x RS x R3,

> 2 (SIK | SIK | GQIK | 5Q.0K Vel | Vewi
.F = (1+T+T)3 <%I,1 +%I,2 +2l1712 +91[,13 ) S 1+T+1+‘T—T‘7
€|V €E|w
F = B s m K gy g YA el

1+7 1+r—7r]
then,

t
O =21 (RIK | RJIK | 3Q.JK | 3Q,JK
/0/ /RSZ 55 (67 +67, €7 + €y Jdow
T v

t 1
_2/P( JK J K JK JK M, J K 5
+/o/z /Rngz 3! (6173 +&7F + 678 + 6P + ey >defdxd7

8
5 €
€

dadr

0] 0o

(L+t)2, f [I| <N,
(1+8)2F0 if [I| = N.

vlw vjw
W= N
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Proof. This follows from the definition of the quantities considered here and from the
2 2
inequality z3 < (14 7+ 7)3, so that

AnHT (S + &I + N 4 B 5 F st BT 224y),
A3 (&1 + &1 + &) +6M‘]K+€%¥’J’K) = F. s v zE g,

Recall now the definition ([B36]) of the norm E%%[], so that, using Lemma [[35] the
integrals considered in the statement of the lemma can be bounded by

t R £ fl(r
[ S i

and it remains to use the bootstrap assumptions (@.])-([@.3]). O

We now focus on the problematic terms. Those for which we need to use our hierarchy

related to the weight z and the number of homogeneous vector fields composing Z1 and
7K,
Lemma 13.10. Let Q, M, J and K be multi-indices satisfying |M|+ |Q|+ | K| < N —5,
|J|+|K| <N -5, |K|<|I| -1, KP <I? and the following condition

o cither K < IP

e or K¥ =TI and then J* > 1 and QT+MT > 1.

Fiz also Z € @0 and define

G =AML+ AT + AL, Zm +ZmQMK.

j=14
Assume that for all (7’ x v) € [0,t] x R3 x R3,

Vel | Veawd e e
G+ g+ QlJK < + if KP <17,
53 511 1+7 1+4+|7—r| /
25 Velvl Velwi| o7 oP P
1 3 < K :I .
( +r+r)Q+QN1+T+1+’7_r’ if
Then,
L o 3 10
O —21 “JK M,J,K
27~ 3 et + (’3 Ky ¢ desdxdT
[ LTRSS ot

< Jearn: <,
Y e+t il =N

and, Z'E KP <17,

3 5 .
// / =317 (’EJKde dedr < €§(1+t)i P me <N,
R3 €2(1+1t)2°  4f |[I| = N.

Proof. The proof is similar to the one of the previous lemma. Note that if K < I,
_2pp (4 ~ ~ 5 2P 55
=3l (G{f+€f§+€{§) < G sl ZZE g,
i 10 1 ) 3
—2rF K K M,K = K _27P. 3, _ 5
L S N s Z e? < = (g+21{:11) sy vz ).
i=4 <

22Recall that we cannot have K” = I” in the error term QS{ {(1
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Otherwise K* = ¥ and

2P [~ ~ ~ 2 ~ 2/P 2, .~
AT (@ L @ 1) S (T n)ige TR 22K ),

10 17
b —21° JK QMK a2 o oK
AN el 4 Y ey < G- sz )
i=4 j=14
It then remains to use Lemma [[3.5] and the bootstrap assumptions (@.J])-(@.3]). O

We now prove a similar result for the error terms containing a high order derivative of h'.
Lemma 13.11. Let K be a multi-index such that |K| < [I| —1 and KP < IP. Consider
multi-indices Q, M, J, Q, M and J satisfying

o |J|>N—4and|J|+ |K|<|I],
o |Q+|M| >N —4and |Q|+ |M| + |K| < 1],
o Q[+ M| +|J]| =N —4and |Q[+ M|+ |J[ + K[ <[I].

Assume that for all t € [0,T7,

12 12 12 112 12~ 2
B ‘*Bf:ﬂ +(SB{;§‘ +‘2lfﬂ +(2{{;§ +‘2l{§<( +‘2l§{;lM’K .
H = Z widadr,
q=1270 /2r (L4171 +7)22[v]? 3
Ly
2 2 2 2 ——— 12
Ol Il I I i B v I
H = Z YT wdadr,
3<i<s Y0 J8r (I+7+7)24| 3
4<5<11 Ly
14<p<17

are bounded by € if |[I| < N —1 and e(1 + )10 if [I| < N. Then,
t N R - . N N - 1
/ / AT (S + &P+ @+ P 4 @+ @R+ @) widaar,
0 ZT ) ’ ’ ) ) ) ’ g
5 011 17 4 - o )
SNNN / / An—31 (6{5( + &P rept e 4 @?1@”"’“) w§ dzdr
i=3 j=4p=1470 /X7 8
are bounded by eg(l —i—t)g if [ I| < N —1 and eg(l —i—t)%jL‘S if |[I] < N.

Proof. Recall the definition of the error terms (see Proposition [5.14] and Definition [516])

as well as AKX ALK and .71? (see Lemma [[37). The Cauchy-Schwarz inequality in (7, )
give that

2 3 13 t 1
2 ~ ~ ~ 1 ~ o~
Y38 /o /2 =317 <6ﬁ< +eEpt 4+ QE%IM’K> widedr S ‘7—[ AR

i=1 j=1q=12

1
2

Similarly, we have that

6 11 17 4 o .

_21P [ ~JK MK | o J K MK MIK\ &
ZZZ// 2t <61,z + 67 el el 4 el >widxdT
i=4 j=4 p=147/0 /X7 s

1
is bounded by "H - AK ‘ 2. It then remains to remark that we necessarily have |K| < 4 and
to apply Lemma [I3.71 O
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13.3.4. The assumptions of Lemmas[I3.HI3. 11 hold. The last part of the proof consists
in proving that we can apply the previous three lemmas.

Proposition 13.12. Let Q, M, J and K be multi-indices satisfying |Q| + | M| + |J| +

K| < N -5, |K| < |I| =1 and KP < IP. Consider also Z € Py. Then, for all
(1,2,v) € [0, T[xRS x RS,

2 (SIK |, &JK | §QJK | §Q,J K \/E|U|
(1+r+r)a<£BL1 + B ALK LA ) S f
J7K J7K JvK Q?‘LK QvaJvK \/E|U|

‘3173 +SBL4 +‘BL5 +SBL6 +2l1718 < T

Proof. Since |J|+ |M|+|Q| < N —5, one can apply Propositions [I0.1]and [[0.6]in order to
estimate pointwise ' and its derivatives. We then get, for all (7,z,v) € [0, T[xR3 x R,

. . £J hl
BT+ B < Vel <‘ AG +\V£%(h1)\> < €lv]

T 1l4+74+r\14+7+r ~ (14714 7)20
J(pl
SQIK | @K Q| [ 1£5(0Y)] I elv]
A +A7 < M‘Ez(h )‘ <1+7’+r +|vLz(Y] ) < 47422

T+ =
B ot < YL () gy wegon)) g VIRl

14T+ ~o (41420

Vel [T < VI =]

~ o (l4T+r)2d

JK
By's

IN

Q7J7K
%1,6

IN

£30N| [PL5D] £
£ ey | [vesny) < PV

N (4T H4r)2E

It then only remains to use (1 + |7 — 7"])% <(Q+7+ r)% and § < . O
Proposition 13.13. Let Q, M, J and K be multi-indices satisfying | M|+ |Q| + | K| <
N —5,|J|+|K|<N-5, |K|<|I| -1, K <I” and the following condition

e cither K¥ < IF

e or K¥ =TI and then J* > 1 and QT+MT > 1.
Consider also Z € Py. Then, if K¥ < I, we have for all (1,2,v) € [0, T[xR3 x R3,

11 oK 17 o(@-M.K

ok ek o R N U P
APE L QK | GIE | Li 1] < ‘
11 HAL 3L ; 2 ;1:4 2 T+7 147 —7]
Otherwise KT = IT and we havd®

Ve[v]

M, J K
AP < (1))

A

10

17
=~ =~ =~ €|v c€|w
(1+7+7)5 <m{;f+2lf;§+2l{;§<> +y AT+ Y AP < Vel Vel f’ :
i=4 =14 I+7 147 =7

Proof. Since |J|, |Q|, M| < N — 5 by assumption, we can estimate pointwise h! and
its derivatives through Propositions [0.1] and [0.6l We will also use several times that
205 < v < 55 and 1 + |7 — [ < 1+ 7+ r. Note first that using the inequality (1+ 7 +

r)%\wL]% < \v\%z%, which comes from Lemma B.7], and \wL]% < \v\%, we obtain

1 wr, |2 €lw €jw
Lk = el oy Vel oog Yol
zs 23 |v| A+7+r)s A4 |r—r))2 ~ 1+lT—7]

23Recall that we cannot have K¥ = I” for the error term foﬁ
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We consider now the first three terms. If KX < I, we have

TP = gl [VEL0Y)] Vel :
(1+74+7r)191+ |7 —7])2

—~ ~ E‘] - —
Ay +2Ary = |o \(‘ )l +|VLLn! \Uﬂvcg(hl)\) < Vel Vit =

1+7+7r (1+7+7)22"

)

which give the required bounds. If K¥ = I” then JT > 1 so that we can use the improved
decay estimates given by Proposition [[0.8 This leads to

250K Velwg| Velwi|
(1+t+r)32)7 < — 7 S 5 ,
(L+7+7)37(1+|r —r|)2 +r =]
()} (375 + 1) e S L
’ ’ (A+7+7r)5 20+t -7z L+7

We now treat the remaining terms, using again the pointwise decay estimates of Proposi-
tions [0 and 0.6 as well as the ones of Proposition [0.8 when J7 > 1. We have, using

the inequality (1 + |7 — ’I“|)§ < zg, which comes from Lemma [B7] and then 2ab < a? + b?,

Q[J’K—l—QlJ’K
1,6 . 1,9 _ V ”UH’U}L ‘EJ hl ‘_|_ T+T ‘VEZ hl)‘) \/E ”UH’U}L‘ .
z3 23 1+7+7r)91+ |7 —r|)s
ol )

Y 4T Hr)i Y Q)i+ —r])s

Otherwise we have J > 1 so that

o K vey/Toller] VAl el
e 2y T QA T QTP (AT )i —r])

and we have then obtained the expected bounds when K < I”. Similarly, one obtains

1+|7
e — Joli=rl o [ VAR
14 — ~
1+t+7) \/|v|((11++y+[‘2>25 if JT > 1,
(Ltr—r 3+
TE e Velltmrmmte=s
Q[If’ B ’U"ﬁz(h {LT ~ (4]r—rp2z T
Vellarppe 1T 21,
Ve | (L=
Q[J’K — |1 — r||wy, VEJ I < (I47+4r)
7= |r—rllwl [VLL(AY] S Vewil i T s
(I4r4r) =0 (14— rI)Q
(14|r—r|)?
€|V
WL = Jr = rlol VLSO 5§ VT

1
1+|7 .
\/E\v\i(pjw)gz% if JT>1,

(1+ 2+w
\/_|U|(1+f+,,7r|1+75

1
(14|
Vel s T 20

J,K
Ay = (T+7) Yol [VLL(hY) |, S
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and
Vel st
QlQMK - | EQ hl ‘ EM hl S (1+7+7)
e ezt ez o) s QT+ MT > 1,
Vel s
Q[Q’M’K — Ir—rllv EQ hl ‘ VEM hl S (14+7+7)
QUK — |7 —rllo] [£2nM)] VLY (1Y) (Hm_% R
Velwr|
AN (7 ) [£300)| (VY| 5 | T
Velw | if QT+MT > 1’

(14747120 (1+|7—7|)

= Vel it
AP = (r+nlol |£501)| [VEY (0] 5 (1br4r)
1,17 (7' )‘ ‘ Z( ) ‘ Z( )‘ ~ (1+T\Q§‘2726 lfQT—l—MTzl.

This leads to the required bounds since 2~ 3 SA+|r— r\)_% (see Lemma B.7]). O

It remains to prove that the hypotheses of Lemma [I3.11] hold.

Proposition 13.14. Let K be a multi-index such that |[K| < [I| — 1 and KP < I%.
Consider multi-indices Q, M, J, Q, M and J satisfying

o |J|>N—4and|J|+ |K|<|I],
o |Q+[M|>N —4 and |Q| + |M| +|K| < 1],
o Q[+ M| +|J| =N —4and |Q[ + M|+ |J[ + K[ < [I].

Then, for all t € [0, T, the integrals

s
(121:2// (1474 7r)22|v|?

Z // ‘% 118” w%dxdT
(1+7'+7“)z4|v|2 s

3<i<5
4<5<11 L
14<p<17

are bounded by € if |[I| < N —1 and e(1 + )10 if [I| < N.

Proof. Recall that we already dealt with the term associated to Qlf{g when we have

bounded J (see ([I3.8])). We also already treated the integral associated to é\lf’{( but
we will repeat the proof here. We will oftenly use that 1 + |u| < 1+ 7+ r as well as the
inequalities

1 1 wr| 1

13.9 — < ,
( ) 22~ 1+ |r—r)? [v]22 ~ (1+747r)?

which come Lemma Bl We start by the terms of degree 1 in k', i.e. the quadratic terms
and some of the terms arising from the Schwarzschild part. We obtain by using (I3.9)
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that
2 2 2 2 2 2
SIK ~IK ~IK JK JK JK
‘%1,1 ‘ + ‘le ‘ + ‘Qll,?; ‘%1,3 ‘ + ‘9[1,4 ‘ + ™7 - |E§(h1)|2
(147 +7)22|v|? (147 +7)24v|? ~ A+ T4r)31 A+ T =)
2 2 2 2
SIK IK JK JK
B ‘%1,4 ‘ + ‘9[1,7 + 127 - vLh (b))
(147 +7)22|v|? (147 +7)24v|? ~ (4T Hr)d
2 2
JK JK _
‘%1,5 + ™7 - {Vﬁé(hl)f

(I4+7+r)24v)2 ~ QA+7+7r)(1+ |7 —7r)?
Similarly, we have
2
J,K 2 2
J(pl J(pl
‘%75 L5 (D)7 < L5 (hWD) |7 .
(I+74+r)z24v)2 ~ Q+7+r)Q+|r—r)* ~ QA +74+7r)1"2(1 + |7 —r|)*
Finally, using the wave gauge condition (I0.5]), there holds, as 1+ |7 —r| <1+ 7+ 7

a7 k] NI S
(147 +7)22|v]? N Q+74+7r)24v? ~ QA+7+r)1+ |7 —1])? * Q1+7+7r)
ey vzl £z ([ |
(1+t+7r)T L) M+t+r)3=20+|r—r]) (A+t+r)3201+]|7—r|)3

We now study the remaining terms. Note that without loss of generality, we can assume
that |[M| < N —5. Since |Q| < N —5 or |[M| < N — 5, we have, using the pointwise decay
estimates of Proposition [0l and (I39),

2 2 2
5@>M, K MK I
M 5 s
(I+74+7r)22v)2  (14+71+7r)24v]2 ~ et (147473201 + |7 —7r])3
0l>

If |Q] < N —5and Q < N — 5, we use again Proposition [0.1] and (I3.9)) in order to get

B N R I 2t
(147 +7)22|v|? (147 +7)24v|?
<y v vep |
~ L= (1+74+7r)341 + |7 —7|)
and
adpen | LY ([

< Ve

A+7+r)24v)2 ~ Y A+7+r) 121+ |7 —r|)3
Otherwise we have |[M| < N — 5 and |J| < N — 5, so that we obtain

2

~ 2 2 2 2 =57 2
R I b IR B e B I A
(147 +7)22|v|? (1474 7r)z4v[?
2
1
Ve |Lp )

< .
~ I(%I (1+7+7r)3401 + |7 —r])3
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Combining all the previous estimates, we are then led to prove that for all |Ij| < N,

t
€
SBO :// mdﬂdeiE,
Efo hl{ 1
Io ._ ‘ LT Sdedr <
b // (T 7+n) B )t s~
2

{6, if‘[g‘<N,

Io 1 .

Io . _ |£ h)| 3 < € if [Io] < N,
2 - // L+ 7+ 7)1+ [u])? 2wrdedT S (1 £, i (1| = N,
N

e(1+ )0 if [I)) =N

N

Lo / / Vclemh? s €, if |Io] < N,
B A B+ )2 e(L4+ )0, if || = N
1 1 if |Io| < N
Ip . - Io/114\|2, 8 €, 1 0 5
4 A /ZT (1 +T+T)3745{V'CZ (h ){ w%d,l?d’T { 6(1 +t)1+6, if ’1'0’ = N.
When we will apply the Hardy inequality of Lemma B.11]in the upcoming computations,

we will not be able to exploit all the decay in w = 7 — r in the exterior region. Using first
the Hardy inequality and then the wave gauge condition (I0.3]), we have

VL (RY)
// VR0 er 148 g < 50 4 o0+ S P,

(1+7+4r)-20 e
[Jo|<|Io|

where,

e [ S

(I4+7+7)1-2 Yoyl

1+4 142y
2+1 S Wiy

Jop1y]2
ml 1+ Jul popiy2  LZ2ADTY 1y
Py, = / / (= VLR (Y] + T Ja)? | i dzdr.
Using ([Z2)), we have o < ¢ 1Ty < e. As moreover Pi0 < E?I)O and P +pl < ﬁg‘;, it

only remains to deal with the integrals Eéo and %5?4. Applying the Hardy type inequality
of Lemma BIT] and using the bootstrap assumption ([Q.5]), we get

J Sy, 2+2
T S VLRI piangugr < [P0, o
2,4 i (1+747r)3- (1 4+ + 1 7)3-48 7 ~ o (L4T)2 ~

If |[Iy] < N —1, we have using 1 + |u| < 14 7 4+ r and then Lemma B.12] combined with
the bootstrap assumption (Iﬂl) and v — 36 > 26,

and, as w

- / [ [VLpRY[* Wit / [ VEZIOF ™ |0 <
1+ 351+|u| 1+ 351+|| ~
For the case |Io| = N, use sup,cg, 1+|:+:| < 147 and then 35 < 2y as well as 1+£—20 > v

in order to obtain

t < rlo/l
wlo ‘Vﬁ (h )| ol T30
PBs < /(1+ 7)? / 414—74—7" Wy 1_gsdedr

N

26 ‘V[’IO hl %4_27 < 26 87,2427 1
(1+1) 1+T+r T+ T ’dxdTN(l—i-t) ENTTIRN(D).

Using the bootstrap assumption (@3 and that 46 < 1+ 26, we get féo < e(1+ ),
This concludes the proof. O
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13.3.5. Conclusion. According to Proposition 5.14, Lemmas [[3.8{T3.11] and Propositions
I3 12413.14], Proposition 3.4 holds.

14. L? ESTIMATES ON THE VELOCITY AVERAGES OF THE VLASOV FIELD

The purpose of this section is to prove that the assumptions of Propositions 12.1], 12.2],
2.4 and on the energy momentum tensor T'[f] of the Vlasov hold. More precisely, we
will prove L? estimates on quantities such as [ |ZT f|dv. If |[K| < N — 4, this will be done
using the pointwise decay estimate (9.I0). The main part of this section then consists
in deriving such estimates for |[K| > N — 3. For this, we follow an improvement of the
strategy used in [16] (see Subsection 4.5.7), which was used in [8] Section 7] in the context
of the Vlasov-Maxwell system. Contrary to the method of [I6], this improvement will
allow us to exploit all the null structure of the system. Let us first rewrite the commuted
equations of the Einstein-Vlasov system and then we will explain how we will proceed.
Let M and M, be the following ordered sets,

M = {I multi—index/N—5 < ’I’ < N} = {Ila---7I\MN,1|7---7I|MN|}7
M, = {K multi-index / [I| < N =5} = {Ky,..., Kjmy |}

Remark 14.1. We put the multi-indices of length N — 5 in these two sets for a technical
reason. Note that M contains all the multi-indices corresponding to the derivatives on
which we do not have any L? estimate yet.

We also consider two vector valued fields F' and W of respective length [M| and [M|
such that

F=F [Zfif] — 7Ly and W, = ZEeg.

We will see below that it would be convenient to denote the i*" component of F by
F {Ellf} Let us denote by V the module over the ring {1 /1 : [0, T[xR3 x R} — R}

generated by (9yu)o<u<s and (0y,)1<j<3. We now rewrite the Vlasov equations satisfied
by F and W.

Lemma 14.2. There exists two matriz-valued functions A : [0, T[xR? x RS — 90 (V)
and B : [O,T[XR?’ X R% — gﬁ|M\,\Moo|(V) such that

Tp(F)+A-F = B-W.

Moreover, if 1 < i < M|, A and B are such that Tp(F;) can be written as a linear

combination with polynomial coefficients in 2, 0 < & < 3, of the following terms,
LH(H)(w, dF[ZIff]) LH(H)(w, dWy),

Vi (LLH) (w,w) - 0, FIZ5 1), Vi (L5H ) (w,w) - 9, W,

VA(LLH) (w,w) - 250, FIZ5 f) VA(LZH ) (ww) % 00, Wi

ZM (Aw) a%(g ><dx“,dF[sz ), ZM1(Av) £ (97" (dat, dWy),
ZM(Av) v, (zgﬂ) (dzt w) - 8, F[Z5 f], ZM1 (Av) V; (ggﬂ) (da™, w) - Oy, Wi,

ZM1(Av) ZM2 (Av) V5 (L‘Z?H) M anFIZE ), 2T (A2 (Av) Y, (c?ar) "o, Wi,
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~ w ST
2 (80) VP (L3H ) (A2, w) - -2, F[Z" )
ZM1(Av) VA (ﬁ?H) (dz*, w) - %avq Wi,
0
ZM (A0) 2V (M) VP (£3H ) g, FIZL ),
Wo
2" (80) 27 (A0) VA (L5 H ) g, W,
wo
where, q € [1,3], (u,v) € [0,3], |Ki| < N —6, K,f <IP,
[T+ Kl < |5l M|+ [Mo| +[Q + [Ki| < LI, Kl < L] -1,
I+ < Ll [Mu+ [ Ma| + QI+ L] <Ll ] < [Li] =1
Moreover I, J, @ and M satisfy the following condition

(1) either I]P<Iip,
(2) or I]P = I and then JT > 1, QT + M{¥ > 1.

For the term V> (EéH) (w,w) - 1“0—3 aqu[Z\IJ fl, J and I; satisfy the improved condition
\J|+ L] <L) -1 and I <1f.
Remark 14.3. Notice that if |I;| = N — 5, then A =0 for all 1 < q < |M|.

Proof. One only has to apply the commutation formula of Proposition [5.10] to Z1i f and
to replace each derivatives of the Vlasov field 7K f, for |K| # N —5, by the corresponding
component of F' or W. If |K| = N — 5, we replace it by the corresponding component of
F for the following reason. In the terms listed on the Lemma, a derivative is applied to
the components Wj. Hence, if |[K;| < N — 6, we are able to rewrite Oy« Wy and 0, Wy, as
a combination of components of W, which will be important later. O

The goal is to obtain an L%-estimate on F. For this, let us split it in F := Fhom 4 pinh

where
Ty (Fhom) + A . Fhom = q, Fhom(Q,. ) = F(0,-,),
{ Ty(F™) + A-F"h =B . W, Finh(0,-,-) = 0.

and then prove L? estimates on the velocity average of FP™ and F™P To do it, we will
schematically establish that F"' = KW, with K a matrix such that E[KKW] do not
growth too fast, and then use the pointwise decay estimates on [ |W|dv given by ([@.I0)
to obtain the expected decay rate on || [ |Finh|dv\|L%. For || [, |Fh°m|dv||L%, we will make
crucial use of the Klainerman-Sobolev inequality of Proposition so that we will need
to commute the transport equation satisfied by F"™ and prove L'-bounds such as we did
in Section

It will be convenient to denote, as for F', the components Fihom and Fiinh of Fhom and
Finh a5 follows,

fpihom _ Fhom [Z\Ilf} , fpiinh _ Finh [/Z\Ilf] )

Remark 14.4. Contrary to [10], we kept, as in [§], the v derivatives in the statement of
Lemma[14.2 in order to take advantage of the good behavior of radial component of V., F.
If we had already transformed the v derivatives, we would have obtained terms such as
Z(t —1)0uF from (VoF) (see Lemma[34). We would then have to deal with factors
such as % during the treatment of the homogeneous part F'™ (apply three boost to T%l),
when we will have to commute at least three times Tg(Fhom) + A - Fhom =,

Howewver, this creates two new technical difficulties compared to the strategy of [16] and
we will circumvent it by following [8]. The first one concerns F'™ and will lead us to



MINKOWSKI STABILITY FOR THE MASSLESS EV-SYSTEM 103

consider a new hierarchy (see Subsection [I{.1]). The other one concerns certain source
terms of the transport equation satisfied by F™, which contain derivatives of F™ . Be-
cause of the presence of top order derivatives of h', we will not commute this equation and
these derivatives have to be rewritten as a combination of components F™ and controlled
terms, which will be derivatives of F™.

14.1. The homogeneous system. In order to obtain L, and then L?, estimates on
I |F inh|dy, we will have to commute at least three times the transport equation satisfied

by each component of F™. However, if for instance |I;| = N — 4, we need to control the
L' norm of ZE Fhom[Z1i f] with |K| = 4 and |I;| = N — 5, to bound HZIFhom[ZIif]HL; .
with |I| = 3. We then consider the following energy norm (recall that ¢ = %N +6),

(14.1) Epon = > 3 By [P |20

1<i<|M| 0<k<5
= XX ER[ETNZ (P [20])].
1<i<|M| [L;]|+[I|[<N+3

We have the following commutation formula.
Lemma 14.5. Leti € [1,|M]|] and K be a multi-index satisfying |I;|+ |I| < N+3. Then,
Ty(ZIFhom [ Z1i f]) can be written as a linear combination with polynomial coefficients in
lwu—f), 0 <& <3, of the following terms,

o Ly(H)(w,dZFFm(Z0 ),

o Vi(LLH)(w,w) -, ZXFhmZTi f],
(14.2) o VMNLLH)(w,w)- ﬂav ZK phom[Z1; ],

o ZM(Av)L(g *1)(de dzK phem (71 f)),

o ZM(A0) Vi(LEH ) (da w) - 0, 2K Fhm 20 g,

o ZM(A0)ZM(A0) Vi (LIH) "8, ZK Fhom (71 ),

o ZMi(Av)V? (EQH) (dz", w) - Z‘;—zavq ZK phom (715 £,

o 2 (A0)ZM(A0) VA (£EH) BNy, ZE phem 7L p),

wo
where, q € [1,3], (u,v) € [0,3]%, j € [1, [M]],
[J|<SN=5, [Mi|+[Ma|+|QI < N=5, |K|<|I], [L;| <Ll [K[+[L] < [Ll+ ]
Moreover K, J;, J, Q and M satisfy the following condition
(1) either KP—FIJP <IP+1P,
(2) OTKP—l—I]P:IP—FIZ-P and then JT > 1, QT + M{ > 1.
For the term (IZ2)), J and K satisfy the improved condition K + IJP <IP 4+ 1IF.
Proof. Let i € [1,M]|] and |I| < N + 3 — |I;|. The starting point is the relation
T, (2 F* (25 f]) = [Ty, 2] (FPm(27 1)) + 27 (T (F (27 1))

According to Proposition B0, the error terms arising from the commutator
{Tg,/Z\I] (Fhom[Z\Iif]) are

e such as those listed in the lemma, with I; = I;. Note that the conditions on |J| and
| My|+|M2|+|Q] follows from [J|+[ K|, [My|+|Ms|+|Q[+|K| < [I| < N+3—|L] <8
and N > 13.
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71 hom [ 71; ; P P
e Or such as Z'° <Tg(F omiz Zf])), with [Io| < |I| and I < I".

The analysis of the other source terms is similar to the one made in order to derive the
commutation formula of Proposition 510l In view of the source terms of T, (Fom[Z1i f]),

listed in LemmaIZ2} and according to Lemmas 5.2} 5.6 and 59}, Z/ (Tg(F hom 71 ¢ ])> and

Z1o < (Fhom[f h f])) can be written as a linear combination with polynomial coefficients

in Z— of the terms written in this lemma. The condition on |J| and |M;| + [Ms| + |Q]
follows in particular from

’KH“JH“I]" < ’IZ’—HK‘ < N+3, ’K‘—F‘Ml’—F’MQ‘-HQ’-F’Ij‘ < N+3, ’Ij’ > N-5,
so that 7], | M| + [Ma| + |Q| <8 < N — 5. 0

We are now able to prove the following result.

Corollary 14.6. Leti € [1,|M|] and I a multi-index satisfying |I;| +|I| < N + 3. Then,
Tg(ZIFh"m[ZIif]) can be bounded by a linear combination of terms of the form

Ve Vewil L\ griph I P, P _ 1P | P
<1+t+r 111t—r) 2 Z7F “m[Z“fH KD+ 1P <17 417 + 1,
Vel Velwil 7K oh I P, 1P _ P | fP
<1+t+r T4 |t—r] ZQF“mZ”fH Kf+ 10 <1”+1F,

Vel Velwe| 3|5 =1
<1+t+r+1+|t_7~| 22 ZKSFh“m[ZIJSfH, K{ +10 <17+ 17,

where for any 1 < q <3, j, € [1,3] and |Kq| + |1;,| < [I| 4 |L;| < N +3. In particular, in
view of the definition (IZ1)) of Ephom, this implies that

Eg,g [ngzzfg(lpﬂp ZKthom[ Ihf]] n ES,S [ ng(IPJrIiP)EKthom {2112 f” (1)

E% % |:Z§Z£——([P+IP)ZK3Fh0m [ZIBJC}}( ) < EFhom(t)-

Proof. Let us introduce a notation. Given two multi-indices I and K, we define the
multi-index K I such that ZKI — ZKZI holds. The following intermediary result can be
obtained from Lemma as we obtained Proposition [£.14] from Proposition B.10l Fix
i € [1,|M]|] and I such that |I;| 4+ |I| < N + 3. Then, Tg(ZIFhom[Zlif]) can be bounded
by a linear combination of the terms listed below, where Ze ]/I\”O and the multi-indices K,
J, M and @ will always satisfy

K<, IGl<Ipl K|+l <+ L <N+3, KP4l <1l
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and |J]|+|M|+|Q| < N —5, so that h! can be estimated pointwise. The most problematic
terms are

9, = Y ayflz [251]] KP4+ 1P <1 +1F
1<q¢<3

Q= Y Al |z prom [ﬂ'f”, KP 1P <17+ 17,
4<p<11

¢ =y Qt?fi‘l;f”f [25‘f”7 KP+17 <17+ 17,
14<n<17

9y = Y AL ZZK phom [ZIJfH JT > 1
1<q¢<3

Q= Y Ay [vZEEen (207 JT > 1,
4<p<10

6 X A fezep 2], ot
14<n<17

The other ones are

R = <%H ot ’BiIK{J + %iIKQIJ + QlfQIJlg(IJ + Q‘?Ijgl > ‘ZEKFhom {lef] )

KI, JKI; JKI; JKI; JKI, MJIKIN | <5 ~7
A= <%H o0t B3 T8 +Br 5+ %?Ii,G T+ Q[?Ii,IS J) ‘VZKFhom [Zl’f} ‘

Recall that %H 0 S Ve(l+t+r)~2 and %H ‘0 S Ve(l+t+r)” L. Apply then Propositions
[3I2MI3I3, as well as 2 < 1+ ¢+ for the frst inequality, in order to obtain

é@ﬁgﬁ{) < ( Vel Vel )

1+t4+r 14+t—r7|

77K phem [qu f} ‘ KP4+ 1P <17+ 17,

z
Ve|vl Velwg| 71, P, P P, P
Cot M < [Zn], KP4 1P <I1P4 17
Qr + & + N<1+t+r+1+’t_r‘ f +1I; < I+ L
s Velvl Velwr| ‘AAK hom [51; P, P P, P
< 77 Fom[Zn”, KP4 1P <1P4 1P
Q1N<1+t+r+1+]t—r\ ! M i

I\ |N
win| win

(Q+¢) < (1 ft’ﬂ —+ 1{7‘%’“)2% ‘VZKFhom [anf] ‘ . KP+Il <14 rf

It remains to notice that VZX (respectively 727K ) contains K (respectively at most
1+ K*) homogenous vector fields. O

As FPom(0,-,-) = F(0,-,-), it then follows from the previous corollary and the smallness
assumptions on f, h' and the mass M that there exists a constant Cr > 0 such that
EFhom(O) S CFE.

Proposition 14.7. There exists a constant Cr > 0 such that, if € is small enough,
Eprom(t) < Cpe(l + t)% for all t € [0,T[. Moreover, for any |I;| + |I| < N and for all

(t,x) € [0,T[xR3, we have
s
/ SA=2-3(I"+17) | 21 prhom [Z\Iif} ‘ (t,z,0)dv < e(l+1¢)2 _
R3 (A+t+r)2(1+t—r|)s
Proof. We use again the continuity method. There exists 0 < Ty < T such that E phom () <

Cre(1+ t)% for all ¢ € [0,Tp[. Let us improve this estimate, if € is small enough and for
CF choosen large enough. The proof follows closely Section According to the energy
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estimate of Proposition Bl the smallness of Eznom(0) and the bootstrap assumption on
E phom, we have

AR ZI(rom(ZI ) | (1) < Coet CE(1+0)F +C (30 + 20),

where Cj is a constant independant of Cp,

2 t ~ . 1
<e— —(IP+IZ~P)> / / / A=D1 (7)) (Zthom[Zfi f]‘de?dxdf,
3 0 Ju, Jr3 s

zLi :// / 21 P+If) |
: 2

Using |Ty(z2)] < \ijrli \l/grfLﬁ (see (I370)) and (B36]), we obtain

i Do
1+71

31711 .

<ZIFhom ZI )‘de?dxdT

o e )
0

Then, Definition (IZ1)) of Epnom and the bootstrap assumption on it lead to

S
2

E lOlI]
300 < \f/ F‘ dr+\/EFhom() < e2(1+1)5.

The integral Z*/i can be bounded similarly using Corollary [Z.6] instead of ([I3.7). We
then deduce from (I4.1]) and the last estimates that there exists a constant Cy independant
of C'r such that

E pnom () — Coe < €2 (1 +1)3,

which improves the bootstrap assumption if € is small enough and Cr choosen large
enough. This implies that Ty = T. The pointwise decay estimates can then be obtained
from the Klainerman-Sobolev inequality of Proposition B3] and the fact Epnom gives a
(=23 (IP+17) | 71 phom [211-]0} ’

control on the derivatives up to third order of z for any

[I| + |I;| < N.

14.2. The inhomogenous system. To derive an L? estimate on F™™", we cannot com-
mute the transport equation because B contains top order derivatives of h!. We then
need to rewrite the derivatives of F'™! kept in the matrix A in order to use the full null
structure of the system, in terms quantities that we can control. More precisely, we will
use the following result.

Lemma 14.8. Let i € [1,|M]|] such that |I;)] < N —1 and 0 < p < 3. Then,

By 0 [211' f} — [inh [awifi f} 4 Fhom [awifi f} — Oy Fhom [Zfi f} ,

Moreover,

e 2| < %Z\F“ 0024 ]|t [on 20 5) | o [244]]

5 [ 77l ) o e ]|
ZGIP’O

+ 1+t+r
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For the v derivatives, there holds

(s 74])” 3l a2
A=0

+ 3 [Fr[220 ]|+ [Prem 220 1) | + | 2R 27 ]
AS

ol (VoF ™ [Z04]) St -] 23: [F 0,27 f] |+ [Frm [0, 27 £] |+ |00 P [ 27|
A=0 L

N e ]
26@0

Proof. Recall that F = Fhom 1 finh and note that for any Z € Py and N—5 < || < N—1,

we have ZF[Zlif] = ZZ%i f = F|ZZ" f]. Consequently,

(14.3)  ZFmh [Zfi f} — pinh [2211' f} 4 frhom [ZZE' f] — Zptem [Zfi f} .

This directly implies the first identity of the lemma. For the second one, combine (I4.3))
with (@35). Finally, for the last two ones, combine ([Z3) with |v|d,, = Qo; — t0; — 20,
and [B34) or (3.33). O

In order to rewrite the transport equation satisfied by F'™  we will then need to consider
a bigger vector valued field than W. Moreover, in order to take advantage of the hierarchies
that we identified in the commuted Vlasov equation, we will work with a slightly different
quantity than Fmh,

Definition 14.9. Let F/™ be the vector valued field of length |M| defined by
széh — LE(N=I]) pinh [Z‘Iif] _
We define Y as a the vector valued field of length ly containing the following quantities

o All z%(NfKP)/Z\Kf satisfying |K| < N — 5. In other words, zg(Nlef)Wk for all
k€ [1,[Moul].

o L3I =I7) 1 phom [ijf] for all |I| + |I;| < N.
We are now ready to prove the following two results.

Lemma 14.10. There exists two matriz-valued functions A : [0, T[xR3 x R} — 9y (R),
B:[0,T[xR3 x R3 — M n| gy (R) such that
Ty (F"™) 4+ A.Fi" = B .Y,

Moreover, A and B are such that, if i € [1,|M]], TF(F;T) can be bounded by a linear
combination of terms of the form

(Ll ol

L+t+r  1+[t—r]) *7"
and, where |Q| + | M|+ |J| < |I;| (the multi-index K has no particular meaning here),

SK | &K | K | SIK | K | G K | QMK | 5QMK\ 2
<%1,0+%1,1 +B7, H2A7 A7y +As "‘Q{?u +Q[?,13 )ZS,YL
K JEK | pd K | ond K K | o K K M, JK
> > (‘BLOWL%I,:s +B7 By +BE A AR ) Y.
4<j<1114<q<17
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Proof. Fix i € [1,|M]|] and note that, since T,(F'"™) + A Finh = B. 1/,
T, (Fihy = Z3ON-I))-1p () pinh [211' f] — A9ZZ(N=IP) pinh [2% f] + BEAN-ID,
Since \z%(N_IiP)Finh[Zlif]\ = |Fn| < |FI™M), we obtain using ([3.7) that

S \/E|’U| + \/E|wL| |F;nh|
1+t+r 1+|7f—’l“|

inh
F z

23 W= () pinh [Z\Iif} ‘ < ‘Tg_(z)
z

(N=IF)

One can bound sz% Wy by applying directly Proposition 514 since, according to

Lemma [I4.2] BfWk is a combination of error terms arising from [T, Z ], We can then
obtain control it by a linear combination of the following error terms,

SK | SIK | SIK  SIK  SIK  SIK  SQMK  SQMK\ _2(N_IP) 5
<%I,O+%I,1 +B7, H2A7 ATy +2As "‘Ql?,m "‘Ql?,w >23( NZwl,
K JK J K J K JK J K K MIK\ _2(N—IF
Z (%I,OO+%I,3 +B7, +B75 +%?,6 +A7; +9[1Q,q +QlIQ,18 >Z3( R
1<5<11
14<q<17

where |Ky| < N —6, K < IF, |Q| + M| +J] < |I;| and Z € By. As |K,| < N —6, there
exist, for any 0 < X\ < 3, (p,sy) € [1,ly]? such that

Y, = 3WN-KT-NZZ7Kyy, = 5K g 7Kg,

SA
This implies, since K, (f < IZ-P ,
3
AN 2w <Al B ew, < 3,
A=0
and the term B - W can then be rewritten in order to be included in the product B - Y.
Let us now focus on Agz%(N_Iip)Finh {Zqu], which is fully described in Lemma

We can bound it, as we controlled the terms listed in Proposition 010 during the proof of
Proposition [(.14] but using Lemma [[4.§] instead of [3.31]), (332]) and (3.35]), by the terms

written below. The multi-indices I;, @, M and J will satisfy
IP <17, |QIHIMI+I+ILI < [E], sothat |Q+|M|+]J] < N—(N—5) <5 < N-5,

. 5 = . I
and we will have Z € Py, 0 < A < 3. Moreover, for convenience we define Qli’ {1 = 0 when

P = IZ-P. These terms are

J
Qrh = Z é\li’lg 3N ‘Finh [Z\Elff] , IJP <1 or JT>1,
1<¢<3
ﬁhom — Z é\li,{; . Z%(N_IZID) <‘Fhom [Z\ijf} ‘ + ‘Z\Fhom [Z\ij} D ’
1593
Qinh . Z QLJJJ- 2(N—1IP) | finh >, P P T
= M AW | p [OAZJf], P <1l o JT>1,
4<p<11
ginh . _ Z Ql%i,fj.zg(NfIf) Frinh [a)\gljf] : IJP < IiP or QT +J7 >1,
14<n<17
Qhom+ Q:hom — ( Z Qlﬁg_{_gl%i,fj)Zg(le) (‘Fhom |:8)\/Z\ij] ‘_}_‘a)\Fhom [/Z\I]f] )’
4<p<l11

14<n<17
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and
i (4 B7% + 144820 0L ) A0 o 770
ginh <%2~700 Ll )l +‘B%’I“r2‘2’,%"”“)2%(“[}3) ‘ jrhom [3@1]- f] ‘

Srhom e AIJ AJvlj AJvlj AQ?‘LIJ AQv‘LI]
9{ T <%I¢,0 + %Ii,l + %Ii,Q +Q[Ii,12 + Ql[¢,13

o« 22 (N=IP) (‘Fhom [ngjf} ‘ + ‘ZFhom [lef]

).

0 ([, 23]+ e[ 2]

hom ., IJ' J,Ij J,I] Jylj Q,J,Ij Q7M7J7lj
9{ T <%I¢,00+%1i,3 +%I¢,4 +%I¢,5 + %Iiﬁ + Q[Ii,IS

Since |I;] < |I;] — 1, there exists, for any 0 < A < 3, (p1,p2,qr1,qr2) € [1,ly]* such that

Y, = Z%(N—If—l)Fhom [/Z\Z\ij} , Y, = Z%(N—I]P—l)’Z\Fhom [’Z\I]f] ,
Y;J,\ 1 z%(Nilf)Fhom [[“))\Z\ij] ) YqA 5 — Zg(N*IJP)aAFhom [Z\ij} .

As I}3 < IP, we obtain that Qbem 4 g3hom can be bounded by
AK | K | RIK | §JK | 5K | §IK | QMK | §QMKY 2
(%I,0+%1,1 +By HAT ATy +2A, +Ql?,12 +2l?,13 >Z3(’Yp1\ + Y, )
and Qhom + Q:hom + %hom by

JK JK JK JK M, JK
SO X (Blarmi B ul A A Z L) (] + V).

sn
0<A<3 3<n<5 4<;<11
14<q<17

This concludes the construction of the matrix B. In order to deal with the remaining
terms, note first that since |I;| < |I;| — 1, there exists k,ky € [1, |[M]] such that

F;n]? _ L3(N—I-1) pinh [221jf] ’ F;n]?/\ _ L 3(N—I]) prinh [akgljf} .
Consequently, we have
(14.4)
1P <1, 30 (720 g 4 o, ]) < F + =H
(14.5)
it 1 =1f, A ([ 220 f| e [onZ201]|) < () FSR + | FE .

Recall that ‘%20 < Ve(l+t+7)"2 and %2 w0 S Vel +t+r)~! Using that IJP <Ir
and Proposition [3.12] we then get

\/a”‘ \/E”U)L‘ in in
( n e ¥ e

S/}\{inh+%inh< int
— FADN
l+t4+r 14)t—r 0t

~

If I]P < IP, we obtain from Proposition [3.13] and (IZ4) that

€|V e|w . .

T+t+r  1+[t—r] v

(146) ﬁinh+ﬂinh+¢inh <

~

Finally, if T ]P = I, then we have J7 > 1 in the terms Qinh and 9ink (recall that in that
case Qli’lfl =0) as well as JT+Q7 > 1 in the term €™, Proposition [3I3 and (IZH) then
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also yield to the estimate (I4.6). Since |I;| = |Ix,| < |I;], this concludes the construction
of the matrix A and then the proof. O

Lemma 14.11. There exists a matriz valued field D : [0, T[xR3 x RS — 9y, (R) such
that T,(Y)=D-Y and

. Vel Velwg|
1.1 T,(Y:)| < Y]|.
viemnl ol s (P T v

Proof. Let i € [l,ly] and recall that either Y; = z%(N_KP)ZKf or Y; =
ZAIN-IP=I7) ZIphom [ 71 ] where |I| + |T;| < N. Using ([3), we obtain

SN-KP) |7 (7K

€|lv €|w

o 5 (A g Y Yy 8 e
T+t+r  1+[t—1] 25 DTy (2 From (21 ).

Then, z%(N—IP—If)|Tg (ZIFhom[Zlifm can be bounded by applying Corollary For
z%(N*KP){Tg(/Z\Kf) , g(/Z\Kf) can be bounded by

a linear combination of terms of the form

Vel Velwg| P _ P
I KPP <KP+1
L+t+r  1+t—r = ’
velol | _Velwi 2K2f KP < KP
1+t+r 1+4+|t—7] ’ 2 =00
Vel Velwg| 3| oK P P
2 | ZKs K¥ < KP.
<1+t—|—r+1+]t—r! : uE 3

This can be obtained from Proposition [(5.14] exactly as we obtained Corollary I4.6] from
Lemma [45since Ty (ZX f) only contains derivatives of h' of order at most |K| < N —5.
In other word, we combine Proposition [5.14] with Propositions [3.12] and I3.13] O

Consider now K satisfying Ty(K) + A- K + K -D = B and K(0,-,-) = 0. Hence,
K.Y = F"! since they both initially vanish and T,(KY)+ AKY = BY. Recall that the
Vlasov field and h' have a bad behavior at top order. In order to derive better estimates
on F Zmzh for |I;| < N, we define the following subset of M,

My 1 = {IeM/|I|<N -1}

and we assume for simplicity that the ordering on M is such that My_1 = {I1,... Iny_, }-
The goal now is to control the energies

My-1] Iy Iy M| Iy ly
N-1 . 11 ) 11
Eth = E E E Es’s i Y, th : E E g Es's Yyl .
i=0 j=0q=0 i=0 j7=0 q=0

We will then be naturally led to use that
(14.7) T (|Kg'|2yq> — |KI2DLY, -2 (Zﬁ’Kg + K[Eﬁ) KlY, + 2B KlY,.
Remark 14.12. Lemma [14.10 gives us the following z'nformations
o Ifi € [1,[Myn_1|], then A = 0 for all p > Mn—1], d.e. for all [I| =
Consequently, in that case, the only components K appearing in the term ApK]
satisfy 1 < s < [My_1|.
o Ifi e [1,|Mpy_1|], then B! contains only derivatives of h* up to order |I;| < N —1.

Proposition 14.13. If € is small enough, we have

vtelo,T[, EN.'®) £ 1+ and  EN..() < e(1+1t)F30,
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Proof. Let Ty € [0,T] the largest time such that Egmhl( ) S e(1+ t)2 and BN, (1) <

e(1+ t)H%‘S for all ¢t € [0,Tp[. By continuity, Tp > 0. The remaining of the proof consists
in improving this bootstrap assumption, which would imply the result. For convenience,
we will sometime denote M by My. Fix n € {N —1, N} and consider ¢ € [1,|M,]|] and
(4,9) € [1,ly]?. According to the energy estimate of Proposition Bl K(0,-,-) = 0 and

@47, we have

11
g 8 K] tEnin\ T
ES3[|KI 2V, ](0) < \// ‘ ]( Ve ity Iy < \ﬁ/ %i( V141
0 T ’

where
t
o [ L]
0 Jx, JR3
¢
= [ )]
0 Ju, JR3

Using Lemmas [4.TOHIZ.TT] and Remark (for the case n = N — 1), we obtain

S _ . i . 1
K PDyY, —2 (47K + K; D)) Kqu‘ dvw? dadr,
8

i 1
BzK@]K}‘ dvw? dadr.
8

M| M|
Lo < |Z| // / Vel VL) (P 4|7 P K Y o dadr
A’DNle R\l +t+7 1+|t—r| ’ ! P 8

tEn
SW/ Einn (7) d7+fEth()

The bootstrap assumptions on Egmhl and EY, inh

t En S(14+1)3, ifn=N-1
I——+ / th T SJ € s = s
Ap+ Ve 1—|—T e2(141)%2% ifn=N.

then gives us

We now focus on I5. Recall from Lemma[I3.IT]the definition of H and H and from Lemma

410 the form of B?. By the Cauchy-Schwarz inequality in (t,z), Iz can be bounded by
the following terms?}

t ~ ) 1
IO = // / (Z%%E,O_F%f,()) ‘Kgn‘deid$d7,
0 /%, JR3 8
. 2
’H// 1+7+7) / z| K| Y [|v]dv
0 /%, R3

2
13 )
I H// (1+T+r)/ 2|KI||Y||o|dv
0 - R3

v

=

=i )
li

00|+ o=

w

dzdr| ,

=

1
wddxdr| ,
8

where the multi-indices J, M, Q, J, M and @, which are hidden in H and H, satisfy
Tl <Ll <n, QI+ M <n,  [Q+[M]+|J] <n.
Now, recall from Proposition [3.14] that

~ € ifn=N-1
< ) bl
HAH S { e(1+t)*° ifn=N.

To deal with the second factor of I and /I\, we follow the computations made during the
proof of Lemma [[37 Recall first that for any & € [1,1,], there exists [K| < N —5 or

2475 in the statement of Lemma [[ZI0] the multi-index K has no meaning here.
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|| + |I;| < N such that Y}, = KR ZKf or Yy = z%(N_IP_If)EIFhom[EIff]. Hence,
using (@.I0) and Proposition [47] we have

[
L
(14.8) V¥ (r,z) € [0, T[xR3, / |24V (7, 2,v)d < (1 +7) )
R3 I4+7+7r)20+|7—7r])8

Using the Cauchy-Schwarz inequality in v, we then obtain, as i < |M,,|,

2
// 1+T+7°/ Q{K]HYHv\dv
. 1
< // 1+T+r/ 4|Y||v|dv/ | K7 [*|Y]|v]dvws dadr
- 8
S/ //‘KJ‘ ]Y!\v\de?dxdT
1—|—7')1

< tEE?"mh(T < € (1+t) 5 lf’I’L:N—l,
~ -~ 204+ ifn=N
0 (1+7) e“(1+1) , ifn=N.

As z < 22, we obtain that I+ 1T < e%(l—i—t)% ifn=N-1andI+1< e%(1+t)1+%5

if n = N. Finally, since 1+ |t — 7| < z (see Lemma [B7) and %go SVe(l+t+7)72,
%2 00 SVeE(l+t+r)t, we get by the Cauchy-Schwarz inequality in z,

1
t 2
Ioﬁ/ /
0 5,

Since

/Jroo E(1+|7—2_ T|)%T2d7ﬂ 4 S 5/+Oo ar 7 5 €,
r=0 (L+7+r)(1+|r=7|) r=0 (14 |7 —r|)2

2
/ /z2|Kg'\|Y||v|dv
2, [JR3

1 . 1
wider < / / Z4|Y||v|dv/ ‘Kg|2|Y||v|de§dx,
i 8 Zr JRY R} 8

we obtain from the pointwise decay estimate on [, z*|Y||v|dv and the bootstrap assump-
tion on K%, that

w? dzdr

M\Oﬂ ~— I\D\Oq

1
2 2

1
widxe| dr.
g

/+oo e(l1+ |T—T|)%T2dr
r=0 (L+7+7r)?(1+ |7 =)

/ 2|KI||Y ||l
RS

t 1 3 [ . . o
I < \/_ ‘Eth )PdT < e;(l—l—t)f ) ?fn—N 1,
o (1+7) i ez(1+¢)'™°, if n=N.
We then deduce that Iz < %(1 + t)2 if i < |M,| and Iz < %(1 + t)le 9 otherwise, so

that

(1+1)3, ifn=N-1,
(1+16)72° ifn=N.

Nlw Nlw

M Y Y 11
zzz b

>3 |0 2 {j

If € is small enough, this improves the bootstrap assumptions on EY,

I and EX.

th Finh* |:|

14.3. The L? estimates. We start by estimating the L? norm of [g, z\ZKf\dv.

Lemma 14.14. For any |I| < N, there holds, for all t € [0,T],

2

A 1 2 —146 <N _
/ z|ZI(f)||v|dv widr < { e“(1+1) . if|[I] < N -1,
R3 8
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Proof. Assume first that |I| < N — 4. Then, using the Cauchy-Schwarz inequality in v
and then the pointwise decay estimate ([@.I0) as well as the bootstrap assumption ([@.2]),
we get

K<

(1+t+7) / 21Z1(f)|jvldo
R

~ 1
/ / 121 ()] oldvw? dz
LOO(Zt) Et ]R,LS) 8
14 ¢

En-1lf1(t) S

< —_—.
~ Loo(S) (14¢)1=0

e(l1+t+ 7“)_“'%

Otherwise |I| > N — 3 and there exists i € M such that
2() = B = F [255] = prom [ 28] 4 1o [ 2]

We deduce that I < Khom 4 inh | where, using Proposition [4.7,

[ | 2] ]|
R3

1
wide
g

jchom ::/(1+t+r)
P

~ ~ 1
< (1+t+7“)/ P ‘Fhom {Zlif”\v\dv / / fhom [Zlif”\v\defdx
R,LS) LOO(Et) p R,LS) 8
< lle(+t+r)71Hs Ephom (1) < e
2 om -
~ I g L I (O )
and
N 1
fchom .= / (14+t+r) / z | Finh {Zlif} lv|dv| widz.
b R3 B

Recall Definition and that K -Y = Fi"M, Hence,

(74

rou ] = [

Using first the Cauchy-Schwarz inequality in v and then the pointwise decay estimates
([IZ£R]), I; = I as well as Proposition [4.I3] we obtain

ol
Lo (34) Xt JRS

1 oy < [ EQF)T I <N~ 1,
Finh(t) ~ 28 : —
Loo(3) e(1+1¢)%, if [I| = N.

2 1
jchom < V|2 |v]dow$ da
8

(1—}—25—}—7“)/ 22|Y||v|dv
R}

A

e(1+t+ T)ng

We are now able to prove the following result.

Proposition 14.15. The energy momentum tensor T[f] of the particle density satisfies
the following estimates. For all t € [0, T[ and for any |I| < N,

t 2 Py .
I 2 142 e(1+¢)°,  if[I|<N-1,
[ [ aerenicainf oy mae < { G670 TN

t
// (1+T+7")‘EIZ(T[f])‘?ruw;dedT < €.
0 Jx,
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Proof. According to Proposition [6.3 and Lemma B7 giving |wp| < for any T € T

1+t+r

_lvlz
and 1 < T Ve have

(14.9) L@ s >

IJI+IKI<[1]

1 |£L(nY)| ~
(14.10) LTIy S D0 <1+t+r+ 1+Z|t_r|> /R%z‘ZKf‘]v]dv.

[T+ KI<|1]
We are then led to bound the following three integrals, where |J| 4+ |K| < |I],

2
1+7+r S
= Z ‘ d
Jh // (R /R%z‘ f||v]dv
1+7+7r SK
= Z ‘
T2 // 1+T—|—T ‘ f|lvldv

/ /T I+7+7) 1{i‘]|7_hil|)

Applying Lemma [[414] we have

// 1—|—T+r/ ‘ZKf‘|v|dv2

L+ [£5(h)]

EK
T3 t—r] e 12T

[vldo,

142
w0+ Tdadr,

142
wy P dadr,

2
2
w0+ Tdzdr.

J3 :

|v|dv

7|7

(1 +1) if |[K|< N
8 Y 9
widzdr S { 62(1—|—t)1+26, if |K| = N

142y 1
o Wy 1 8 o 3 1
and, using also TP S e B0 w% as well as 2y + 24 < 3

t 1 —~ 2 1 ¢ 62d’7'
I < / 7/ (14-7+7) / z ‘ZKf‘ lv|dv| widadr < / ——— S €.
0 (1+7)s7% Jy, R3 8 0 (L47)s™ 72

For J3, assume first that |J| < N — 3. Using the pointwise decay estimates of Proposition
[0 and then 2y < £ as well as Lemma [[Z14] we obtain

t e(l+|7—r T2y
j3§// (I+7+7r) ( | ) / z
0 Jo, R3

(1+74+7)2720(1 + |7 —7r])2

2
t €2 L toSdr

< S 1 Sdzdr < < &

~/0<1+T>2—26/zf SN / “ xTN/o(lJFT)Q_A“S ~ e

Otherwise |J| > N — 2 and we necessarily have |K| < N —4. Then, using successively the
pointwise decay estimates (@.I0]), the Hardy inequality of Lemma B.IT] and the bootstrap
assumption (@.5]), we obtain

£J hl 2
cef ] 2400 P,
- 1—1—7’—}-7"35(1—1—\7' r|)¥ta
£ (12 242y
g/ — 5/ ’ ( )‘ W’Y zd.%'dT
0 (1+7’) g 1+74+7r(14+|7—7])

t 2 J(11\[2 t 2 &7,24+2711,1
S / € / |V‘CZ(h )| w2+2’ydxd7_ 5 / € EN [h ](T)dT S 63.
o A+7)0 Jg 1+7+r 7 0 (1+7)%9

The proof follows from (IZ49])-([I4.I0) and the estimates obtained on J1, J> and J3. O

2

1
widzxdr,
8

7K ¢

|v|dv

Z5 | jv|dv
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