
J
H
E
P
0
2
(
2
0
2
0
)
1
7
3

Published for SISSA by Springer

Received: October 17, 2019

Accepted: February 1, 2020

Published: February 27, 2020

Thermal representations in group field theory:

squeezed vacua and quantum gravity condensates

Mehdi Assanioussia and Isha Kotechab,c

aII. Institute for Theoretical Physics, University of Hamburg,

Luruper Chaussee 149, Hamburg 22761, Germany
bMax Planck Institute for Gravitational Physics (Albert Einstein Institute),

Am Mühlenberg 1, Potsdam-Golm 14476, Germany
cInstitut für Physik, Humboldt-Universität zu Berlin,

Newtonstraße 15, Berlin 12489, Germany

E-mail: mehdi.assanioussi@desy.de, isha.kotecha@aei.mpg.de

Abstract: We apply the formalism of thermofield dynamics to group field theory quan-

tum gravity and construct thermal representations associated with generalised equilibrium

Gibbs states using Bogoliubov transformations. The newly constructed class of thermal

vacua are entangled, two-mode squeezed, thermofield double states. The corresponding

finite temperature representations are inequivalent to the standard zero temperature one

based on a degenerate vacuum. An interesting class of states, coherent thermal states, are

defined and understood as thermal quantum gravity condensates.

Keywords: Models of Quantum Gravity, Nonperturbative Effects, Thermal Field Theory

ArXiv ePrint: 1910.06889

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP02(2020)173

mailto:mehdi.assanioussi@desy.de
mailto:isha.kotecha@aei.mpg.de
https://arxiv.org/abs/1910.06889
https://doi.org/10.1007/JHEP02(2020)173


J
H
E
P
0
2
(
2
0
2
0
)
1
7
3

Contents

1 Introduction 1

2 Thermofield dynamics 4

3 Bosonic group field theory 7

4 Degenerate vacuum and zero temperature phase 8

5 Generalised Gibbs states 11

6 Thermal squeezed vacuum and finite temperature phase 13

7 Coherent thermal states 15

8 Summary and outlook 16

1 Introduction

An increasing number of studies are hinting toward intimate links between entanglement

and geometry. Spacetime is thought to be highly entangled, with quantum correlations

in the underlying quantum gravitational system being crucial. Particularly in discrete

quantum gravity approaches, a geometric phase of the universe is expected to emerge from

a quantum, pre-geometric one via a phase transition. This geometric phase must then

also be highly entangled. Squeezing techniques have been used often in such contexts to

define suitably entangled non-perturbative vacua. Also, the emergent phase must encode

a sufficient notion of semi-classicality. This notion is commonly introduced via coherent

states. Moreover, fluctuations in relevant observables are expected to be important in

the physics of a quantum spacetime and thus must be included in the description of the

system. In this work we show how to construct quantum gravitational phases in group

field theory (for now, kinematically) using thermofield dynamics, which display all these

features, namely entanglement, coherence and statistical fluctuations in given observables.

Such phases can be of significant relevance in the study of semi-classical and effective

continuum descriptions of quantum spacetime, especially in the context of cosmology and

black holes. For instance, in the context of the present work, a semi-classical approximation

resides in considering a coherent state, with its characteristic single-particle wavefunction

being the relevant dynamical collective variable, while a continuum approximation resides

in considering a non-perturbative (inequivalent) condensate phase of the quantum gravity

system, with an infinite number of underlying quanta. Having said that, in general, identi-

fying suitable semi-classical and continuum limits in discrete quantum gravity is a known

open issue, and we do not address it directly in this work.
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Group field theories (GFT) [1–3] are statistical field theories of combinatorial and

algebraic quanta of geometry [4–6], formally defined by a partition function

ZGFT =

∫
[Dϕκ] e−S({ϕκ}) .

They are strictly related to various other approaches like loop quantum gravity [7–10],

spin foams [11, 12], causal dynamical triangulations [13], tensor models [14] and lattice

quantum gravity [15]. Like in usual field theories, the kinematics is specified by a choice of

the fields ϕκ, each defined in general over a domain space of direct products of Lie groups,

and taking values in some target vector space. The dynamics is specified by propagators

and interaction vertices encoded in a function S, which can be understood as a Landau-

Ginzburg free energy function in the present statistical context [6]; or as a Euclidean action

from the point of view of standard quantum field theories [1–3, 16]. However unlike in usual

field theories, S is non-local in general with respect to the base manifold. This non-locality

is essential and encodes the non-trivial combinatorial nature of the fundamental degrees

of freedom and their dynamics. Moreover, the base manifold is not spacetime, but carries

algebraic information associated with discrete geometric and matter degrees of freedom.

Such a complete absence of any continuum spacetime structures a priori is a manifestation

of background independence in group field theory, like in various other non-perturbative

approaches to quantum gravity.

The partition function ZGFT perturbatively generates Feynman diagrams that are

labelled 2-complexes (dual to labelled stranded diagrams), with boundary states given

by labelled graphs [1–3, 16]. For the choice of models closer to loop quantum gravity

and spin foam setups, the boundary states are abstract spin networks (but organised in

a second quantised Hilbert space, that of a field theory [4]) and bulk processes are spin

foams, both of which in turn are dual to polyhedral complexes when restricting to loopless

combinatorics [17, 18]. Thus, a group field theory generates discrete quantum spacetimes

made of fundamental polyhedral quanta.1

We can describe the same structures from a many-body perspective [19], and treat as

more fundamental an interacting system of many such quanta. This viewpoint enables us

to import formal techniques from standard many-body physics for macroscopic systems, by

treating a quantum polyhedron or an open spin network node as a single atom or particle

of interest [5, 6, 20, 21]. This further leads to a modelling of an extended region of discrete

quantum space (a spin network) as a multi-particle state with a large number of entangled

quanta (for instance, via gluing conditions) [22–24]; and a region of dynamical quantum

spacetime (a spin foam) as an interaction process. This is the perspective that we employ

here to successfully use techniques from thermofield dynamics, even when working with

a radically different kind of system, one that is background independent, and devoid of

any standard notion of space, time and other associated geometric structures and standard

matter couplings.

1A quantised polyhedron with d faces is dual to a gauge-invariant open d-valent spin network node [17].

The latter is in fact a special case (namely, a d-patch [18]) of richer combinatorial boundary structures which

can be treated analogously in our present setup, but in that case without any related discrete geometric

understanding of the same. For more details, we refer to discussions in [6, 18] and references therein.
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Thermofield dynamics (TFD) is an operator framework for finite temperature quantum

field theory [25–29]. One of its main advantages lies in the fact that its formulation parallels

that of zero temperature quantum field theory, thus powerful tools of the temperature-

independent setup can be translated to the thermal case, including perturbative Feynman

diagrammatic techniques, symmetry breaking analyses, and for what concerns us here,

Fock space techniques. TFD has been applied in various fields such as superconductivity,

quantum optics, and string theory.

The core idea of the TFD formalism is to represent statistical ensemble averages as

temperature-dependent vacuum expectation values. That is, given a system described by

a Hilbert space h and an algebra of observables Ah on h, one looks for a vector state |Ωρ〉
(thermal vacuum) in a Hilbert space H, corresponding to a density operator ρ on h, such

that the following condition holds for all observables A of the system,

Trh(ρAh) = 〈Ωρ|AH |Ωρ〉H (1.1)

where the subscript h or H denotes a suitable representation of a classical observable

in the respective Hilbert spaces. In this work, we are mainly concerned with statistical

equilibrium, thus with density operators of the Gibbs form e−βOh . Note that we will not

make use of hats to denote operators in order to declutter the overall notation in the

following.

A vector state satisfying equation (1.1) can only be defined in an extended Hilbert

space, by adding the so-called tilde degrees of freedom to the original ones [25]. Impor-

tantly, this doubling, or in general an enlargement of the space of the relevant degrees of

freedom, is a characteristic feature of finite temperature description of physical systems.

This was also discovered in algebraic quantum field theory for equilibrium statistical me-

chanics [30]. Moreover, equation (1.1) is strongly reminiscent of the construction of a GNS

representation [31] induced by an algebraic statistical state, with the vector state |Ωρ〉 be-

ing the cyclic vacuum of a new thermal representation. These intuitions have in fact led to

tangible relations between the two formalisms, with the tilde degrees of freedom of TFD

being understood as those of the conjugate representation of Tomita-Takesaki theory in

the algebraic framework [26, 29, 32–34].

These structures are also encountered commonly in quantum information theory [35],

which in turn is utilised heavily in various areas of modern theoretical physics, like holog-

raphy. Specifically, constructing a state |Ωρ〉 is nothing but a purification of ρ. A prime

example of a vector state is the thermofield double state, which is the purification of a

Gibbs density operator. These states are used extensively in studies probing connections

between geometry, entanglement, and more recently, complexity [36, 37]. For instance in

AdS/CFT, this state is important because a bulk with an eternal AdS black hole is dual

to a thermofield double in the boundary quantum theory [38].

Our goal is to construct entangled, thermofield double states |Ωρ〉 that encode statisti-

cal fluctuations2 with respect to observables of interest, along with their associated inequiv-

2The vector state |Ωρ〉 essentially encodes the density operator ρ, as reflected by equation (1.1). Thus,

like in standard treatments of systems in state ρ, statistical fluctuations in state |Ωρ〉 can be investigated

for instance in terms of variances of relevant observables of the system.
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alent representations; and to subsequently introduce a family of coherent configurations of

the quanta of geometry built upon the thermal vacuum. The use of such thermal quantum

gravity condensates, say with respect to a spatial volume observable in cosmology [39–43],

can be understood as implementing both semi-classical and continuum approximations.

This is in the precise sense of working with a non-perturbative coherent condensate phase.

The novel feature of the coherent thermal phase though is that of statistical fluctuations

associated with the thermal vacuum, in addition to quantum fluctuations inherent in any

quantum state. Statistical fluctuations in general are inevitable in macroscopic systems

and could be non-trivial in both the semi-classical and continuum limits. This is unlike

purely quantum fluctuations which are expected to be negligible in a semi-classical limit,

but of significance especially at early times [44].

The article is organised as follows. We begin with an overview of the relevant essentials

of the formalism of thermofield dynamics in section 2, and use them in the rest of the paper

to present a systematic extension of group field theories to construct finite temperature

phases associated with generalised equilibrium Gibbs states. In section 3 we give a brief

overview of the original setup of a bosonic group field theory coupled to a scalar matter field,

which provides the basis for a zero temperature phase as described in section 4. In section 5,

we briefly recall the subtleties surrounding the foundational issue of defining statistical

equilibrium in background independent systems to consider generalised Gibbs states, while

focusing on extensive observables as generators. We construct their corresponding thermal

vacua (thermofield double states), along with the inequivalent quantum gravity phases that

they generate in section 6. In section 7 we introduce the class of coherent thermal states

and briefly overview their properties. We conclude with an outlook on future prospects

for further applications in group field theory and other quantum gravity approaches in

section 8.

2 Thermofield dynamics

Below we review the basics of the TFD formalism [25–29] using a simple example of an

oscillator. We will extend it to a field theory setup directly for GFTs in the subsequent

sections.

Consider a single bosonic oscillator, described by ladder operators a, a† satisfying the

commutation algebra,

[a, a†] = 1 , [a, a] = [a†, a†] = 0 (2.1)

with the a-particle vacuum being specified by a |0〉 = 0. A Fock space h is generated by

actions of polynomial functions of the ladder operators on |0〉. Thermal effects are then

encoded in density operators defined on h. In particular, an equilibrium state at inverse

temperature β is a Gibbs state,

ρβ =
1

Z
e−βH (2.2)

where H is a Hamiltonian operator on h, possibly of grand-canonical type. But we must

note that in the context of background independent systems with an absence of a notion

– 4 –
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of absolute energy, one may work with other observables like the spatial volume, as will be

discussed briefly in section 5 [6, 20].

This system is extended by including tilde degrees of freedom, with a Hilbert space

h̃ generated by a vacuum |0̃〉 and the ladder operators ã, ã† satisfying also the bosonic

algebra,

[ã, ã†] = 1 (2.3)

with [ã, ã] = [ã†, ã†] = 0, and ã |0̃〉 = 0. All tilde and non-tilde degrees of freedom commute

with each other, that is

[a, ã] = [a, ã†] = [a†, ã] = [a†, ã†] = 0 . (2.4)

The Hilbert space h̃ is conjugate to the original one via the action of the modular conjuga-

tion operator of KMS theory [32]; or equivalently via the tilde conjugation rules of TFD:

i. (AB)̃ = ÃB̃; ii. (A†)̃ = Ã†; iii. (Ã)̃ = A; iv. (z1A + z2B)̃ = z̄1Ã + z̄2B̃; v. |0〉˜ = |0̃〉,
for all non-tilde and tilde operators defined on h and h̃ respectively, and zi ∈ C.

The zero temperature (or its inverse, β =∞) phase of the system is described by the

enlarged Hilbert space,

H∞ = h⊗ h̃ (2.5)

built from the Fock vacuum,

|0∞〉 = |0〉 ⊗ |0̃〉 (2.6)

by actions of the ladder operators a, a†, ã, ã†, such that

a |0∞〉 = ã |0∞〉 = 0 . (2.7)

Temperature is introduced via thermal Bogoliubov transformations of the algebra gen-

erators,

{a, a†, ã, ã†}β=∞ 7→ {b, b†, b̃, b̃†}0<β<∞ (2.8)

given by

b = cosh θ(β) a− sinh θ(β) ã† (2.9)

b̃ = cosh θ(β) ã− sinh θ(β) a† (2.10)

along with expressions for their adjoints b† and b̃†. The Bogoliubov transformations are

canonical, thus leaving the algebra unchanged, so that the β-ladder operators also satisfy

bosonic commutations relations,

[b, b†] = [b̃, b̃†] = 1 (2.11)

[b, b̃] = [b, b̃†] = 0 (2.12)

along with their adjoints. The temperature-dependent annihilation operators now specify

a thermal vacuum,

b |0β〉 = b̃ |0β〉 = 0 (2.13)

– 5 –
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which is cyclic for the thermal Hilbert space Hβ . It is an example of a two-mode squeezed

state, which can be restored to its full generality most directly by adding a net phase

difference between the cosh and sinh terms in the transformations (2.9) and (2.10).

The Hilbert space Hβ can most directly be organised as a Fock space with respect

to the β-dependent ladder operators that create and annihilate b-quanta over the thermal

background |0β〉. Like in any other Fock space construction, one can define useful classes of

states in Hβ . We will return to this point in section 7 where we define one such interesting

class of states in the quantum gravity system, namely the coherent thermal states.

The thermal Bogoliubov transformations (2.9) are parametrized by θ(β), which must

thus encode complete information about the corresponding statistical state. In the present

case, it must be uniquely associated with the Gibbs state ρβ , which has a well known

characteristic Bose number distribution,

Trh(ρβa
†a) =

1

eβω − 1
(2.14)

using a Hamiltonian of the form H = ωa†a, and the number operator N = a†a of the

physical, non-tilde system. This is how θ is usually determined in TFD, using equation (1.1)

for the number operator. Then, using inverse Bogoliubov transformations, the right hand

side of equation (1.1) for the present case gives

〈0β | a†a |0β〉Hβ = sinh2 θ(β) . (2.15)

This specifies θ via the equation,

1

eβω − 1
= sinh2 θ(β) . (2.16)

The non-tilde degrees of freedom can be understood as being physically relevant in the

sense that they describe the subsystem of interest which is accessible to the observer. In

other words, it is the subsystem under study in any given situation. Then, the physically

relevant observables belong to the algebra restricted to the non-tilde degrees of freedom,

which can be retrieved from the full description by partially tracing away the complement,

here the tilde degrees of freedom. Thus, one is usually interested in observable averages

of the form 〈0β | O(a, a†) |0β〉, for operators O that are in general polynomial functions

of the generators of the physical non-tilde algebra. Notable geometric examples include

relativistic quantum field vacua in Minkowski and Schwarzschild spacetimes, where the

non-tilde algebra has support on spacetime regions exterior to the respective horizons.

Here, the tilde subsystems are CPT conjugates (modulo a rotation) of the non-tilde ones,

and belong to the interior of the horizons [45–47]. Another physical interpretation of the

tilde subsystem that is more common in condensed matter theory, is that of a thermal

reservoir [27, 48].

In the present discrete quantum gravity context, for now we retain the elementary,

quantum information-theoretic interpretation of the non-tilde and tilde degrees of freedom,

simply as describing a given subsystem and its complement respectively, without assigning

any further geometric meanings.

– 6 –
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The two sets of ladder operators are related to each other explicitly via equations (2.9)

and (2.10). This suggests that their respective vacua are also related by an associated

transformation. Indeed they are, via the following unitary transformation3

U(θ) = eθ(β)(a
†ã†−aã) . (2.17)

In terms of this thermal squeezing operator, we then have

|0β〉 = U(θ) |0∞〉 (2.18)

and

b = U(θ) aU(θ)−1 (2.19)

b̃ = U(θ) ãU(θ)−1 . (2.20)

It is clear then that such unitary operators map the different β-representations into

each other. In finite quantum systems this is simply a manifestation of von Neumann’s

uniqueness theorem. However, when extending the above setup to quantum field theory,

one would expect that representations at different temperatures are inequivalent. This is

certainly the case for physical systems in general. It is also true in the present quantum

gravity case, as we show in section 6. Lastly, we note that in the field theory extension,

equations (2.9)–(2.13) hold mode-wise and still remain well-defined. Together, they de-

scribe the β-phase of the system. However, the operator U(θ) is no longer well-defined in

general (before any cut-offs). Thus, without any suitable regularization, equations (2.17)–

(2.20) technically do not hold in full field theory.

3 Bosonic group field theory

The most commonly studied models in GFT are scalar field theories defined over multiple

copies of the local gauge group of gravity, which is SL(2,C) for 4-dim Lorentzian models and

Spin(4) for Euclidean ones. The subgroup SU(2) is chosen often for boundary configurations

related to loop quantum gravity. For models of pure geometry (that is, before any matter

coupling), the group field ϕ is then commonly taken to be a complex-valued scalar field

on SU(2)d. This choice of ϕ corresponds to taking an atom of space to be a geometric

polyhedron with d faces (under an additional closure condition, see below), or equivalently,

an open d-valent node with each of its incident half-link labelled with an SU(2) element.

In this work, we consider the scalar field of the theory to be defined over the manifold

SU(2)d × R. From a technical point of view, this allows a more general treatment in the

formalism, where the base manifold has a non-compact direction. From a physical point

of view, this can be viewed as coupling gravity to a scalar matter field, which can be used

to define a relational frame of reference [40, 49], crucial for our subsequent application to

3The form of this unitary operator, along with equation (2.18), shows that the thermal vacuum |0β〉 is

a two-mode squeezed state in which aã-pairs have condensed [28].

– 7 –



J
H
E
P
0
2
(
2
0
2
0
)
1
7
3

thermal condensate cosmology [39]. Thus, the group field under consideration4 here is

ϕ : SU(2)d × R→ C : ~g, φ 7→ ϕ(~g, φ) . (3.1)

In the following, we will use the notations ~g ≡ gi (i = 1, . . . , d) interchangeably as per

convenience. The field ϕ is further chosen to be invariant5 under a diagonal right action of

SU(2) on SU(2)d, that is

ϕ(gi, φ) = ϕ(gih, φ) ∀h ∈ SU(2) . (3.2)

This is the geometric condition of closure, which in the corresponding quantised theory

leads to the understanding of a quantum of this field as a quantised polyhedron, in turn

dual to a gauge-invariant spin network node [17, 50, 51]. This invariance effectively reduces

the geometric part of the domain space to SU(2)d/ SU(2). In the following however, we

will continue to use a redundant parametrisation for convenience and consider the gauge-

invariant functions to be defined on full SU(2)d while explicitly satisfying equation (3.2).

The corresponding quantum operator theory is based on a commutations relations

algebra for bosonic6 polyhedra,

[ϕ(~g, φ), ϕ†(~g ′, φ′)] = I(~g,~g ′)δ(φ− φ′) (3.3)

with [ϕ,ϕ] = [ϕ†, ϕ†] = 0, and I being a delta distribution on SU(2)d compatible with

gauge invariance, given by

I(~g,~g ′) =

∫
SU(2)

dh
d∏
i=1

δ(gihg
′−1
i ) . (3.4)

We note that this quantum theory is in fact based on an abstract Weyl algebra for

GFT [52]. Our constructions here to access an inequivalent thermal phase using TFD

may in principle also be formulated more rigorously using modular structures of Tomita-

Takesaki theory and their relation to TFD [32–34]. In the present work however, we are

content with a more physical approach to the problem, directly in line with usual TFD

studies.

4 Degenerate vacuum and zero temperature phase

The zero temperature phase of the system is based on an enlargement of the Fock repre-

sentation of the above bosonic (Weyl) algebra, along the lines presented in section 2 but

generalised here to a field theory.

4The techniques and results of this work can be straightforwardly extended to include multiple fields

and multiples copies of R in the domain manifold.
5The right gauge invariance is imposed in order to avail a quantum geometric interpretation of the quanta

of the GFT field. An additional left gauge invariance can also be imposed in the context of homogeneous

cosmologies [40, 42]. However, our setup will technically follow through with or without (either or both)

these additional symmetries and their associated geometric meanings.
6The zero and finite temperature formulations discussed here can be extended to fermionic statistics

with an anti-commutations relations algebra.
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The Hilbert space for a single gauge-invariant quantum is the state space of geometries

of a quantum polyhedron with an additional real degree of freedom,

H = L2(SU(2)d/ SU(2)× R)

∼= L2(SU(2)d/ SU(2))⊗ L2(R) (4.1)

where the quotient by SU(2) ensures gauge invariance. In order to work with formally

well-defined quantities, we smear the operator-valued distributions ϕ(~g, φ) with a suitable

basis of functions in H.7 For gauge-invariant functions on SU(2)d, a useful basis is given

by a set of gauge-invariant Wigner functions

DJ(~g ) =
∑
~n

C
~j
~nι

d∏
i=1

Dji
mini(gi) , J ≡ (~j, ~m, ι) (4.2)

where ji ∈ N/2 labels irreducible representations of SU(2), mi, ni ∈ (−ji, . . . ,+ji) are

matrix indices in representation ji, D
ji
mini are complex-valued Wigner matrix coefficients

(multiplied by a factor of
√

2ji + 1 for normalisation) in representation ji, and C
~j
~nι are

intertwiner basis elements indexed by ι arising due to the closure condition in (3.2). Or-

thonormality and completeness are respectively given by,∫
d~g D̄J(~g )DJ ′(~g ) = δJJ ′ , (4.3)∑
J

D̄J(~g )DJ(~g ′) = I(~g,~g ′) . (4.4)

Similarly for the matter part, let us consider a basis of complex-valued smooth func-

tions Tα(φ) in L2(R), labelled by a discrete index α, satisfying orthonormality and com-

pleteness, ∫
dφ T̄α(φ)Tα′(φ) = δαα′ , (4.5)∑
α

T̄α(φ)Tα(φ′) = δ(φ− φ′) . (4.6)

We thus have a complete orthonormal basis on H consisting of functions fJα of the tensor

product form,

fJα(~g, φ) = (DJ ⊗ Tα)(~g, φ) = DJ(~g )Tα(φ) . (4.7)

Then a suitable set of mode ladder operators can be defined by smearing the operators

ϕ,ϕ† with this basis,

aJα := ϕ(fJα) =

∫
SU(2)d×R

d~gdφ D̄J(~g )T̄α(φ)ϕ(~g, φ) , (4.8)

a†Jα = ϕ†(fJα) =

∫
SU(2)d×R

d~gdφ DJ(~g )Tα(φ)ϕ†(~g, φ) . (4.9)

7For more functional rigour, the test functions may be defined on the dense subspace of smooth functions

C∞(·) ⊂ L2(·). But this technicality is often overlooked in practice, as is also done here, thus taking the

L2 space to be the space of single particle wave functions and the space of test functions.
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This essentially decomposes the operators ϕ,ϕ† in terms of the modes fJα, which can be

seen directly by inverting the above two equations. The algebra relations are,

[aJα, a
†
J ′α′ ] = δJJ ′δαα′ (4.10)

and [a, a] = [a†, a†] = 0. Note that, thanks to the choice of a discrete basis {Tα(φ)}α in

L2(R), the algebra commutator in (4.10) produces Kronecker deltas, instead of the Dirac

delta distribution present in the original basis in equation (3.3). The consideration of a

regular algebra instead of a distributional one is an important feature in the present work,

particularly for the φ-modes, where we deal with inequivalent representations obtained via

Bogoliubov transformations. Namely, the Kronecker delta δαα′ is crucial in order to avoid

divergences related to the coincidence limit of δ(φ − φ′). Such terms with δ(φ − φ′) arise

naturally when calculating thermal expectation values of certain relevant observables, for

example the average thermal number density in φ-basis (compare with equation (6.6)).

The vacuum is specified by,

aJα |0〉 = 0 ∀J, α (4.11)

which is a degenerate state with no discrete geometric or matter data, dubbed often as a

no-space state. It generates the symmetric Fock space

HF =
⊕
N≥0

symH⊗N (4.12)

by cyclic action of the generators {aJα, a†Jα, 1} of this representation.8 For instance, a

single particle (N = 1), single mode state is,

|Jα〉 ≡ |fJα〉 = a†Jα |0〉 (4.13)

while a generic single particle state with a wavefunction ψ(~g, φ) =
∑

J,α ψJαfJα(~g, φ) ∈ H is

|ψ〉 = a†(ψ) |0〉 =
∑
J,α

ψJαa
†
Jα |0〉 . (4.14)

The zero temperature phase is then given by extending the above with the conjugate

representation space H̃F, as discussed in section 2. This gives the zero temperature (β =∞)

description in terms of a Hilbert space,

H∞ = HF ⊗ H̃F (4.15)

which is a Fock space on the cyclic vacuum

|0∞〉 = |0〉 ⊗ |0̃〉 (4.16)

with ladder operators {a, a†, ã, ã†}J,α that satisfy,

[aJα, a
†
J ′α′ ] = δJJ ′δαα′ (4.17)

[ãJα, ã
†
J ′α′ ] = δJJ ′δαα′ (4.18)

8This is the GNS representation of the GFT Weyl algebra induced by the algebraic Fock state [20, 52].
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and [a, a] = [ã, ã] = [a, ã] = [a, ã†] = 0. The non-tilde operators describing the subsystem of

interest are those defined in (4.8) and (4.9), while the tilde operators of the complement are

ãJα =

∫
SU(2)d×R

d~gdφ DJ(~g )Tα(φ)ϕ̃(~g, φ) , (4.19)

ã†Jα =

∫
SU(2)d×R

d~gdφ D̄J(~g )T̄α(φ)ϕ̃†(~g, φ) . (4.20)

The vacuum satisfies

aJα |0∞〉 = ãJα |0∞〉 = 0 ∀J, α . (4.21)

The action of all polynomial functions of non-tilde and tilde ladder operators on |0∞〉
generates H∞, all in complete analogy with standard HF, including the construction of

multi-particle states, coherent states, squeezed states, and so on.

5 Generalised Gibbs states

The familiar way to include thermal effects is with statistical states, as density operators in

a given representation or in general as algebraic mixed states. As we discussed in section 2,

an equivalent way is with their corresponding vector states (thermal vacua) in an enlarged

representation of the system, in which the additional degrees of freedom are known to be

integral for encoding finite temperature effects.

Here we are interested in Gibbs density operators for describing equilibrium phases

of the quantum gravity system. But defining statistical equilibrium in background inde-

pendent settings, like the present one, is a subtle issue (see [6], and references therein,

for detailed discussions). For the purposes of this work however, what concerns us is the

so-called thermodynamical characterisation, based on the maximum entropy principle, for

defining generalised Gibbs states of the form

ρ{β`} =
1

Z{β`}
e−

∑
` β`O` (5.1)

where β` are generalised inverse temperatures conjugate to a given set of observables

O` [5, 6, 20]. This state is a result of maximising the information entropy, −〈ln ρ〉ρ, under

the set of constraints 〈O`〉ρ = constant and 〈1〉ρ = 1. Particularly, observables O need

not be dynamical energies. This is especially valuable in background independent systems

where the notion of energy is ambiguous at best, or not defined at all in more radical setups

such as the current quantum gravitational one. In fact, these observables can be geomet-

ric operators such as area and volume, which could be particularly relevant in quantum

gravity.9 For instance, in the context of applying these constructions to homogeneous cos-

9We note that classical quantities such as space(-time) volume, or the area of a closed surface, are

not necessarily well defined in a diffeomorphism invariant (background independent) context. This is

because such quantities are at most diffeomorphism covariant, thus failing to represent a physical gauge-

invariant observable. This open issue of observables in general relativity, arises also within any background

independent quantum gravity approach. Having said that, one could still construct well defined quantum

operators, which can be formally associated to certain, classically peculiar, quantities in a given quantum

framework, such as the volume of space(-time). In this sense, one could still have operators with a geometric

interpretation in a background independent context, like in GFT or in loop quantum gravity.
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mology, O could be chosen to be the spatial volume, thus giving a volume Gibbs state [20].

Such a state would then encode thermal fluctuations in spatial volume of the underlying

discrete quantum space, which may be expected to be important in cosmological dynamics,

especially at very early times [39].

Below we consider the more general case with self-adjoint and semi-bounded operators

for group field theories coupled with a scalar matter, so that for such generalised Gibbs

states, the above machinery of TFD can be applied to construct various different phases

characterised by the corresponding thermofield doubles. Naturally, this leaves open the

possibilities of different observables, and which ones are relevant in any given situation is

also an important part of the broader problem of investigating the statistical mechanics

of quantum gravity for an emergent, thermodynamical spacetime with features compatible

with semi-classical studies [6, 20].

Given a self-adjoint and semi-bounded O, and using the maximum entropy procedure

recalled above, under the constraints 〈O〉ρ = constant, 〈N〉ρ = constant and 〈1〉ρ = 1, a

generalised Gibbs state can be defined as,

ρβ,µ =
1

Zβ,µ
e−β(O−µN) (5.2)

where β ∈ R and µ ∈ R are chosen such that the combination β(O − µN) is a posi-

tive operator, thus ensuring proper normalisation of the state. A particularly interesting

class of observables where the partition function can be evaluated rather straightforwardly

is for positive, extensive operators. That is, we can consider the class of Gibbs states

characterised by a self-adjoint, positive and extensive operator on the original system HF

given by,

P =
∑
J,α

λJαa
†
JαaJα (5.3)

with ∀J, α, λJ,α ∈ R+. Extensive operators in GFT are a second quantisation of those

loop quantum gravity operators which are diagonal in some intertwiner basis, such as the

spatial volume operator [4, 20, 53].

Extensive operators are compatible with the total number operator,

N =
∑
J,α

a†JαaJα , (5.4)

that is, [P, N ] = 0. They are thus diagonal in an occupation number basis of HF consisting

of multi-particle, multi-mode states of the general form,

|{nJα}〉 =
1√

nJ1α1 !nJ2α2 ! . . .
a
†nJ1α1
J1α1

a
†nJ2α2
J2α2

. . . |0〉 (5.5)

which are orthonormal,

〈{nJα}|{mJ ′α′}〉 = δnJαmJ′α′ δJJ ′δαα′ . (5.6)
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The partition function for (5.2) with operators P can then be evaluated10 in the basis

of states (5.5) to give,

Zβ,µ =
∏
J,α

1

1− e−β(λJα−µ)
(5.7)

where µ < min(λJα) for all J and α. This is a grand-canonical state of a-particles, which

essentially describes a gas of these atoms of space with a changing total number in the

given (non-tilde) subsystem. Technically, the number operator in (5.2) simply implements

a constant shift by µ in the observable spectrum, which for now can be neglected by fixing

µ to an arbitrary value, or by simply replacing λJα − µ 7→ λJα.

It is evident that by construction, the parameter β controls the strength of statisti-

cal fluctuations in P, regardless of any other interpretations. Note however, that one can

reasonably inquire about its geometric meaning, especially if the operator P, which is its

thermodynamic conjugate, has a clear geometric interpretation. It would thus be interest-

ing to investigate this aspect in a concrete example where the choice of the observable is

adapted to a physical context, like cosmology (see for instance [39]).

Finally, the ensemble average for number density will be useful for the construction of

the associated thermal representation as outlined in section 2. For the state above, it is

given by the characteristic Bose distribution,

TrHF
(ρβ,µa

†
JαaJα) =

1

eβ(λJα−µ) − 1
, (5.8)

from which the average total number 〈N〉 of polyhedral quanta can be obtained by summing

over all J and α. Partial sums over either J or α would give average number densities

〈Nα〉 or 〈NJ〉 respectively. In the context of relational dynamics, for instance in GFT

cosmology [40–43], quantities like 〈Nα〉 are strictly related to relational observables as

functions of the matter variable φ, the details of which are included in [39].

6 Thermal squeezed vacuum and finite temperature phase

Now that we have chosen a suitable class of thermal states of equation (5.2) characterised

with operators P, we can proceed to define its associated thermal phase generated by a

thermal vacuum and β-dependent ladder operators {bJα, b†Jα, b̃Jα, b̃
†
Jα}β , along the lines

detailed in section 2.

Thermal Bogoliubov transformations11 give the new ladder operators, mode-wise,

bJα = cosh θJα(β) aJα − sinh θJα(β) ã†Jα (6.1)

b̃Jα = cosh θJα(β) ãJα − sinh θJα(β) a†Jα (6.2)

10Given a suitable set of properly normalised modes fJα as done in 4 above, the calculation for this

partition function is along the lines of that showed for a volume Gibbs state in [20], to which we refer for

details.
11More general two-mode squeezing transformations can also be considered by taking a net phase differ-

ence between the two contributions, say eiδ scaling the sinh terms.
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along with their adjoints b†Jα and b̃†Jα. Inverse transformations are,

aJα = cosh θJα(β) bJα + sinh θJα(β) b̃†Jα (6.3)

ãJα = cosh θJα(β) b̃Jα + sinh θJα(β) b†Jα (6.4)

and their respective adjoints. The β-dependent annihilation operators specify the thermal

vacuum via

bJα |0β〉 = b̃Jα |0β〉 = 0 , (6.5)

thus giving the finite temperature Hilbert space Hβ . |0β〉 is a concrete example of a

(class of) thermofield double state(s) in discrete quantum gravity. It is an entangled state

encoding quantum correlations between pairs of aJα and ãJα polyhedral quanta. Further,

using equations (1.1), (5.8), and

〈0β | a†JαaJα |0β〉Hβ = sinh2 θJα(β) , (6.6)

the parameters θJα can be determined from

sinh2 θJα(β) =
1

eβλJα − 1
. (6.7)

Note that the singular case in equation (6.7), or equivalently in (5.8), can be understood

as Bose-Einstein condensation to the ground state of P (equation (5.3)) in the present

thermal gas of quantum gravitational atoms. In the context of a volume Gibbs state, such

a phenomenon was first observed in [20], and was used to show a model-independent, purely

statistical mechanism for the emergence of a low-spin phase.

Lastly, the β-phase that we have constructed here, being described kinematically by

{|0β〉 , bJα, b†Jα, b̃Jα, b̃
†
Jα}, is inequivalent to the zero temperature phase {|0∞〉 , aJα, a†Jα,

ãJα, ã
†
Jα}. This can be seen directly from the transformation equations between the two

vacua:

|0β〉 = U(θ) |0∞〉 (6.8)

= e
∑
J,α θJα(a

†
Jαã

†
Jα−aJαãJα) |0∞〉 (6.9)

= e−
∑
J,α ln cosh θJαe

∑
J,α a

†
Jαã

†
Jα tanh θJα |0∞〉 (6.10)

=
∏
J,α

1

cosh θJα
× e

∑
J,α a

†
Jαã

†
Jα tanh θJα |0∞〉 . (6.11)

Clearly, the pre-factor of the product of inverse cosh functions vanishes in general, without

any cut-offs in the modes. This means that the overlap between the two vacua is zero, and

the two representations built upon them are inequivalent. In other words, this transforma-

tion in field theory is ill-defined in general due to an infinite number of degrees of freedom,

giving rise to inequivalent representations describing distinct phases of the system.
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7 Coherent thermal states

We now define a family of coherent states in the thermal representation, called coherent

thermal states. We understand them as defining thermal quantum gravity condensates,

expected to be relevant in the studies of semi-classical and continuum approximations in

discrete quantum gravity models based on polyhedral quanta of geometry. Indeed, unlike

the purely thermal state |0β〉, coherent states can encode a notion of semi-classicality,

with which one can attempt to extract effective dynamics from an underlying quantum

gravity model. For instance in group field theory, it has been shown that a coherent

condensate phase of the a-quanta can support FLRW cosmological dynamics, and thus

represents a viable choice of a quantum gravitational phase relevant in the cosmological

sector [40–43, 52]. But a coherent state over the degenerate vacuum (4.11) is unentangled,

and we expect a geometric phase of the universe to be highly entangled. Moreover these

states cannot in themselves encode statistical fluctuations in different observable quantities.

Therefore, from a physical point of view, the construction of coherent thermal states is

amply justified.

Coherent thermal states [29, 54–56] are a coherent configuration of quanta over the

thermal vacuum, implemented by displacing |0β〉 with displacement operators of the form,

Da(σ) = ea
†(σ)−a(σ) (7.1)

for σ ∈ H. To recall, the usual coherent states |σ〉 ∈ HF of a-particles are,

|σ〉 := Da(σ) |0〉 , (7.2)

while |σ̃〉 ∈ H̃F for ã-particles are,

|σ̃〉 := Dã(σ) |0̃〉 . (7.3)

The tilde in the ket notation |σ̃〉 simply means that the state is an element of the conjugate

Hilbert space, and Dã is a displacement operator of the same form as (7.1) but for tilde

ladder operators.

The most useful property of these states is that they are eigenstates of their respective

annihilation operators,

aJα |σ〉 = σJα |σ〉 (7.4)

ãJα |σ̃〉 = σJα |σ̃〉 (7.5)

which is at the heart of their extensive use as robust, most classical-like, quantum states.

Notice that under the tilde conjugation rules stated in section 2, we have

(|σ〉 ⊗ |0̃〉)̃ = |0〉 ⊗ |˜̄σ〉 (7.6)

in H∞. That is, coherent states |σ〉 ∈ HF and |σ̄〉 ∈ H̃F, are conjugates of each other. In

other words, the following state

|σ, σ̄;∞〉 ≡ |σ〉 ⊗ |˜̄σ〉 = Da(σ)Dã(σ̄) |0∞〉 ∈ H∞ (7.7)
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of the full system at zero temperature is self-conjugate,

|σ, σ̄;∞〉˜= |σ, σ̄;∞〉 . (7.8)

In the finite temperature phase then, coherent thermal states [29, 54–56] are defined as

the following self-conjugate states encoding coherence in the original a degrees of freedom

over the thermal vacuum,

|σ, σ̄;β〉 := Da(σ)Dã(σ̄) |0β〉 ∈ Hβ . (7.9)

Being elements of Hβ , as expected they are eigenstates of the β-annihilation operators bJα
with temperature-dependent eigenfunctions,

bJα |σ, σ̄;β〉 = (cosh θJα − sinh θJα)σJα |σ, σ̄;β〉 , (7.10)

b̃Jα |σ, σ̄;β〉 = (cosh θJα − sinh θJα)σ̄Jα |σ, σ̄;β〉 . (7.11)

It is clear from the above eigenstate equations, along with inverse transformations (6.3)

and (6.4), that states (7.9) are not eigenstates of the annihilation operator a of the original

system. This is precisely how the expectation values of physical operators O(a, a†) display

non-trivial thermal and coherence properties simultaneously. For instance, the average

number density is,

〈σ, σ̄;β| a†JαaJα |σ, σ̄;β〉 = |σJα|2 + sinh2 θJα(β) (7.12)

which is indeed a sum of number densities of the coherent condensate and thermal parts.

8 Summary and outlook

In this article we have presented an implementation of the thermofield dynamics formalism

in the context of group field theory quantum gravity. It opens the door to using such

techniques in discrete quantum gravity, thus facilitating exploration of the phase structure

of quantum gravity models characterised by generalised thermodynamic parameters β`, and

complementing renormalization investigations in group field theory [57–59] and possibly

other related approaches [60–63].

Here, we have constructed finite temperature, equilibrium phases associated with a

class of generalised Gibbs states in group field theory, along with identification of their

non-perturbative thermal vacua. The vacua are squeezed states encoding entanglement

of quantum geometric data, which in turn is expected to be a characteristic property of a

physical quantum description of spacetime in general. We have introduced coherent thermal

states which, in addition to carrying statistical fluctuations in a given set of observables,

are also condensates of quantum geometry.

In group field theory, zero temperature coherent states have been used to obtain an

effective description of flat, homogeneous and isotropic cosmology (flat FLRW), where

certain quantum corrections arise naturally and generate a dynamical modification with

respect to classical general relativity, preventing the occurrence of a big bang singularity
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along with cyclic solutions in general [40–43]. Encouraged by these results, the introduc-

tion of statistical condensates, like coherent thermal states, may bring further progress to

the GFT condensate cosmology program by offering a tangible and controllable way of

incorporating perturbations in relevant observables. Such consideration could be crucial

say for understanding the quantum gravitational origin of structure formation. One could

also expect modifications during early times in the previously studied homogeneous and

isotropic flat cosmology models in GFT [40, 64], such as altering the inflation rate. This

particular case of flat FLRW, in presence of thermal fluctuations, is studied in an upcoming

paper [39].

It would also be interesting to understand better the connection of our thermal vacua

with other works in loop quantum gravity concerning kinematical entanglement between

intertwiners (related further to discrete vector geometries) [24, 65, 66], especially since

our squeezed thermal vacua essentially encode entanglement between gauge-invariant spin

network nodes, that is intertwiners, but now at a field theory level.

The thermal vacua can be extended even further to more general two-mode squeezed

vacua between tilde and non-tilde quanta, between different tilde quanta, or even between

different modes of the tilde quanta. For instance, condensates of correlated quanta, like

dipole condensates [42], may be directly constructed and studied in this setup. Considering

correlations between different modes of the quanta, which encode quantum geometric data,

might also make comparisons with studies in loop quantum gravity mentioned above [24,

65, 66] more direct.

This setup could also prove useful for the study of quantum black holes. In group

field theory for example, black holes have been modelled as generalised condensates [67],

which must also possess related thermal properties. Suitably modified thermal coherent

states may provide just the right type of technical structure to explore their statistical and

thermal aspects further.

Finally, by providing quite a straightforward handle on collective, quasi-particle modes

in discrete quantum gravity, while still allowing for access to different inequivalent repre-

sentations, this framework may bring closer the studies of microscopic theories of quantum

gravity and analogue gravity models [68].
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[24] B. Baytaş, E. Bianchi and N. Yokomizo, Gluing polyhedra with entanglement in loop quantum

gravity, Phys. Rev. D 98 (2018) 026001 [arXiv:1805.05856] [INSPIRE].

[25] Y. Takahasi and H. Umezawa, Thermo field dynamics, Collect. Phenom. 2 (1975) 55,

republished in [Int. J. Mod. Phys. B 10 (1996) 1755] [INSPIRE].

[26] H. Matsumoto, Thermo Field Dynamics and its Development, in Progress In Quantum Field

Theory, H. Ezawa and S. Kamefuchi eds., Elsevier (1985).

[27] H. Umezawa, H. Matsumoto and M. Tachiki, Thermo Field Dynamics and Condensed States,

North-Holland Publishing Company, Amsterdam The Netherlands (1982) [INSPIRE].

[28] H. Umezawa, Advanced field theory: Micro, macro, and thermal physics, American Institute

of Physics (1993).

[29] F.C. Khanna, A.P.C. Malbouisson, J.M.C. Malbouisson and A.R. Santana, Thermal

quantum field theory — Algebraic aspects and applications, World Scientific (2009).

[30] R. Haag, N.M. Hugenholtz and M. Winnink, On the Equilibrium states in quantum statistical

mechanics, Commun. Math. Phys. 5 (1967) 215 [INSPIRE].

[31] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics II.

Equilibrium States Models in Quantum Statistical Mechanics, Theoretical and Mathematical

Physics Series, Springer-Verlag (1996).

[32] I. Ojima, Gauge Fields at Finite Temperatures: Thermo Field Dynamics, KMS Condition

and their Extension to Gauge Theories, Annals Phys. 137 (1981) 1 [INSPIRE].

[33] N.P. Landsman and C.G. van Weert, Real and Imaginary Time Field Theory at Finite

Temperature and Density, Phys. Rept. 145 (1987) 141 [INSPIRE].

[34] E. Celeghini, S. De Martino, S. De Siena, A. Iorio, M. Rasetti and G. Vitiello, Thermo field

dynamics and quantum algebras, Phys. Lett. A 244 (1998) 455 [hep-th/9801031] [INSPIRE].

[35] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information,

Cambridge University Press, Cambridge U.K. (2010).

[36] M. Van Raamsdonk, Lectures on Gravity and Entanglement, in proceedings of the

Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in

Fields and Strings (TASI 2015), Boulder, CO, U.S.A., 1–26 June 2015, pp. 297–351

[arXiv:1609.00026] [INSPIRE].

– 19 –

https://doi.org/10.1088/1367-2630/17/2/023042
https://doi.org/10.1088/1367-2630/17/2/023042
https://arxiv.org/abs/1409.3150
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.3150
https://arxiv.org/abs/1710.02807
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.02807
https://doi.org/10.1088/1367-2630/aacbbd
https://arxiv.org/abs/1801.09964
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.09964
https://doi.org/10.1007/978-3-030-26980-7
https://doi.org/10.1007/978-3-030-26980-7
https://arxiv.org/abs/1906.07113
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.07113
https://doi.org/10.1088/0264-9381/31/21/214002
https://doi.org/10.1088/0264-9381/31/21/214002
https://arxiv.org/abs/1212.5183
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5183
https://doi.org/10.1103/PhysRevD.97.046015
https://arxiv.org/abs/1703.05231
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.05231
https://doi.org/10.1103/PhysRevD.98.026001
https://arxiv.org/abs/1805.05856
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.05856
https://doi.org/10.1142/S0217979296000817
https://inspirehep.net/search?p=find+J+%22Int.J.Mod.Phys.,B10,1755%22
https://inspirehep.net/search?p=find+IRN+1120522
https://doi.org/10.1007/BF01646342
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,5,215%22
https://doi.org/10.1007/978-3-662-09089-3
https://doi.org/10.1007/978-3-662-09089-3
https://doi.org/10.1016/0003-4916(81)90058-0
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,137,1%22
https://doi.org/10.1016/0370-1573(87)90121-9
https://inspirehep.net/search?p=find+J+%22Phys.Rept.,145,141%22
https://doi.org/10.1016/S0375-9601(98)00447-2
https://arxiv.org/abs/hep-th/9801031
https://inspirehep.net/search?p=find+EPRINT+hep-th/9801031
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1142/9789813149441_0005
https://doi.org/10.1142/9789813149441_0005
https://arxiv.org/abs/1609.00026
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00026


J
H
E
P
0
2
(
2
0
2
0
)
1
7
3

[37] S. Chapman et al., Complexity and entanglement for thermofield double states, SciPost Phys.

6 (2019) 034 [arXiv:1810.05151] [INSPIRE].

[38] J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021

[hep-th/0106112] [INSPIRE].

[39] M. Assanioussi and I. Kotecha, Thermal quantum gravity condensates in group field theory

cosmology, to appear.

[40] D. Oriti, L. Sindoni and E. Wilson-Ewing, Emergent Friedmann dynamics with a quantum

bounce from quantum gravity condensates, Class. Quant. Grav. 33 (2016) 224001

[arXiv:1602.05881] [INSPIRE].

[41] D. Oriti, The universe as a quantum gravity condensate, Compt. Rendus Phys. 18 (2017) 235

[arXiv:1612.09521] [INSPIRE].

[42] S. Gielen and L. Sindoni, Quantum Cosmology from Group Field Theory Condensates: a

Review, SIGMA 12 (2016) 082 [arXiv:1602.08104] [INSPIRE].

[43] A.G.A. Pithis and M. Sakellariadou, Group field theory condensate cosmology: An appetizer,

Universe 5 (2019) 147 [arXiv:1904.00598] [INSPIRE].

[44] S. Gielen and D. Oriti, Cosmological perturbations from full quantum gravity, Phys. Rev. D

98 (2018) 106019 [arXiv:1709.01095] [INSPIRE].

[45] W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].

[46] B.S. Kay, The Double Wedge Algebra for Quantum Fields on Schwarzschild and Minkowski

Space-times, Commun. Math. Phys. 100 (1985) 57 [INSPIRE].

[47] G.L. Sewell, Quantum fields on manifolds: PCT and gravitationally induced thermal states,

Annals Phys. 141 (1982) 201 [INSPIRE].

[48] F. Strocchi, Symmetry Breaking, Lect. Notes Phys. 732 (2008) 1 [INSPIRE].

[49] Y. Li, D. Oriti and M. Zhang, Group field theory for quantum gravity minimally coupled to a

scalar field, Class. Quant. Grav. 34 (2017) 195001 [arXiv:1701.08719] [INSPIRE].

[50] A. Barbieri, Quantum tetrahedra and simplicial spin networks, Nucl. Phys. B 518 (1998) 714

[gr-qc/9707010] [INSPIRE].

[51] J.C. Baez and J.W. Barrett, The Quantum tetrahedron in three-dimensions and

four-dimensions, Adv. Theor. Math. Phys. 3 (1999) 815 [gr-qc/9903060] [INSPIRE].

[52] A. Kegeles, D. Oriti and C. Tomlin, Inequivalent coherent state representations in group field

theory, Class. Quant. Grav. 35 (2018) 125011 [arXiv:1709.00161] [INSPIRE].

[53] A. Ashtekar and J. Lewandowski, Quantum theory of geometry. 2. Volume operators, Adv.

Theor. Math. Phys. 1 (1998) 388 [gr-qc/9711031] [INSPIRE].

[54] S.M. Barnett and P.L. Knight, Thermofield analysis of squeezing and statistical mixtures in

quantum optics, J. Opt. Soc. Am. B 2 (1985) 467.

[55] A. Mann and M. Revzen, Thermal coherent states, Phys. Lett. A 134 (1989) 273.

[56] J. Oz-Vogt, A. Mann and M. Revzen, Thermal coherent states and thermal squeezed states,

J. Mod. Opt. 38 (1991) 2339.

[57] S. Carrozza, Flowing in Group Field Theory Space: a Review, SIGMA 12 (2016) 070

[arXiv:1603.01902] [INSPIRE].

– 20 –

https://doi.org/10.21468/SciPostPhys.6.3.034
https://doi.org/10.21468/SciPostPhys.6.3.034
https://arxiv.org/abs/1810.05151
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.05151
https://doi.org/10.1088/1126-6708/2003/04/021
https://arxiv.org/abs/hep-th/0106112
https://inspirehep.net/search?p=find+EPRINT+hep-th/0106112
https://doi.org/10.1088/0264-9381/33/22/224001
https://arxiv.org/abs/1602.05881
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.05881
https://doi.org/10.1016/j.crhy.2017.02.003
https://arxiv.org/abs/1612.09521
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.09521
https://doi.org/10.3842/SIGMA.2016.082
https://arxiv.org/abs/1602.08104
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.08104
https://doi.org/10.3390/universe5060147
https://arxiv.org/abs/1904.00598
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.00598
https://doi.org/10.1103/PhysRevD.98.106019
https://doi.org/10.1103/PhysRevD.98.106019
https://arxiv.org/abs/1709.01095
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.01095
https://doi.org/10.1016/0375-9601(76)90178-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,A57,107%22
https://doi.org/10.1007/BF01212687
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,100,57%22
https://doi.org/10.1016/0003-4916(82)90285-8
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,141,201%22
https://doi.org/10.1007/978-3-540-73593-9
https://inspirehep.net/record/1224034
https://doi.org/10.1088/1361-6382/aa85d2
https://arxiv.org/abs/1701.08719
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.08719
https://doi.org/10.1016/S0550-3213(98)00093-5
https://arxiv.org/abs/gr-qc/9707010
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9707010
https://doi.org/10.4310/ATMP.1999.v3.n4.a3
https://arxiv.org/abs/gr-qc/9903060
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9903060
https://doi.org/10.1088/1361-6382/aac39f
https://arxiv.org/abs/1709.00161
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.00161
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://arxiv.org/abs/gr-qc/9711031
https://inspirehep.net/search?p=find+J+%22Adv.Theor.Math.Phys.,1,388%22
https://doi.org/10.1364/JOSAB.2.000467
https://doi.org/10.1016/0375-9601(89)90635-X
https://doi.org/10.1080/09500349114552501
https://doi.org/10.3842/SIGMA.2016.070
https://arxiv.org/abs/1603.01902
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.01902


J
H
E
P
0
2
(
2
0
2
0
)
1
7
3

[58] S. Carrozza, V. Lahoche and D. Oriti, Renormalizable Group Field Theory beyond melonic

diagrams: an example in rank four, Phys. Rev. D 96 (2017) 066007 [arXiv:1703.06729]

[INSPIRE].

[59] D. Benedetti, J. Ben Geloun and D. Oriti, Functional Renormalisation Group Approach for

Tensorial Group Field Theory: a Rank-3 Model, JHEP 03 (2015) 084 [arXiv:1411.3180]

[INSPIRE].

[60] B. Dittrich, S. Mizera and S. Steinhaus, Decorated tensor network renormalization for lattice

gauge theories and spin foam models, New J. Phys. 18 (2016) 053009 [arXiv:1409.2407]

[INSPIRE].

[61] B. Bahr, On background-independent renormalization of spin foam models, Class. Quant.

Grav. 34 (2017) 075001 [arXiv:1407.7746] [INSPIRE].

[62] B. Bahr and S. Steinhaus, Numerical evidence for a phase transition in 4d spin foam

quantum gravity, Phys. Rev. Lett. 117 (2016) 141302 [arXiv:1605.07649] [INSPIRE].

[63] B. Bahr and S. Steinhaus, Hypercuboidal renormalization in spin foam quantum gravity,

Phys. Rev. D 95 (2017) 126006 [arXiv:1701.02311] [INSPIRE].

[64] M. de Cesare, A.G.A. Pithis and M. Sakellariadou, Cosmological implications of interacting

Group Field Theory models: cyclic Universe and accelerated expansion, Phys. Rev. D 94

(2016) 064051 [arXiv:1606.00352] [INSPIRE].

[65] E. Bianchi, J. Guglielmon, L. Hackl and N. Yokomizo, Squeezed vacua in loop quantum

gravity, arXiv:1605.05356 [INSPIRE].

[66] E.R. Livine, Intertwiner Entanglement on Spin Networks, Phys. Rev. D 97 (2018) 026009

[arXiv:1709.08511] [INSPIRE].

[67] D. Oriti, D. Pranzetti and L. Sindoni, Black Holes as Quantum Gravity Condensates, Phys.

Rev. D 97 (2018) 066017 [arXiv:1801.01479] [INSPIRE].

[68] C. Barcelo, S. Liberati and M. Visser, Analogue gravity, Living Rev. Rel. 8 (2005) 12

[gr-qc/0505065] [INSPIRE].

– 21 –

https://doi.org/10.1103/PhysRevD.96.066007
https://arxiv.org/abs/1703.06729
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.06729
https://doi.org/10.1007/JHEP03(2015)084
https://arxiv.org/abs/1411.3180
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3180
https://doi.org/10.1088/1367-2630/18/5/053009
https://arxiv.org/abs/1409.2407
https://inspirehep.net/search?p=find+%22New%20J.Phys.,18,053009%22
https://doi.org/10.1088/1361-6382/aa5e13
https://doi.org/10.1088/1361-6382/aa5e13
https://arxiv.org/abs/1407.7746
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,34,075001%22
https://doi.org/10.1103/PhysRevLett.117.141302
https://arxiv.org/abs/1605.07649
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,117,141302%22
https://doi.org/10.1103/PhysRevD.95.126006
https://arxiv.org/abs/1701.02311
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D95,126006%22
https://doi.org/10.1103/PhysRevD.94.064051
https://doi.org/10.1103/PhysRevD.94.064051
https://arxiv.org/abs/1606.00352
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.00352
https://arxiv.org/abs/1605.05356
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.05356
https://doi.org/10.1103/PhysRevD.97.026009
https://arxiv.org/abs/1709.08511
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.08511
https://doi.org/10.1103/PhysRevD.97.066017
https://doi.org/10.1103/PhysRevD.97.066017
https://arxiv.org/abs/1801.01479
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.01479
https://doi.org/10.12942/lrr-2005-12
https://arxiv.org/abs/gr-qc/0505065
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0505065

	Introduction
	Thermofield dynamics
	Bosonic group field theory
	Degenerate vacuum and zero temperature phase
	Generalised Gibbs states
	Thermal squeezed vacuum and finite temperature phase
	Coherent thermal states
	Summary and outlook

