English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Triple-quantum-filtered sodium imaging at 9.4 Tesla

MPS-Authors
/persons/resource/persons84405

Mirkes,  C
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84213

Shajan,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons192600

Bause,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133443

Buckenmaier,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83973

Hoffmann,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84187

Scheffler,  K
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mirkes, C., Shajan, G., Bause, J., Buckenmaier, K., Hoffmann, J., & Scheffler, K. (2015). Triple-quantum-filtered sodium imaging at 9.4 Tesla. Poster presented at 23rd Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2015), Toronto, Canada.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002A-45CB-B
Abstract
Sodium triple-quantum-filtering (TQF) is challenging at ultra-high field due to the high specific absorption rate. In order to alleviate this problem, the feasibility to modulate the flip angle of the TQ preparation along the partition-encoding direction was investigated. As demonstrated by simulations, this approach allowed to increase the efficiency and sensitivity of the TQ acquisition. TQF images of the human brain could be acquired at 9.4 T within 20 min with an acceptable signal-to-noise ratio.