English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Inhibited coagulation of micron-size dust due to the electrostatic barrier

MPS-Authors
/persons/resource/persons4670

Ivlev,  A. V.
Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society;

/persons/resource/persons133043

Caselli,  P.
Center for Astrochemical Studies at MPE, MPI for Extraterrestrial Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Akimkin, V. V., Ivlev, A. V., & Caselli, P. (2020). Inhibited coagulation of micron-size dust due to the electrostatic barrier. The Astrophysical Journal, 889(1): 64. doi:10.3847/1538-4357/ab6299.


Cite as: https://hdl.handle.net/21.11116/0000-0006-54D0-0
Abstract
The collisional evolution of solid material in protoplanetary disks is a crucial step in the formation of planetesimals, comets, and planets. Although dense protoplanetary environments favor fast dust coagulation, there are several factors that limit the straightforward pathway from interstellar micron-size grains to pebble-size aggregates. Apart from the grain bouncing, fragmentation, and fast drift to the central star, a notable limiting factor is the electrostatic repulsion of like-charged grains. In this study we aim at theoretical modeling of the dust coagulation coupled with the dust charging and disk ionization calculations. We show that the electrostatic barrier is a strong restraining factor to the coagulation of micrometer-size dust in dead zones of the disk (where the turbulence is suppressed). While the sustained turbulence helps to overcome the electrostatic barrier, low fractal dimensions of dust aggregates can potentially block their further coagulation even in this case. Coulomb repulsion may keep a significant fraction of small dust in the disk atmosphere and outer regions.