English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Widespread and Opponent fMRI Signals Represent Sound Location in Macaque Auditory Cortex

MPS-Authors
/persons/resource/persons192788

Ortiz-Rios,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83789

Azevedo,  FAC
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83793

Balla,  DZ
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84098

Munk,  MH
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84007

Keliris,  GA
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ortiz-Rios, M., Azevedo, F., Kuśmierek, P., Balla, D., Munk, M., Keliris, G., et al. (2017). Widespread and Opponent fMRI Signals Represent Sound Location in Macaque Auditory Cortex. Neuron, 93(4), 971-983. doi:10.1016/j.neuron.2017.01.013.


Cite as: https://hdl.handle.net/21.11116/0000-0000-C349-2
Abstract
In primates, posterior auditory cortical areas are thought to be part of a dorsal auditory pathway that processes spatial information. But how posterior (and other) auditory areas represent acoustic space remains a matter of debate. Here we provide new evidence based on functional magnetic resonance imaging (fMRI) of the macaque indicating that space is predominantly represented by a distributed hemifield code rather than by a local spatial topography. Hemifield tuning in cortical and subcortical regions emerges from an opponent hemispheric pattern of activation and deactivation that depends on the availability of interaural delay cues. Importantly, these opponent signals allow responses in posterior regions to segregate space similarly to a hemifield code representation. Taken together, our results reconcile seemingly contradictory views by showing that the representation of space follows closely a hemifield code and suggest that enhanced posterior-dorsal spatial specificity in primates might emerge from this form of coding.