Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Field synchronized bidirectional current in confined driven colloids

MPG-Autoren
/persons/resource/persons227777

Meng,  Fanlong
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons227773

Vilfan,  Andrej
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons219873

Golestanian,  Ramin
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Meng, F., Ortiz-Ambriz, A., Massana-Cid, H., Vilfan, A., Golestanian, R., & Tierno, P. (2020). Field synchronized bidirectional current in confined driven colloids. Physical Review Research, 2(1): 012025(R). doi:10.1103/PhysRevResearch.2.012025.


Zitierlink: https://hdl.handle.net/21.11116/0000-0006-9D5D-2
Zusammenfassung
We investigate the collective colloidal current that emerges when strongly confined magnetic microspheres are subjected to a biased, but spatially uniform, precessing magnetic field. We observe a net bidirectional current composed of colloidal particles which periodically meet assembling into rotating dimers, and exchange their positions in a characteristic, “ceilidh”-like dance. We develop a theoretical model which explains the physics of the observed phenomena as dimer rupture and onset of current, showing agreement with Brownian dynamic simulations. By varying the tilt angle and the frequency of the applied field, we discover two separate transport mechanisms based on different ways the dimers break up during particle transport. Our results demonstrate an effective technique to drive microscale matter by using a combination of confinement and homogeneous field modulations, not based on any gradient of the applied field.