Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Efficient computation of the second-Born self-energy using tensor-contraction operations

MPG-Autoren

Tuovinen,  R.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons194590

Covito,  F.
International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Sentef,  M. A.
Theoretical Description of Pump-Probe Spectroscopies in Solids, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1.5121820.pdf
(Verlagsversion), 2MB

JCP19-AR-02913.pdf
(Postprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tuovinen, R., Covito, F., & Sentef, M. A. (2019). Efficient computation of the second-Born self-energy using tensor-contraction operations. The Journal of Chemical Physics, 151(17): 174110. doi:10.1063/1.5121820.


Zitierlink: https://hdl.handle.net/21.11116/0000-0005-D8E2-8
Zusammenfassung
In the nonequilibrium Green’s function approach, the approximation of the correlation self-energy at the second-Born level is of particular interest, since it allows for a maximal speed-up in computational scaling when used together with the generalized Kadanoff-Baym ansatz for the Green’s function. The present day numerical time-propagation algorithms for the Green’s function are able to tackle first principles simulations of atoms and molecules, but they are limited to relatively small systems due to unfavorable scaling of self-energy diagrams with respect to the basis size. We propose an efficient computation of the self-energy diagrams by using tensor-contraction operations to transform the internal summations into functions of external low-level linear algebra libraries. We discuss the achieved computational speed-up in transient electron dynamics in selected molecular systems.