Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

MPG-Autoren
/persons/resource/persons245880

Takahashi,  Koh
Computational Relativistic Astrophysics, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1912.02234.pdf
(Preprint), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ono, M., Nagataki, S., Ferrand, G., Takahashi, K., Umeda, H., Yoshida, T., et al. (2020). Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A. Astrophysical Journal, 888(2): 111. doi:10.3847/1538-4357/ab5dba.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-D847-8
Zusammenfassung
We perform three-dimensional hydrodynamic simulations of aspherical
core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts
of four progenitor (pre-supernova) models and parameterized aspherical
explosions are investigated. The four pre-supernova models include a blue
supergiant (BSG) model based on a slow merger scenario developed recently for
the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model
based on a single star evolution and two red supergiant (RSG) models. Among the
investigated explosion (simulation) models, a model with the binary merger
progenitor model and with an asymmetric bipolar-like explosion, which invokes a
jetlike explosion, best reproduces constraints on the mass of high velocity
$^{56}$Ni, as inferred from the observed [Fe II] line profiles. The advantage
of the binary merger progenitor model for the matter mixing is the flat and
less extended $\rho \,r^3$ profile of the C+O core and the helium layer, which
may be characterized by the small helium core mass. From the best explosion
model, the direction of the bipolar explosion axis (the strongest explosion
direction), the neutron star (NS) kick velocity, and its direction are
predicted. Other related implications and future prospects are also given.