Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Bulk and surface phases of iron oxides in oxygen and water atmosphere at low pressure

MPG-Autoren
/persons/resource/persons21710

Ketteler,  Guido
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22230

Weiss,  Werner
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21990

Ranke,  Wolfgang
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

FHIAC_KWR01_Fe_O_phases.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ketteler, G., Weiss, W., Ranke, W., & Schlögl, R. (2001). Bulk and surface phases of iron oxides in oxygen and water atmosphere at low pressure. Physical Chemistry Chemical Physics, 3(6), 1114-1122. doi:10.1039/B009288F.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0011-18E6-D
Zusammenfassung
Thermodynamic stability ranges of different iron oxides were calculated as a function of the ambient oxygen or water gas phase pressure (p£1 bar) and temperature by use of the computer program EquiTherm. The phase diagram for Fe-H2O is almost completely determined by the O2 pressure due to the H2O dissociation equilibrium. The formation of epitaxially grown iron oxide films on platinum and ruthenium substrates agrees very well with the calculated phase diagrams. Thin films exhibit the advantage over single crystals that bulk diffusion has only limited influence on the establishment of equilibrium phases. Near the phase boundary Fe3O4-Fe2O3, surface structures are observed consisting of biphase ordered domains of FeO(111) on both oxides. They are formed due to kinetic effects in the course of the oxidation to hematite or reduction to magnetite, respectively. Annealing a Fe3O4(111) film in 5x10-5 mbar oxygen at 920-1000K results in a new g-Fe2O3(111)-like intermediate sur-face phase during the oxidation to a-Fe2O3(0001). A model is suggested for the growth of iron oxides and for redox processes involving iron oxides. The formation of several equilibrium surface phases is discussed.