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Abstract

®

CrossMark

We study monochromatic, scalar solutions of the Helmholtz and paraxial wave equations
(PWEs) from a field-theoretic point of view. We introduce appropriate time-independent
Lagrangian densities for which the Euler—Lagrange equations reproduces either Helmholtz and
PWEs with the z-coordinate, associated with the main direction of propagation of the fields,
playing the same role of time in standard Lagrangian theory. For both Helmholtz and paraxial
scalar fields, we calculate the canonical energy-momentum tensor and determine the continuity
equations relating ‘energy’ and ‘momentum’ of the fields. Eventually, the reduction of the
Helmholtz wave equation to a useful first-order Dirac form, is presented. This work sheds some
light on the intriguing and not so acknowledged connections between angular spectrum
representation of optical wavefields, cosmological models and physics of black holes.

Keywords: Helmholtz wave equation, paraxial wave equation, field theory

1. Introduction

Light is an electromagnetic phenomenon which can be
described by a field theory governed by Maxwell’s equations.
These are a set of first-order partial differential equations that
relates electric and magnetic vector fields each other and to
possible sources. However, in many practical instances, a
vector field representation of light appears redundant and a
simpler scalar field description results appropriate. This is not
the case for structured-light beams with nontrivial polariza-
tion patterns as the ones considered, for example, in [1]. In
this paper, we will not consider such a kind of light. Thus,
when a scalar description is appropriate, according to the
characteristics of the phenomenon under investigation,
monochromatic light propagating in free space can be
described either by a field ¢ (x, z) = ¥ (x, y, z) obeying the
Helmholtz wave equation (HWE)

[ * o

+ 2+ L kW) =0, k>0, (1

or by a field ¢(x, z) = ¢(x, y, ) satisfying the paraxial wave
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equation (PWE)

0? 0? ., 0
(@ + 8_y2 + szoa—z)¢(x, 2) =0, ko>0, (2)
where here and hereafter we use the notation x = (x, y) € R2.

In the appendix XI of their book ‘Principles of Optics’,
Born and Wolf derive the energy conservation law for a real,
time-dependent scalar wavefield V(r, ¢) in free space, with
r = (x, y, z) € R [2]. Because of the explicit time depend-
ence of VU (r, 1), a continuity equation expressing the local
energy conservation law could be deduced from the Lagran-
gian form of field equations. For the case of a monochromatic
field of frequency w, Born and Wolf first rewrite the field as
the real part of a time-harmonic complex amplitude, that is
VO(r, t) = Re{U(r, w)e ™'}. Then, they take the time
averages of the energy density and the energy flux vector to
obtain conservation laws involving only the time-independent
complex field U(r, w).

In this work, we pursue the same goal of Born and Wollf,
yet following an entirely different and new approach. Instead
of considering time-dependent monochromatic fields and
erasing such dependence via time averages, we develop an
ab initio time-independent field theory taking the mono-
chromatic Helmholtz and PWEs (1) and (2) as the central
points around which we build a time-independent Lagrangian
field theory [3]. The idea is to deal with action functionals of

© 2019 IOP Publishing Ltd  Printed in the UK
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the form oL 9 oc —o, (an
. oY Oxt 0(0.)
S = fa dr L, ) yield to the two Helmholtz equations
2 2 _
where z; and z, are the limits of integration for the variable z 0"+ kg)y =0, (12)
which is associated with the main propagation direction of the (0% + k)p* = 0, (13)

field, dr = dx dy dz is the volume measure and £ denotes the
Lagrange density (Lagrangian, for short). We require S to be
stationary for arbitrary variations of the field quantities that
vanish at the end points, namely

65 =0, “

in order to infer the Euler—Lagrange equations reproducing
(1) and (2). Thus, in our nonstandard approach, propagation
along the z-axis of a time-independent field obeying either
HWE or PWE, is formally described in the same manner the
time evolution of a time-dependent field is depicted in the
standard Lagrangian formalism.

2. Nonstandard Lagrangian formalism for Helmholtz
fields

In this section, we discuss the classical mechanics of a
complex scalar field ) = (X, z), which is a solution of the
HWE (1)

(0 + k) =0, )

where the Laplacian 0” in the three-dimensional Euclidean
space R? is written as (throughout this paper, we use
Einstein’s summation convention)

82 — aﬂ@# - glwaﬂam (,u’ V= 1’ 2» 3)’ (6)

with g = ¢"¥. The three-dimensional gradient is expressed
as Oy /Ox" = 9,10 = (V, 9,)1, where a point in R? is labeled
by the three coordinates x", with x* = z the longitudinal
coordinate and xk, k = 1, 2 the transverse coordinates. The
two-dimensional gradient of a scalar function f(x, y, z) is
denoted V£ and is defined as

Vf: — €] + — €y, (7)
X

where €; and €, are the orthogonal unit vectors pointing in the
x and y Cartesian coordinate directions, respectively. From
now on, Greek indexes u, v, a, (3, ..., run from 1 to 3, while
Latin indexes i, j, k, [, m, n, ..., take the values 1 and 2.

When the complex scalar field 1) has two independent
real components ; and /,, we may put

Y= @ + ithy) /N2, (8)

Y= (P — i) /2, )

and regard to v and 1™ (instead of 1); and 1,) as independent
fields. In this case, we expect that the two Euler-Lagrange
equations

oL 0

oL 9 oc
oP*

9=, (10)
Ox (D)%)

respectively, when an appropriate Lagrangian £ = Lywg is
chosen. Thus, our goal now is to find a proper Lagrangian
Lywe. To this end, suppose that

Luwg = A "0, 00,1 + B p*ip,
where A, B are real constants to be determined. Substitution of
equation (14) into (10) gives

By —Ad*) =0, (15)

which coincides with (12) if one chooses B = —A k02 A
remains undetermined, therefore we are free to choose A = 1).
Thus, the sought Lagrangian is

Luwe = M9, 0*0,10 — k¢ ¥y

From the action principle, it follows that is always possible to
add a three-divergence to the Lagrangian (16) without altering
the equation of motion (12). Therefore, since

3/1(6#1’1!)*8”1/)) = 6‘“/811,'[1)*81/1/) + 111*321/%

then we can rewrite equation (16) in the following equivalent
form:

(14)

(16)

7)

Luwe = (0 + k¢) .
The Euler-Lagrange equation (10) now simply becomes
oL

PoF = (0% + k3 = 0.

(18)

19)

2.1. Structural aspects
Equation (12) admits separable solutions of the form
P(x, 2) = p(x)e', (20)
where by definition ¢ (x) satisfies
Cox) = (V2 + ki) (X).
Elementary examples thereof are given by plane wave fields

(22)

21

Ypw (X, 2) = exp(ip - X)expliz(ks — p - p)'/?],
with p = (p,, p,) € R?, and by Bessel fields
(X, 2) = Jolko sindo(x? + y»)!/2]exp(izko cos o), (23)

where Jy(z) denotes the zeroth-order Bessel function of first
kind. The ‘frequency’ ¢ can be either real and positive, or
purely imaginary, namely ¢* = —( and ¢* < 0. This can be
seen multiplying equation (21) by ¢*(x) and integrating over
the xy-plane, thus obtaining [4]

o ki [dx )P — [dx [Vox)P
Jdx 1P

, (24)
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where dx = dx dy is the surface element and we assumed
that the field ¢ (x) vanishes for x, y — oo in order to neglect
surface terms. From equation (24), it follows that either
Cz >0, or 42 < 0 whenever

Jax 1o > i3 [ax lewP. @5)
This relation imposes a constraint upon the Fourier spectrum
@(p) of the field ©(x), where p = (p,, p,) € R2. Substituting
the Fourier representation

1 .
— ~ —IpX
o0 = - [dp2pe 26)
into equation (25) yields to
f dp(p* — k) (@) > 0, @7)

where p?> = p,p; = p - p. Therefore, whenever the support of
@(p) is not entirely contained within the circle of equation
p’ = pl2 + 1722 = k02, the field develops purely imaginary
frequencies. This fact will have profound consequences upon
the quantization of (X, z). Since the right side of
equation (24) is always real, it follows that

= () = (M
Using this result in equation (21), we see that (x) and ¢*(x)
satisfy the same equation. Therefore, if p(x) is a given
solution of equation (21), then ©*(x) is also a solution.

We conclude this part by noticing that, irrespective of the
either positive or purely imaginary value taken by (, there are
four linearly independent separable solutions of equation (12),
namely

(28)

U = p(x)els, ¥ = pH(x)e ¢,
¥ = p¥(x)els, Y= p(x)e F.

When ¢ = ¢* all solutions are oscillatory and therefore phy-
sically acceptable. However, when ¢ = i|(] it has

U =pXe 07 ¥ = pFx)e ol
Pr=pf e, g = pxell

and the 1 ’s solutions are exponentially growing as z
increases. Therefore they represent physically acceptable
solutions only for z < 0. Vice versa, the v, ’s solutions are
exponentially decaying and physically acceptable only for
z > 0. For fields associated to optical beams, v, (¢_) and z/)i
(@*) are called evanescent waves when (= i|¢| and
z2>0(@z<0).

(29)

(30)

2.2. Symmetries and conservation laws

In this part, we discuss the symmetries of the Lagrangian (16).
A different discussion can be found in [5]. To begin with, let
us note that such Lagrangian is manifestly invariant under the
transformation

w — e—iA,lp’ w* — eiA’L/J*, (31)

where A is a real constant. From Noether’s theorem, it follows
that there exists a current

. l : oL % oL
fu - i |:¢ 8(8“1@ w 8(8“/)*)]
= %(wm* — *0), (32)
which has a vanishing three-divergence [6—8]
o+ /1:812+V'j20, (33)
namely
(¢8¢ 1/1*(%) —V - (VP — pFVY).  (34)
oz\ 0z

Integrating both sides of this equation over all the xy-plane,
we obtain

8Zfdxj2:—fde~f

=0, (35)

where the right side amounts to the two-dimensional integral
of a two-divergence and then vanishes for fields localized
within a finite region of the xy-plane. This equation states that
during propagation of a monochromatic optical field along the
z-axis, the ‘charge’ C defined as

*
= [ax ( kil aw), (36)
0z
is conserved, that is
ocC
= =0. 37
a2 37

It is instructive to evaluate C for the four fundamental solu-
tions (29). A straightforward calculation gives

Yy — Cp=—2Ce=mMCRe (, (38)
Ui — —C, (39)
Pt — —C, (40)
. — C.=2Ce¥*MC Reg, (41)
where
c= fdx loX) 2. 42)

At first sight, the charges C. seems to depend on z, thus
contradicting the conservation law (36). However, one should
remember that there are only two possibilities for (: either
(=C*=>Im (=0, or (=—C*=Re(=0. In the first
case, we have C, = F2C( and the conservation law (36) is
satisfied. In the latter case C, = 0 = C_ and there is no
conserved charge. Thus, there is no charge associated to
evanescent waves.
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Additional conserved quantities can be calculated in a
straightforward manner from the canonical energy-momen-
tum tensor, which is calculated from the Lagrangian as

oL oL
v9.1/ = al/ au
T T S T T

= ;ﬂﬂ*azﬂﬁ + 3#?#31/1/}* - ;w(éaﬂaaw*aﬁw - k§¢*¢)
(43)

* — 8, L

Note that this tensor is automatically symmetric, namely
I w = T, and, by definition

0
_Zw =0.
ox,,
Since v = 1, 2, 3 this means that there are three conserved
quantities, the ‘energy’ H and the linear momentum vector P
of the field, defined respectively as

H= [ax7% = [ax(00P = [VOP + k3 10P). (45)

(44)

and

P— fdx Te = fdx(a A 8—wv7fi*), (46)
0z 0z
where P* = (H, P) denotes the full three-momentum of the
beam. Therefore, as the beam propagates along the z-axis, the
‘energy’ H and the two components of the linear momentum
P remain constant as a consequence of equation (44), namely
OH . OP
0z oz
As will be shown later, the ‘energy’ H coincides with the
Hamiltonian of the system. However, the expression in
equation (45) is not manifestly positive semidefinite, as a
physically realizable Hamiltonian should be, because of the
negative ‘kinetic energy’ term —|V|>. We will discuss this
point at length later, when proceeding with the quantization of
the field. For the moment, we verify that H is actually positive
semidefinite for the four fundamental solutions (29). After a
straightforward calculation, one finds

b = H =7 [ax(CPlpeoP
= IVe®P + ki le®)F)
=+ 1CPe e [ax [emP,

0 (47)

(48)

where we used the equation of motion equation (21) and
integration by part (discarding surface terms) to pass from the
first to the second expression. The conjugate fields ¢ yield
the same H. Again, equation (48) seems to depend upon the

propagation distance z, but this is not the case because
4+ | = ¢+ ¢*) = 2 ¢ Re( which implies that

(=¢* = (=|¢P when Im (=0, 49)
(=—-C* = (*=—|C* when Re(=0.
Therefore, using equation (49) into (48), we obtain
2 > — [*
H= 206720, ¢=¢% (50)
0’ C = _C*’

where C is given again by equation (42). This nice result
shows that the evanescent waves do not contribute to the total
energy of the field.

In a similar manner, we can now calculate P and the
outcome is

by — P =42 Re  eF21m¢ fdx go*(x)(l_v)cp(x)
l

=42 Re ( ¢F2Im¢ fdpp ()%,
(€]

where the Fourier representation equation (26) has been used.
The conjugate fields ¢ yield the same P. Also in this case
the z-dependence of P is only deceptive because we can
always rewrite equation (51) as

£2¢ [(app [E@F, <= ¢
0, C=—C*

Once again, the physical transverse linear momentum P does
not receive contributions from the evanescent waves.

Finally, it is of some interest to note that equation (44)
also follows an interesting continuity equation connecting the
linear momentum density 2’ = .7 3 with the linear momen-
tum transverse flux density 79 [9]:

P= (52)

o . 0 .
—P'+ —97 =0, 53
py o (53)
where
TV = 0¥ 9hp + 90p O* — §9(|0. 0P — kg [0 ).
54

This equation (53) simply tells us that variations of the
transverse linear momentum density during possibly occur-
ring during propagation, are compensated by the transverse
variations of .7 ",

Since our canonical energy-momentum tensor is sym-
metric, we can construct an additional conserved tensor
density:

%)\ILLV = xug‘)\u — XY 0‘/\;1, (55)

such that

8)\%>\/W = g _ gk — (). (56)

To proceed further, first we rewrite explicitly equation (56) as

iﬂlﬂﬂ + i%mw + Q%MV =0.
0z

O\ =
Ox Oy

(57)

Then, we integrate term by term over the xy-plane obtaining

9 B3uv . __ 9 lpv | _ 0 2uv
a—zfdxﬂ/ = fdx(_ﬁxﬂl ) fdx(—ay M ]
(58)

The two terms at the right side of this equation can be dis-
carded under the assumption that the fields and their deriva-
tive fall off sufficiently fast at infinity. Thus, we recover the
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well-known conservation law [6]:

a% f dx M3 = 0. (59)

However, it should be reminded that particular care must be
taken when handling equation (58) because of the risk of
improper manipulation of the surface terms [10]. To proceed
further, it is useful to define the conserved angular momentum
tensor as

Jw = f dx M3 = f dx _gm, (60)

where

f/w = xhPv _ xugu’ (61)
with 2 = 773" From the definitions above, it follows that
JH is antisymmetric, namely ##* = 0 (no sum over repe-
ated indices) and #" = — ¢"F. Moreover, using the only
three independent Cartesian components of ¢, we define
the ‘angular momentum density vector’ as
1

j,\ = 55)\/11/%#” = (f23’ ]319 le)’ (62)
where ¢,,, denotes the totally antisymmetric three-dimen-
sional Levi-Civita symbol. Using equations (55), (61) into
(62) we obtain

I =yP. — 22, (63)
g, =P — x, (64)
S =xP, = yP. (65)

The corresponding fotal angular momentum components are
straightforwardly calculated by integrating the relations above
to obtain J\ = ¢, J*" /2, where equation (60) has been used.
Explicitly, integration both sides of equations (63) and (64)
over the xy-plane gives

Je=y(@) — B, (66)

J, =P — X (2), (67)

where we have defined

7@ = [axp2),  and 7@ = [dxG2), ©9)
and equation (46) has been used. For fields such that 2, > 0,
the vector X(z) = €,X(2) + €7 (z) can be interpreted as the
centroid of the energy distribution on the xy-plane. Then,
deriving both sides of equations (66), (67) with respect to z
and using the conservation laws (47) and (59) we obtain the
equations of motions of the centroid of the field

dy(z):PV’ and 45O _p
dz | dz

(69)

which reproduce the laws of rays propagation in geometrical
optics [11].

It is enlightening to calculate explicitly J, for the fields
(29). After a lengthy but straightforward calculation, one finds

e — U

= +2 Re ¢ e M ¢ [dx <p*(x)(xl.i - yl.i]gp(x),
i Jy i Ox
(70)
where 2Re ¢ exp(—2zIm ) = 2 ¢ for ( = ¢* and it is equal
to zero for ¢ = —¢*. Once again, the ‘unphysical’ evanescent
waves generated by the angular spectrum representation do
not carry angular momentum. From equation (70), it follows
that J, is conserved along with propagation because
0J;/0z x Re ¢ Im { = 0, the latter equality being a con-
sequence of the fact that ( is either real or purely imaginary.
The conjugate fields ¢* produce the same J..
One more continuity equation may be derived by
rewriting equation (56) with the help of equation (60), as
i 174 i i
aZ/ + ax"% 0.
Multiplying both sides of this equation by ¢y, /2 and then
summing over repeated indices, we obtain

0
Ox!

where we have defined the angular momentum flux density as

(71)

9 v Qg (72)
0z

P = %6,\HV</%”‘”. (73)
This quantity differs from the homonym one introduced by
Barnett [9] in that ¥ ’/\ is time-independent.

In conclusion, in this section we have shown that all the
relevant physical quantities as energy, linear and angular
momenta vanishes for evanescent fields. Thus, the latter
appears more as virtual fields that do not correspond to any
real physical field. However, as we shall see later, they are
necessary to preserve unitarity [12].

3. Hamiltonian formalism

Propaedeutical to the quantization procedure, which will be
carried out in part I, is the introduction of the Hamiltonian
formalism for equation (1). The procedure for passing from
the Lagrangian to the Hamiltonian representation of the field
is standard [6]. First, we write down our Lagrangian (16) as

L = 0% 0 — kg P, (74)

where, for the sake of clarity, we omitted the subscript
‘HWE’. Then, we determine the fields II(x, z) and IT*(x, z)
canonically conjugate to ¥ (x, z) and 1*(x, z), respectively

oL - 0L _ 4

= = O3, -7
a2 D(Ds1)

The Hamiltonian density # is defined in terms of the four
fields 1, 11, 4*, IT* as usual:

H =11 03 + T*039* — L
=11 — Vo* - Vb + kg™,

(75)

(76)
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Inverting the relations (75) to express the field derivatives in
terms of the conjugate momenta, and using this result in
equation (76), we obtain

H = 030*Oxp — §U0* O + k¥, (77)
which shows that actually # = 7 33, as previously stated.
The reader familiar with quantum field theory of tachyons,
will appreciate the similarity between equation (77) and the

Hamiltonian of a Klein—Gordon field with purely imaginary
mass [13, 14].

Now we are going to show that the canonical Hamiltonian

H:fdx% (78)

is naturally partitioned in a ‘propagating’ and an ‘evanescent’
part. Interestingly, the same phenomenon manifests in the
quantization of scalar fields near rapidly rotating stars [4] and in
cosmological models of universes with unstable modes [15]. In
the latter case, the propagating and evanescent parts are quite
suggestively dubbed ‘light’ and ‘dark’ components of the
Hamiltonian, respectively [16].

At any position z the fields II(x, z) and ¥ (X, z) can be
expanded in terms of the Fourier transform representations:

1 ipx
b2 = - [dpOm. e (79)

and

M(x, 2) = - [ap P, e, (80)
2w

where the complex amplitudes Q(p, z) and P(p, z) are z-

dependent. The minus sign in the exponential in equation (80)

is not a typo. Substituting equations (79), (80) into (78) we

obtain, after some manipulation

H = [dplP*®, DP®, 2) + ki = p) 0B, DO, 2,
81)

where p? = p - p. It is clear that either (i =ki—p*=0
for p? < koz, or Ci <0 for p* > koz. In any case, the
z-derivatives of P and Q are given by the Hamilton equations

0 6H
—Pp,2) =—

R — 82
82 6Q (P’ Z) ( )

=—(, 0%(p. 2
and

= P(p, 2), (83)

0 6H
—0f(p. ) = ———
0z 6P*(p, 2)
and their conjugates. Here the symbol 6F [ f]/6f [¢t] denotes
the functional derivative of the functional F[f] [17]. Deriving
equation (82) with respect to z and using equation (83) yields
the equation of motion of Q(p, z) and O*(p, z):
92

(— + <§,)Q<p, 2) =0.

922 ®9

Before solving this equation, we turn back to
equation (81) to rewrite it as H = H; + Hp, where the sub-
scripts ‘L’ and ‘D’ stand for light and dark, respectively, with

Hy = [dp[P¥(p, 2P(p, 2) + ( 0*(p, )Q(p, 2)]

x Olkg — ph), (85)
and
Hp = [dp[P*(p, 2)P(p, 2)
— 1¢,P0%(. 20(p. 210(p* — k), (86)

where O(z) denotes the Heaviside step function. It will be clear
later that the ‘dark’ part of the Hamiltonian does not contribute
to physical quantities. Equation (85) clearly represents the
Hamiltonian of a continuum set of harmonic oscillators,
because @(ko2 — p2)Ci > 0. However, equation (86) expres-
ses the Hamiltonian of a continuum set of repulsive (or,
inverted) harmonic oscillators which are known, in quantum
mechanics, to do not possess neither square-integrable eigen-
states, nor a lower energy vacuum state (Hp is not bounded
from below, as we shall see soon) [15]. Therefore,
equation (84) naturally splits in two independent equations of
the form

(g—; + |<,,|2)Qi(p, =0, 87)
whose solutions are
0+(p, 2) = cra(Pe1Y + i p(Pe 1ol (88)
and
0-(p, 2) = c_ (Pl 19 + e (pevls, (89)

where c. 1(p) and c4 ,(p) are arbitrary functions of p solely.
The corresponding P.(p, z) are straightforwardly calculated
from equation (83):
0 i o .
P(p,2) = 3—ZQ1<(P» 2) = —iC, (e} () e — ¢ H(p)e’r?),
(90)

P(p.2)= (%Qi‘(p, 2

==l ((p) e 191 — Fopyelsls), (9D

where from now on we drop the redundant symbol 1C)l
whenever (, = |(,|. Substituting equations (16)~(19) into
equations (13) and (14) one obtains

H =2 [dp Clleca®P + lero®@PIOK] = p2). (92)
and
Hp=—2 [dp |(,P(c* (p)c_2(p)
+ e 1(P)O(P? — ki)

Since ¢* ¢ + ¢ 1c*,=2Rec*c_, has not a definite
sign and can take any value, it is clear that Hp, is not bounded
from below.

93)
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3.1. Recovering the angular spectrum representation

To make a connection with the angular spectrum theory in
classical optics [18], let us begin by remarking that in free
space, the diverging and converging exponential functions in
equation (89) cannot both represent physical solutions of
equation (87) for z either positive or negative, since
unbounded exponentially growing functions cannot belong to
the spectrum of a realistic physical theory. Therefore, we must
require that

(94)

c_»() =0, z>0,
c_1(p)=0, z<0.

However, this means that cjl(p) c_»(p) = 0 everywhere and,
consequently, Hp = 0. Therefore, the ‘dark’ component of the
Hamiltonian does not contribute to the physical energy of
the field.

As shown through a wealth of details by Mandel and Wolf
in [18], the angular spectrum of a wavefield is uniquely deter-
mined in the half-space z > 0 (z < 0) for well-behaving for-
ward (backward) propagating fields. Let us fix, from now on,
z = 0 for the sake of definiteness. In order to recover standard
the angular spectrum from our equations (88) and (89), we have
to choose cy 1(p) = c_1(p) = a(p) and cy(p) = 0, where
the amplitude a(p) is the quantity customarily dubbed ‘angular
spectrum’. In this case, we can rewrite the original field ¢/ (x, z)
in the following form:

1 ip-x
bz >0 =— [dpom. e

1 .
= o= [ a0 P10 90GE — p?)
+ 0-(p, DO(P* — k)]

S [ dpa) e e, 95)
27
where the last equality follows from the fact that
et = IOk, p? < k(i’ (96)
et = e 1517, p? > kg,

where {, = +(k§ — p?)!/2. Substituting equation (95) into (77)
and integrating over the xy-plane, one obtains

H= [axr
=2 [dp ¢, Re ¢, e ™G la)P
=2 [(dap 1a®PC O] — p?),

where Cf) 6(/{02 — p?) > 0 by definition. This Hamiltonian is
manifestly positive semidefinite and, therefore, physically
acceptable. Moreover, equation (97) trivially implies that
oH _
0z

which shows that energy is conserved during free propagation of
wavefields represented in the angular spectrum form.

o7

0, (98)

3.1.1. Effective-Lagrangian theory for the angular spectrum.
Comparing the first and the last lines of equation (95), one
sees that

a(p) = Q. 0). (99

0(p. 2) = a(p)e’s* =
However, by definition Q(p, 0) is the inverse Fourier
transform of v (x, 0). Therefore, the angular spectrum a(p)
is uniquely determined by the knowledge of ¢(x, 0) solely.
This seems to be in contradiction with equation (84) which is
a second-order differential equation whose uniqueness of the
solution require the knowledge of both

90(p, 2)

= P*(p, 0). (100)
0z z=0

and

O(p. 2)l:=0

The clarification of the foregoing apparent paradox lies in the
observation that if we derive with respect to z both sides of
the leftmost part of equation (99), we obtain

( )

=i, 0(p, 2),
which is a first-order differential equation. For reasons that
will be soon clear, let us define

Q(p. 2) = Al(p, )O*( — p*) + A-(0. DO — k3),
(102)
where the presence of A_ instead of A* in the equation above

is not accidental. Then, equation (101) yields to two
independent first-order equations of motion

C%A+(p, )= —i¢A.(p. 2). and

0
a_ZA—(p’ Z) = _|<p| A—(p’ Z)’

which can be derived from the effective first-order
Lagrangians £, and £_ defined as

(103)

L, = —%(A+81Af — ATOAL) — CAFAL,  for

¢, =t (104)
and
L= %(A,@ZA, —A0A)—IGIA A, for
6= (105)

From the latter equation follows that A_(p, z) obeys the
equation of motion

o - _
8_ZA7(p’ Z) = |Cp| A*(p9 Z)-
Therefore, A_(p, z) = A*(p, z) and it must be regarded as an
independent variable. If we choose both variables A_(p, z)
and A_(p, z) reals, then also £_ is real and it becomes a
physically admissible Lagrangian. However, while the
Hamiltonian density

°#+ = Cp |A+ |2

(106)

(107)
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is positive semidefinite, the same is not true for Therefore, iterating equation (113), we find
= A A 108 0? , 0? , 0% 0?
ICPI ’ ( ) —aqu = 815 + « (915 +(0¢10(2+042041) xg
because A_ and A_ can take, independently, any real value. ‘ Y
Last but not least, it should be noticed that the solutions + k(a1 + ﬁal) ¢
of equation (106) are, evidently, exponential functions 1/1
diverging for z — oc: + kE(anf + ﬂaz) + B2k
A(p,2) =A_(p,0) €Sz, (109) ) )
:__aw__(w_kg (114)

This is really curious: although we had removed ad hoc such
‘unstable’ solutions from the expression (95) of the field, they
entered back in the game to ensure the existence of a proper
Lagrangian £_. Indeed, if in equation (105) one replaced A_
with A*, the corresponding Lagrangian would become
complex.

4. Helmholtz equation in dirac form

In the foregoing section, we have seen that the angular
spectrum of a field obeys a first-order differential equation.
However, this is not the only way to reduce the Helmholtz
equation to a first-order form. To show this, let us rewrite the
HWE in the compact form

7y

o = (VDY

(110)

where, as usual in this work, V2 = 32 + 82 A formal
solution of this equation can be written in an operator form as

Y(x, 2) = eV §(x, 0). (1)
Here, the ‘Hamiltonian’ differential operator
= V2 4+ kg, (112)

is reminiscent of the Hamiltonian of a relativistic free particle

p*c? + m*c*. The problems with our H in
equation (112) are the same ones encountered in quantum
mechanics when extending the Schodinger equation to the
relativistic regime. The square root operator on the right in

equation (112) contains all powers of the V operator. Even

worst, in our case V2 ~ —pz. Therefore, \/ —p? + k02 even

becomes purely imaginary for p? > ki hence, apparently,
breaking down the unitarity of the theory. In quantum
mechanics, this problem was brilliantly solved by Dirac who
managed to reduce the second-order differential equation in
equation (110) to a first-order form, without altering the
physics of the problem.

Following in Dirac’s footsteps, first we write a first-order
equation of the form

W02 0,2

= + ap— + fk 113
9e ~ o Bki ), (113)

and then we try to determine the unknown coefficients a;, 3
by imposing that 1) must also satisfy the second-order HWE.

The first two and the last lines of equation (114) coincide
providing that

o =a3=-1,
arap + apaq =0,
a;8 + Ba; =0,

FhG=-1.

It is not difficult to verify that the equations above are satis-
fied by choosing

T A .. (0 1
Q) =101 = ; 0,042—102— 10)/)

Bko = io3 = ((l) _Ol.),

where o, are the Pauli matrices. Differently from the Dirac’s
theory, here all the as and (3 matrices are anti-Hermitean.
Then, we can rewrite equation (113) as

(115)

gd)(X, Z) = i(dli + 0'2i + g3 k(])¢(x, Z), (116)
Z

Ox Qy
where the original scalar field ¢)(x, z) must be now regarded
as a doublet

(117)

wx@=(%“ﬂj

Uo(x, 2) )

The appearance of the two functions ; instead of the unique
original one v, may be hardly surprising as clearly explained
by Messiah [19]. Indeed, the solution of a second-order
differential equation with respect to z, as the HWE is, requires
the knowledge of both ¢ (x, z) and 0,4 (X, z) evaluated at the
initial position z = 0. Therefore, converting the second-order
HWE to a first-order Dirac form without loosing information,
necessarily introduces a two-component wavefield.

In order to find a Lagrangian for equation (116) it is
convenient first to rewrite it in the more suggestive form

("0, + ko) = 0, (118)
where the three 2 x 2 matrices v are defined as:
Y= —ioy, 'yz = ioy, 73 = 03. (119)
Then, if we define ) = ¢, with (¢, = UF, we can
straightforwardly write down the Lagrangian as
L = @in'd, — ko). (120)
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5. Conclusions

In this first part of our two-part work, we have mainly devel-
oped a Lagrangian theory for scalar, monochromatic optical
fields. Our approach is unconventional in that we consider the
coordinate z of a Cartesian reference frame attached to a beam
of light and parallel to the propagation direction of the latter, in
the same way the time ¢ is considered in ordinary field theory.
In this way, we are able to determine exact conservation laws
for several physical quantities and we can highlight the dif-
ferent roles that propagating and evanescent waves have in the
description of optical beams. Moreover, this theory also serves
to establish the basic formalism before proceeding with the
‘phenomenological’ quantization of both Helmholtz and
PWEs, which will be presented in part II.
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