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Abstract 

Predicting the stereochemical outcome of chemical reactions is challenging in mechanistically 

ambiguous transformations. The stereoselectivity of glycosylation reactions is influenced by at 

least eleven factors across four chemical participants and temperature. A random forest 

algorithm was trained using a highly reproducible, concise dataset to accurately predict the 

stereoselective outcome of glycosylations. The steric and electronic contributions of all 

chemical reagents and solvents were quantified by quantum mechanical calculations. The 

trained model accurately predicts stereoselectivities for unseen nucleophiles, electrophiles, acid 

catalyst, and solvents across a wide temperature range (overall root mean square error 6.8%). 

All predictions were validated experimentally on a standardized microreactor platform. The 

model helped to identify novel ways to control glycosylation stereoselectivity and accurately 

predicts previously unknown means of stereocontrol. By quantifying the degree of influence of 

each variable, we discovered that environmental factors influence the stereoselectivity of 

glycosylations more than the coupling partners in this area of chemical space. 

 

Predicting the outcome of an organic reaction generally requires a detailed understanding of the 

steric and electronic factors influencing the potential energy1,2 surface3 and intermediate(s).4 

Quantum mechanical calculations have significantly increased our ability to identify and 

quantify these factors. However, the correlation of these physical properties with reaction 

outcome becomes exceedingly challenging with each increase in dimensionality (e.g., 

additional reaction participants, pathways). Layering onto this the additional and often subtle 

nuances impacting the regio- or stereoselectivity5 of a reaction complicates proceedings.  

Machine learning is a powerful tool for chemists6,7 to identify patterns in complex datasets from 

composite libraries or high-throughput experimentation.8 Chemical challenges including 

retrosynthesis,9  reaction performance10 and products,11,12 the identification of new materials 

and catalysts,13,14,15 as well as enantioselectivity16,17 have been addressed. However, a 

significant challenge is predictability of reactions involving SN1 or SN1-type mechanisms18 in 

the absence of chiral catalysts/ligands,19 due to the potentially unclear mechanistic pathways 

resulting from the instability of the carbocationic intermediate.16,17,20  

Glycosylation is one of the most mechanistically complex organic transformations,20,21,22 where 

an electrophile (donor), upon activation with a Lewis or Brønsted-Lowry Acid, is coupled to a 

nucleophile (acceptor) to form a C-O bond and a stereogenic center. This reaction involves 

numerous potential transient cationic intermediates and conformations and can proceed via 



mechanistic pathways spanning SN1 to SN2.23 The stereochemical outcome is determined by 

more than eleven permanent (defined by the starting materials) or environmental factors 

(defined by the selected conditions/catalyst) whose degree of influence, interdepency, and 

relevance is poorly understood.20,24,25 A systematic assessment of these factors on a flow 

platform allowed for the isolated interrogation of these variables. The empirical study identified 

general trends/influences of these factors (Figure 1) and hypothesized their relative rankings 

with respect to dominance.24 However, a data sciences approach is required to fully understand 

and apply this knowledge for the accurate prediction of stereoselectivities of new coupling 

partners and conditions. 

 

Figure 1. General representation of the potential mechanistic pathways of glycosylations 

leading to either the alpha () or beta () anomer of the formed C-O bond. The empirically-

derived permanent and environmental factors and their influence on stereoselectivity are 

provided.24  

We have trained a random forest algorithm using a dataset of glycosylation reactions with a 

variety of stereoselective outcomes to accurately predict the stereoselectivity of new 

glycosylations, varying coupling partners, acid catalyst, solvents, and temperature. Regression-

based random forest algorithms have proven powerful in modeling chemical reaction 

performance.10,26 This algorithm generates several weak models in the form of decision trees. 

The nodes of each of these decision trees are generated by random shuffling of the descriptors 

in the training set. The final model is an “ensemble” of a combined weighted sum of the decision 

trees, representing a collective decision of all individual trees that generate good predictions 

and reduces overfitting.  The learning performance of the algorithm can be significantly 

enhanced by hyperparameter tuning (see Supporing Information).27 Due to the heterogeneous 

nature of the descriptors in this work (vide infra), each tree was generated using the CART 

(classification and regression tree) algorithm with pruning, which does not require 

preprocessing or normalization.28 An interaction-curvature algorithm was further utilized to 

reduce the selection bias of the split predictors of the standard CART algorithm (Figure 2).  



 

Figure 2. a) General workflow of the process from data input to prediction output. b) Calculated 

descriptors – either regressor or categorical – address the steric and electronic components of 

all chemical species in the reaction. S.A – surface area.  

A set of numerical descriptors that accurately describe the relevant steric and electronic 

parameters of all reaction participants – starting materials, reagents, and solvent – is key to 

building an accurate, extrapolatable model to predict the subtle nuances of stereoselectivity. 

The concise nature of the training set (268 data points, see SI)29,30 renders manual selection of 

descriptors – quantifying sterics/electronics – using chemical intuition31 particularly 

important.32 The training set is a lightly modified version of the dataset presented in our 

previous work,24 removing two subsets of data (variance of the residence time and acceptor 

equivalents) and adding data for -glucose donor (Table S1, lines 68-74, 101-106) and three 

additional solvents (Table S1, lines 238-268).  

Structures of all starting compounds were optimized, and DFT calculations performed at the 

B3LYP 6-31G(d) or B3LYP 6-311G(d) levels of theory using SPARTAN (see Supporting 

Information). The lower level of theory was utilized for optimization of the donor molecules 

due to their size, and the values obtained were acceptable compared to those obtained at the 

more computationally expensive 6-311G(d) level of theory. The maximum number of potential 

descriptors per model was set to 18 to avoid overfitting.33,34 The best-performing descriptors 

for each participant class were determined by the accuracy of the resultant trained models in 

predicting stereoselectivities of the entire validation dataset, containing variations in each 

participant class (electrophile, nucleophile, catalyst, solvent). Ten descriptors were identified 



that, along with temperature, allow for the assignment of quantified values to the relevant 

steric/electronic properties of the chemicals involved.  

The descriptors identified, described below, are either classified as regressors (intra-

/extrapolatable values) or categorical (binary values). While the model can be developed solely 

using regressor values, it exhibits marginally poorer overall accuracy for the validation set 

tested and necessitates additional calculations (see Supporting Information and discussion 

below). The ability to interchange descriptors will facilitate the expansion of the developed 

model into adjacent or similar chemical subspaces as well as for multi-stage predictive 

algorithms, designing both reagents and environmental conditions to maximize the 

stereoselectivity of the desired transformation. 

The key parameters needed to describe the electrophile were differences in the reactivity of the 

anomeric position and the orientations of the pyran ring substituents that may influence the 

selectivity through both conformational preferences35 and hyperconjugative interactions.36,37 

The different leaving groups at the anomeric position were distinguished using the calculated 
13C NMR chemical shift,38 which provided more clear distinctions between leaving groups than 

the 1H NMR shift39 of the anomeric proton. The relative orientations of the ether moieties 

around the pyran presented a challenge for descriptor selection, as our model performed well 

with both regressor and categorial descriptors. The accuracies of the three best performing 

descriptors (proton J-couplings around the ring, dihedral angles of the C-O bonds, and treating 

the relative axial/equatorial orientations of the substituents as binary) are shown in Figure 3. 

The binary classification is the most accurate and represents the simplest descriptor, and the 

loss of additional/more nuanced information provided by regressor values is, at present, 

acceptable.  

  

Figure 3. a) Three potential means of describing the stereochemistry of the ether groups around 

the pyran core. b) Parity plot of the resultant models using each set of descriptors for the donor 

(all also including the calculated 13C NMR shift of C1). c) Three-dimensional map of the donor 

chemical subspace covered by the developed model, defined by the orientation of the C2 and 

C4 substituents on the pyran ring and the calculated 13C NMR shift of C1. Glc – glucose, Gal – 

galactose, Man – mannose, Bn – Benzyl, TCA – trichloroacetimidate, SEt – ethylthio. 

Observed nucleophile reactivity has been correlated with a range of parameters.40,41,42 Where 

available, Mayr’s nucleophilicity and Field inductive parameters correlate with glycosylation 

stereoselectivity.43 To ensure general applicability, the 17O NMR chemical shift of the oxygen 

nucleophile was calculated to capture the relevant hyperconjugative influences. The steric 



environment of the nucleophile was described by the exposed surface areas of the oxygen and 

-carbon in a space-filling model (Figure 4). While screening whether simple categorical 

descriptors can be utilized, specifically the whole values 0-3 to describe the substitution at the 

-carbon, we found that the regressor value proved superior (see Supporting Information).  

  

Figure 4. Three-dimensional map of the acceptor chemical subspace covered by the developed 

model, defined the by the exposed surface areas of the nucleophilic oxygen and the carbon 

alpha to the nucleophile as well as the calculated 17O NMR shift. MeOH – methanol, EtOH – 

ethanol, iPrOH – isopropanol, tBuOH – tert-butanol, 2F-EtOH – 2,2-difluoroethanol, 3F-EtOH 

– 2,2,2-trifluoroethanol. 

The chosen environmental conditions – solvent, acid catalyst, and temperature – are even more 

influential on the stereoselectivity than the intrinsic properties of the nucleophile and 

electrophile (vide infra). While regressor values for similar species have been calculated 

previously, the identification of the descriptors for acid catalysts relevant to this transformation 

was critical. The conjugate base of the acid catalyst has a significant impact on glycosylation 

stereoselectivity,44 as evidenced by several studies observing an -triflate intermediate20,45 – 

the product of the conjugate base trapping the oxycarbenium ion.46 Two values were identified 

that capture the nuanced role of this species (Figure 5a): the HOMO energy value of the 

conjugate base and the exposed surface area of the oxygen or nitrogen anion in a space-filling 

model.  

While the influence of the solvent in glycosylations has been categorized by polarity and 

donicity (coordinating ability) values,20 donicities are experimentally derived values and only 

available for select solvents. The calculated minimum and maximum electrostatic potentials 

describe the ability of the solvent to stabilize and interact with charged intermediates (Figure 

5b). These descriptors perform well, such that even previously unreported means of solvent-

control over stereoselectivity are accurately predicted (vide infra).  

 



 
Figure 5. a) Plot of the descriptors used to quantify the relevant factors of the conjugate base 

of the activator. Area (Å2) corresponds to the exposed surface area of the oxygen (O-) or 

nitrogen anion (N-) in a space-filling model. HOMO: highest occupied molecular orbital (eV). 

b) Plot of the descriptors used to quantify the relevant factors of the solvent. The maximum 

(MaxElPot), and minimum (MinElPot) values of the electrostatic potential(kJ/mol). Tf2NH – 

bis(trifluoromethane)sulfonamide,  TfOH – trifluoromethanesulfonic acid, FSO3H – 

fluorosulfonic acid, MsOH – methanesulfonic acid,  DCM – dichloromethane, CHCl3 – 

chloroform, tBu-benzene – tert-butylbenzene, MTBE – methyl tert-butylether, ACN – 

acetonitrile. 

The tuned random forest algorithm was trained using these descriptors on a dataset24 containing 

systematic combinations of seven electrophiles, six nucleophiles, four acid catalysts, and seven 

solvents over a solvent-dependent temperature range of -50 to +100 ˚C (see Supporting 

Information). For comparison, three additional models were trained using gaussian process 

regression, support vector machine, and regression tree algorithms. Random forest proved 

superior (see Supporting Information). The model was then used to predict the 

stereoselectivities of a set of out-of-sample glycosylations varying each of the four chemical 

species in the reaction over the accessible temperature ranges. The predictions were validated 

experimentally using a microreactor platform.24 The results of these predictions and validations 

are presented as the percentage of alpha product formed versus temperature. The corresponding 

parity plots for each of the out-of-sample sets are also provided (Figure 6).  

The selectivity of electrophiles bearing phosphate leaving groups is accurately predicted to be 

similar24 to those of glycosyl imidates and thioethers for glucose, galactose, and mannose 

donors, with a combined root mean square error (RMSE) of 2.0 (Figure 6a). The model can be 

applied to other pyran cores, such as L-fucose.47 The predicted stereoselectivity of the fucose 

-glycosyl imidate donor with isopropanol matches well with the experimental data (RMSE: 

5.0), favoring the -anomer at low temperatures and exhibiting a decrease in stereoselectivity 

with an increase in temperature (Figure 6b). 

While the training set contains only simple alkyl alcohols as nucleophiles, the model accurately 

predicts the stereoselectivities of disaccharide formation. The predicted values for the coupling 

of -galactose imidate with both glucose and mannose C6 alcohols matches well with the 

experimental data, albeit predicting a less -selective process than observed (RMSE: 6.9 and 

4.2, Figure 6d/e, respectively).  

The model predicts more α-selective processes than experimentally observed in glycosylations 

using superacid 4,4,5,5,6,6-hexafluoro-1,3,2-dithiazinane-1,1,3,3-tetraoxide (C3F6S2O4NH) as 

acid catalyst. This deviation is seen at lower temperatures with galactose, however, the trend is 



correct and has a low RMSE (5.5, Figure 6g). The weakest correlation of our model is observed 

for the C3F6S2O4NH-activated mannose coupling with isopropanol in DCM (RMSE: 19.3). 

Here, a stereoselective plateau is predicted at low temperatures with αselectivity around 60% 

– as was observed experimentally for other activators with mannose.24 However, 

experimentally the -mannosylation product is mainly formed at low temperatures (-50 ̊ C, 63% 

-product). This finding is highly unexpected as -mannosylation is challenging, generally 

requiring locked donor configurations.21 With C3F6S2O4NH, the perbenzylated donor ranges 

from a 63% -selectivity at -50 ˚C to 98% -selectivity at 30 ˚C (Figure 6h).  

Finally, the stereoselectivities of glucose and galactose -imidate donors with isopropanol were 

predicted for two new solvents (Figure 6j/k). The strong influence of solvent48 on the 

stereoselectivity of glycosylations is nicely captured by the descriptors chosen, and the model 

is accurate across a wide temperature range for both α,α,α-trifluorotoluene (RMSE: 6.2) and 

1,4-dioxane (RMSE: 4.5).  



 
Figure 6. Prediction of stereoselectivity for glycosylations using different anomeric leaving 

groups, electrophiles, nucleophiles, activators, and solvents. a) Prediction of stereoselectivity 

for glycosylations involving a glycosyl phosphate leaving group. Bu – butyl, Ph – phenyl, 

RMSE –  root mean square error. b) Prediction of stereoselectivity using a fucose (Fuc) donor 

with iPrOH in DCM. c) Parity plot of donor (electrophile) predictions. d,e) Prediction of 

mannose and glucose acceptor, respectively, with galactose -imidate donor in DCM. f) Parity 

plot of acceptor (nucleophile) predictions. g) Prediction of 4,4,5,5,6,6-hexafluoro-1,3,2-

dithiazinane 1,1,3,3-tetraoxide (C3F6S2O4NH) activator with galactose donor and iPrOH 

acceptor in DCM. h) Prediction of C3F6S2O4NH with mannose donor and iPrOH in DCM. i) 

Parity plot of activator (acid catalyst) predictions. j) Prediction of α,α,α-trifluorotoluene (3F-

toluene) solvent with glucose -imidate donor and iPrOH in DCM. k) Prediction of 1,4-dioxane 



solvent with galactose -imidate donor and iPrOH in DCM. l) Parity plot of solvent predictions. 

Figure code: fucose (); glucose (▲); galactose (); mannose (); experimental (data points); 

predicted (solid colored line). 

While the descriptors were chosen based on the current understanding of glycosylations, we 

wondered whether the model could also navigate newly discovered mechanistic peculiarities 

that influence stereoselectivity. One factor that is generally not considered significant while 

performing glycosylations is the orientation of the anomeric leaving group.49 No influence of 

the /-orientation of the leaving group in dichloromethane was reported (Figure 7a),24 and 

divergences in stereoselectivity based on this factor have sparingly been observed in the 

literature, e.g., when phenylsilicon trifluoride (PhSiF3) is used as a catalyst.50 

The ability to use solvent to turn on and off the influence of leaving group orientation on 

glycosylation stereoselectivity has, to the best of our knowledge, not previously been reported. 

While essentially identical behavior is observed in DCM and chloroform, a slight divergence 

in MTBE at low temperatures is observed, with an 11% difference at -50 ˚C where the -donor 

reaches 96% -selectivity. This variable becomes important in toluene. Glucose -imidate 

donor yields almost unchanged stereoselectivity (~60% alpha) over a 120 ˚C range! The 

orientation of the leaving group of the donor influences the stereoselectivity by more than 40% 

at -50 ˚C (Figure 7b). 

With this limited data in our training set (Figure 7a/b), we tested the ability of our model to 

predict the influence of other factors on this to-date unreported phenomenon. The 

stereoselectivity of glucose α-imidate with ethanol as acceptor ranges from 10 – 54% α-product 

in toluene. The model predicts that the -donor will behave differently, with a much less 

selective coupling overall (37% – 56% α-product). This prediction matches well with the 

experimental results, with an RMSE of 4.4 over the 120 ˚C range, though the process is less α-

selective than predicted at low temperatures (Figure 7c). Conversely, the model predicts a less 

α-selective reaction at low temperatures than observed with t-BuOH as acceptor, though at 

higher temperatures, the prediction matches well with the experiment (RMSE: 6.4, Figure 7d).

Lastly, we sought to explore whether this additional mechanistic complexity exists for other 

electrophiles (Figure 7f/g). The model predicts that the α/β-galactose donors, when coupling 

with isopropanol, will give similar α-selectivity in DCM over the 80 ˚C temperature range, 

matching experimental results (RMSE 3.1, Figure 7f). In toluene, the model predicts a 

divergence in stereoselectivity at low temperatures, though not as large as what is observed 

with glucose. This prediction again aligns with experimental results (RMSE: 3.7, Figure 7g). 

Overall, the model correctly predicts the previously unknown ability to turn on and off the 

influence of the donor leaving group’s orientation using solvents under otherwise identical 

conditions. 



 
Figure 7. Prediction of novel mechanistic controls of glycosylation reactions, with 

experimental data shown as points and predicted data shown as lines. a) Experimental results 

of coupling /-glucose donors with iPrOH (Glc1α and Glc1β) in DCM and CHCl3. b) 

Experimental results of coupling /-glucose donors with iPrOH (Glc1α and Glc1β) in toluene, 

and MTBE. c) Prediction and experimental results of -glucose donor (Glc1β) with EtOH in 

toluene. d) Prediction and experimental results of -glucose donor (Glc1β) with tBuOH in 

toluene. e) Parity plot of nucleophile predictions with -glucose. f,g) Prediction and 

experimental results of -galactose donor (Gal1β) with iPrOH in DCM and toluene, 

respectively. h) Parity plot for solvent predictions of -galactose with iPrOH. Figure code: 



Glc1α (▲); Glc1β (); EtOH (); tBuOH (); DCM (); Toluene (); experimental values 

(data points) and predicted values (solid colored lines). 

Random forest algorithms help to quantify the influence of the variables within the model. Thus, 

values can be assigned to the identified factors influencing the stereoselectivity of a reaction 

(Figure 8). In the chemical subspaces covered by our model, 47% of the influence over a 

glycosylation’s stereoselectivity is determined by the inherent properties of the coupling 

partners. The donor (27%) is more impactful than the acceptor (20%). Upon selection of the 

coupling partners, more than half of the stereoselectivity observed is controlled by the 

environmental conditions chosen. The most important environmental factors are the reaction 

temperature  (19%) and the solvent (27%).   

 

 

Figure 8. Degree of influence of the eleven factors (defined and described above) influencing 

the stereoselectivity of glycosylations, rounded to the nearest whole number.  

  

In conclusion, a concise dataset generated on a continuous flow platform was utilized for 

training a random forest algorithm in an attempt to predict the stereoselectivity of 

glycosylations as an example for complex, mechanistically fluid transformations. Calculated 

descriptors were screened and assigned to quantify the individual influencing factors of the 

coupling partners, active species, and solvent. The predictions of out-of-sample glycosylations 

– testing nucleophiles, electrophiles, catalyst, solvents, and temperature – were validated 

experimentally and are highly accurate (overall RMSE: 6.8). Further, the model accurately 

predicts a previously unknown means of controlling glycosylation stereoselectivity. The 

approach will be applicable to better understand the stereoselectivity of other transformations 

based on reactions of nucleophiles and electrophiles. 
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