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We theoretically study the few- and many-body dynamics of photons in chiral waveguides. In
particular, we examine pulse propagation through an ensemble of N two-level systems chirally
coupled to a waveguide. We show that the system supports correlated multi-photon bound states,
which have a well-defined photon number n and propagate through the system with a group delay
scaling as 1/n2. This has the interesting consequence that, during propagation, an incident coherent-
state pulse breaks up into different bound-state components that can become spatially separated at
the output in a sufficiently long system. For sufficiently many photons and sufficiently short systems,
we show that linear combinations of n-body bound states recover the well-known phenomenon of
mean-field solitons in self-induced transparency. Our work thus covers the entire spectrum from few-
photon quantum propagation, to genuine quantum many-body (atom and photon) phenomena, and
ultimately the quantum-to-classical transition. Finally, we demonstrate that the bound states can
undergo elastic scattering with additional photons. Together, our results demonstrate that photon
bound states are truly distinct physical objects emerging from the most elementary light-matter
interaction between photons and two-level emitters. Our work opens the door to studying quantum
many-body physics and soliton physics with photons in chiral waveguide QED.

I. INTRODUCTION

Generating quantum many-body states of light re-
mains one of the outstanding challenges of modern quan-
tum optics [1]. Such many-body states of light are of
fundamental physical interest as they arise from non-
equilibrium systems with strong interactions between
light and matter. On the other hand, they also promise to
form novel resources for quantum technologies, for exam-
ple, in quantum-enhanced metrology [2]. The main ob-
stacle in the pursuit of generating such many-body states
has been the difficulty in developing one-dimensional sys-
tems with a sufficiently strong nonlinear response at
the few-photon scale [3]. Recently however, significant
progress has been made in creating an ideal light–matter
interface between atoms or artificial emitters coupled to
a one-dimensional continuum of photons at optical [4–
6] and microwave frequencies [7–9]. Such an interface
creates a highly nonlinear medium as photons propagat-
ing in a waveguide interact deterministically with atoms.
Systems of this kind have thus far been used to propose
or demonstrate the generation of states of photons with
strong two- or three-body correlations [10–20].

Studies of photon correlations in these systems typi-
cally consider steady-state driving and photon correla-
tions are subsequently measured in relative coordinates.
On the other hand, here we show that pulse propagation
through two-level systems (TLSs) strongly coupled to a
waveguide leads to very distinct temporal features which
reveal the underlying dynamics and has the potential to
generate temporally ordered many-body states of light.

In particular we theoretically consider the propagation
of pulses of coherent and Fock states of light through a
waveguide to which N TLSs are chirally coupled. We
show that photons undergo a Wigner delay [21, 22] — a
delay of the pulse center due the optical excitation trans-
ferring to the atom and back to the waveguide — which is
dependent on the number of photons. Therefore, incident
pulses break up into a state that is temporally ordered
by its photon correlations. For example, as shown in
Fig. 1(a), an incident coherent field can produce a pulse
with three-photon correlations followed by two-photon
correlations states followed by uncorrelated photons. The
underlying physics that causes this time delay is exam-
ined by considering the many-body photonic scattering
eigenstates of TLSs chirally coupled to a waveguide.

Of central importance are the class of bound eigen-
states, where two or more photons propagate together.
We show that the photon bound states propagate past
each atom with a photon-number-dependent delay of
τn = 4/(n2Γ), where Γ is the decay rate into the waveg-
uide, as can be understood in terms of absorption and
stimulated emission of a photon as shown in Fig. 1(b).
Since the interaction is chiral, the delay is also propor-
tional to the number of emitters N in the waveguide.
We also show that the pulse distortion encountered by
an n-photon bound state scales as n−6. Pulses of higher-
number bound states therefore propagate with negligible
distortion, i.e. much like a soliton. Moving beyond the
few-photon–few-atom limit we obtain a simple descrip-
tion of photon propagation with a mesoscopic number of
photons n but a large number of atoms N � 1. Here, the
number-dependent group delay breaks the input pulse
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FIG. 1. (a) N two-level atoms (blue circles) are chirally cou-
pled to a waveguide with decay rate Γ and driven by an input
Gaussian pulse, which can be a coherent or Fock state. The
light pulse propagates with a correlation-number-dependent
group velocity leading to an output state where one-, two-
and three-photon bound states are spatially separated. (b)
Schematic of the bound states propagation. When an n-
photon bound state is scattered by an atom, it re-emits the
absorbed photon with a stimulated emission rate Γn, coincid-
ing with the inverse of its width. Since only a single photon
out of n is delayed by an amount 4/(Γn), the pulse preserves
its shape but is delayed by τn = 4/(Γn2).

apart and produces a many-body ordered state of light.
Finally, we show that the system approaches the classi-
cal limit for n� 1 and n� N , where our full quantum
description captures the quantum-to-classical transition
and reproduces the mean-field results of soliton propaga-
tion in self-induced transparency.

The effect discussed here has features similar to
vacuum-induced transparency (VIT) where photons un-
dergo a photon-number-dependent delay after interacting
with atoms coupled to a cavity [23, 24]. A key difference
is that the delay in VIT mainly depends on the total
photon number inside the entire system, and not on the
details of the pulse shape. The nonlinear effect we con-
sider is spatially localized to the individual atoms and
occurs for the simplest possible configuration of TLSs.
This leads to a different spatiotemporal behaviour which
we evaluate in a full multimode theory of the dynamics.
Our theory features a full quantum many-body treatment
of the system, where the photon time delay is examined
by considering the many-body photonic scattering eigen-
states.

We also point out that in mean-field theories solitons
are known to be highly stable objects which are unaf-
fected by external perturbations. Here we show that
similar properties exist for few-photon bound states. We
outline how one can conduct scattering experiments be-
tween photon bound states and individual photons. In
the considered scattering experiments the bound state
is deflected by the interaction but is otherwise unper-
turbed by it. Together the results obtained here demon-
strate that the bound states should be considered as truly
distinct physical entities emerging from the underlying

light-matter interaction between photons and two-level
emitters.

This manuscript is arranged as follows: in Section II
we introduce the model for chiral wQED and outline var-
ious theoretical approaches for computing the dynamics
through II A mean-field theory, II B the photon scattering
eigenstates, and II C the matrix-product states (MPS). In
Section III we compute how the input pulse propagates
through the medium and compute the representation in
terms of photon bound states. This is followed by Sec-
tion IV which shows that the many-body photon bound
states can be used to construct the mean-field soliton so-
lutions obtained in self-induced transparency. In Section
V we show that photon bound states can undergo elastic
scattering with individual photons modifying the delay of
the bound state but otherwise leaving it unaltered, much
like classical solitons. In Section VI, we show few-photon
bound-state propagation can potentially be observed in
state-of-the-art experiments with a few emitters, and we
discuss potential future applications. Finally, we con-
clude in Section VII.

II. MODEL

We consider a system of N two-level systems (TLS)
chirally coupled coupled to a linearly dispersive one-
dimensional bath of photons. Here, chiral coupling means
that the TLSs couple only to right-propagating photons.
The Hamiltonian for this system (~ = 1) is

Ĥ = −i
∫
dx â†(x)∂xâ(x)+

√
Γ

N∑
i=1

[
σ̂−i â

†(xi) + σ̂+
i â(xi)

]
,

(1)
where all integrals are over <, σ̂±i are Pauli operators for
the ith TLS, â(x) (â†(x)) is a photon annihilation (cre-
ation) operator at position x, the group velocity is set to
unity vg = 1, and the energy has been renormalized to
that of the TLS. In the limit of ideal chiral coupling, the
system dynamics are not influenced by the positions of
the TLSs xi. In this Hamiltonian the first term captures
the free-propagation of photons in the waveguide with
linear dispersion, while the next terms take into account
the interaction between the photons and the emitters. In
the absence of the interaction terms the photonic eigen-
states of the Hamiltonian are plane waves with wavevec-
tor k and frequency ω = k. Equation (1) constitutes the
typical scenario for chiral wQED [25]. In this manuscript,
we are interested in describing the propagation of a multi-
photon input field through the system. This goal can be
achieved by exactly computing the scattering eigenstates
of Hamiltonian (1), as illustrated in Subsection II B.

In addition to computing the eigenstates of (1), we also
introduce an equivalent formulation that is well-suited for
using the MPS technique that we are going to introduce
later in Subsection II C. This approach is based on the
observation that the transmitted field depends directly
on the emitters’ evolution. This can be seen by formally
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integrating the Heisenberg equation for the field opera-
tor â(x, t), that provides, within Born-Markov approxi-
mation, the following generalized input-output relation
for the transmitted field [26, 27]

âout(t) = Ein(t) + i
∑
j

√
Γσ̂−j (t), (2)

where we have defined âout(t) = â(x+
N , t) as the out-

put field measured right after the last atom. Note that,
within this approach, we assume the input field Ein(t) to
be a classical coherent field on resonance with the atomic
transitions. With these assumptions the emitter dynam-
ics driven by the input field is known to be described by
a purely dissipative chiral master equation (ME) of the
form [28, 29] (see Supplemental Material (SM) for more
information):

ρ̇ = −i
(
Heffρ− ρH†eff

)
+ Γ

∑
ij

σ̂−i ρσ̂
+
j . (3)

Here,

Heff = −iΓ
2

∑
j

σ̂+
j σ̂
−
j +Hdrive − iΓ

∑
l>j

σ̂+
l σ̂
−
j , (4)

is the effective Hamiltonian, which provides the non-
Hermitian collective evolution of the emitters, while the
term Hdrive =

∑
j

√
Γ
[
Ein(t)σ̂+

j + H.c.
]

gives the cou-
pling of the emitters to the input field.

The combination of Eqs. (2) and (3) provide a full de-
scription of the photon propagation through the chiral
medium. In particular the spin dynamics can be effi-
ciently solved by making use of an MPS ansatz [30, 31]
as recently described in Ref. [27]. As will be shown in the
following, this approach will allow us to fully explore the
limit of many photons and large atomic arrays, a scenario
that is challenging to simulate with standard numerical
techniques.

A. Mean-field Theory and Self-induced
Transparency

Before considering the full many-body dynamics of
the Hamiltonian (1), we consider the system within the
mean-field limit. We present this mean-field limit to con-
trast its predictions with the full many-body theory pre-
sented below.

The first treatment of (1) within mean-field theory
dates back to the work on self-induced transparency
(SIT) [32–34]. In these early experiments, gasses of two-
level atoms were excited by short intense laser pulses.
Although the atoms are not ideally coupled to a single
waveguide mode in such systems, the laser pulses are suf-
ficiently short that decay channels to modes other than
the laser mode can be neglected. Furthermore, both the
weak coupling of the atoms to this mode and the high in-
tensity of the laser means that one can consider the atoms

as a spin continuum under the mean-field approximation
where quantum correlations between the atoms and the
light field can be neglected. Under these approximations,
the equations of motion give the SIT equations[

∂

∂t
+

∂

∂x

]
a(x, t) = −i

√
Γσ−(x, t),

∂

∂t
σ−(x, t) = i

√
Γσz(x, t)a(x, t),

∂

∂t
σz(x, t) = 4

√
Γ Im

[
a(x, t)σ∗−(x, t)

]
.

(5)

Here, a(x, t) = 〈â(x, t)〉, σ̂−/z(x, t) =
∑
i σ̂
−/z
i (t)δ(x −

xi), and σ−(x, t) = 〈σ̂−(x, t)〉, σz(x, t) = 〈σ̂z(x, t)〉 are
the expectation values of the spin operators in the con-
tinuum limit. These nonlinear equations of motion have
SIT soliton solutions. Following the treatment in [34],
for a resonant pulse the field can be taken to be real,
and one can map the equations of motion onto a nonlin-
ear pendulum equation that can be solved exactly. This
gives the fundamental soliton solution for the field

a(x, t) =

√
Γn̄

2
sech

[
Γn̄

2

( x
V ′
− t
)]
, (6)

where n̄ is the number of photons in the field, (or more
precisely, the total energy in the original SIT work). The
pulse velocity within the medium in the laboratory frame
is V ′ = n̄2Γ/(n̄2Γ + 4ν), where ν is the gas density (see
SM for details). Transforming to a frame comoving with
the pulse in the absence of emitters, i.e. at velocity vg =
1, gives the relative velocity in the backwards direction
V = 4ν/(n̄2Γ + 4ν). This corresponds to each emitter
imparting a delay of τn̄ = 4/(n̄2Γ) on the pulse.

An important feature of the solitonic solution (6) is

that the integrated Rabi frequency Ω = 2
√

Γ
∫
dta(x, t),

which is proportional to the area under the pulse, is
fixed by the relationship between the pulse amplitude
and pulse width, and always evaluates to be 2π. This
corresponds to a full Rabi cycle of complete excitation
and subsequent deexcitation. The SIT soliton therefore
can be physically interpreted as a rapid excitation and
de-excitation of the atoms, which suppresses spontaneous
emission of the excited state and thus makes the medium
transparent.

Inspired by the apparent dependence of velocity on
photon number, it is interesting to ask whether this prop-
erty extends to the few-photon limit, thus enabling, e.g.,
photon-number separation at the output. A full quantum
treatment is necessary to answer this question, which we
turn to in the following sections.

B. Many-body Scattering Eigenstates

In contrast to the mean-field treatment we now con-
sider the full many-body eigenstates. Since the Hamilto-
nian (1) preserves the combined number of atomic and
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photonic excitations, eigenstates with different numbers
of excitations decouple. By computing the eigenstates in
the one- and two-excitation subspaces, one can general-
ize the result to an arbitrary number of excitations. This
technique is often referred to as Bethe’s ansatz [35] and
is used to diagonalize a class of one-dimensional many-
body Hamiltonians [36]. In particular, it has previously

been used to diagonalize the Hamiltonian in Eq. (1) [37].
Since we are interested in the state that emerges after
interaction with the TLSs, we are interested in the scat-
tering eigenstates. These are the photon states that in-
teract with the TLSs and emerge unchanged apart from
an overall transmission coefficient. The n-body scatter-
ing eigenstates have the form

|Sk〉n = Ck,n,S
1√
n!

∫
dnx â†(x)|0〉

n∏
l<m

[kl − km + iΓ sgn (xl − xm)]

n∏
j=1

eikjxj+↔, (7)

where Ck,n,S is a normalization constant which varies
with wavevector k, excitation number n, and the type
of eigenstates S, where S labels different states as ex-
plained below; â†(x) = â†(x1)â†(x2) . . . â†(xn); dnx =
dx1dx2 . . . dxn; and↔ indicates summing over all n! per-
mutations of xi to symmetrize the wavefunction. The
energy of the eigenstates is E =

∑n
i ki. Upon scattering

off all N emitters, the eigenstates are multiplied by the
eigenvalue tNk =

∏n
j=1 t

N
kj

, where tk = (k − iΓ/2)/(k +

iΓ/2). Since, by assumption, the system does not con-
tain any dissipation and is chiral, all the transmission
coefficients have |tk| = 1. This means that the trans-
mission coefficients simply multiply the eigenstate by a
phase. For example, a single photon on resonance un-
dergoes a π-phase shift with t0 = −1. Importantly, the
phase that is imparted on the eigenstate varies with k,
i.e., the TLSs introduce dispersion to the system. As
we soon show, different types of eigenstates also accu-
mulate different phases. We note that the output states
are described using the position coordinates x. This is
equivalent to using the time variable −t in (2) as we have
set the group velocity to unity.

In addition to different eigenstates for different values
of n, there are also different possible types of eigenstates
within different excitation-number manifolds. In the sin-
gle excitation subspace there is only one type of eigen-
state and it is characterized by a real wavenumber k and
fully extended in space. For n = 2, the wavenumbers k1

and k2 can either both be real which gives rise to a fully
extended solution of the form (7). They can also assume
complex values k1 = E/2 + iΓ/2 and k2 = E/2 − iΓ/2
which are called strings [36]. These values give addi-
tional valid solutions. Since the wavevectors can form
complex conjugate pairs, the eigenstates become local-
ized in a relative coordinate while being fully extended
within the center-of-mass coordinate. This localization
is associated with the formation of photon bound states
that manifest in the bunching of two photons which travel
together during their propagation [38, 39].

For n > 2 the m-body string (m ≤ n) has the wavevec-
tor kj = K/m − i [m+ 1− 2j] Γ/2 with j = 1, 2, . . . ,m
where K is the total energy of the m-string. In total, the
n-photon manifold has p(n) string combinations where

p(n) is the number of partitions of n. For example, for
three photons, there is a completely extended scattering
eigenstate, a completely bound eigenstate, and a hybrid
state with two bound photons and one extended photon.
The different string combinations give the different types
of scattering eigenstates S by substituting the complex
wavevectors into (7). The transmission coefficient is also
obtained by substituting the complex wavevectors into
the expression for tk.

For n photons, the n-string state is a fully localized
bound state with energy E,

|BE〉n =
Cn,B√
n!

∫
dnx â†(x)|0〉eiEn

∑
j xj−Γ

2

∑
i<j |xi−xj |,

(8)

where Cn,B =
√

Γn−1(n− 1)!/(2πn). The transmission
coefficient for the n-photon bound state is then,

tE,n =
E − iΓn2/2

E + iΓn2/2
. (9)

Importantly, the phase of the transmission coefficient
varies with n, i.e., the system has a photon-number-
dependent dispersion.

With all the eigenstates at hand, the scattering ma-
trix for interacting with all N emitters in the n-photon
manifold can be formally written as

ŜNn =
∑
S

∑
k

tNk |Sk〉nn〈Sk|, (10)

where the sum over S is a sum over the different string
combinations of the n-photon manifold. We note that the
eigenstates are orthogonal, thus the scattering matrix for
N emitters simply requires taking the eigenvalue to the
N -th power. Since the number of string combinations in-
creases as p(n), the number of terms in the sum increases
exponentially for large n [37, 40]. In this manuscript we
compute the full output states for up to n = 3 using this
formalism. We note that a formalism exists where one
does not have to sum over string combinations [41]. Nev-
ertheless the form used here is particularly insightful as
it gives direct access to the number-dependent transmis-
sion coefficient which, as we show, plays a central role in
understanding the many-body pulse propagation.
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FIG. 2. Transmitted power P (x) (solid curves) for (a) one- (b) two-, and (c) three-photon transport through N = 20 TLSs
for a resonant pulse with Γσ = 3

√
2 computed using the photon scattering theory. In (b) and (c) dashed lines show the

contributions from the different eigenstates. The input mode in all panels is the Gaussian curve shown in (a). (d) Transmitted
power and correlation functions for a coherent state with n̄ = 0.5. Solid lines show photon scattering results truncating at
three photons while marker points show MPS calculations performed by solving the ME with a Runge-Kutta algorithm and
using maximum bond dimension Dmax = 150. (e) Second-order correlation function G(2)(x1, x2) for the transmitted coherent
state computed using photon scattering theory. The two- and three-photon bound state contributions appear as peaks that are
localized in the relative coordinate. (f) MPS calculation for input coherent state with n̄ = 8, N = 60 emitters and Γσ = 2

√
2.

Dashed vertical lines show N times the Wigner delay Tn = Nτn = 4N/(Γn2). With Pn(x) we indicate the contribution to the
intensity coming from the emission of n photons within the space bin ∆x = 1. To perform this calculation we used a quantum
trajectories MPS algorithm fixing the maximum bond dimension to Dmax = 40.

C. MPS Ansatz

In order to study the dynamics for stronger input
pulses (n > 3) than the one computed with the S-matrix
formalism, we solve equations (2) and (3) using an MPS
ansatz. Specifically, the system evolution can be solved
either by directly solving the ME (3) [42] (method used
for Fig. 2(d) and Fig. 3) or by using a quantum trajecto-

ries algorithm where the state of the system evolves under
the effective Hamiltonian (4) and stochastically experi-
ences quantum jumps [27] (method used for Fig. 2(f)).
In both cases an MPS representation is applied either to
the quantum state or to a vectorized form of the density
matrix. Here for simplicity we limit the discussion to the
former while the latter is discussed in the Supplemental
Material.
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The MPS ansatz consists of reshaping the generic
quantum state |φ〉 =

∑
i1,..iN

ψi1,i2,..iN |i1, i2, ..iN 〉 (with

ij ∈ {g, e}) into a matrix-product state of the form:

|φ〉 =
∑

i1,...,iN

Ai1Ai2 . . . AiN |i1, i2, . . . , iN 〉, (11)

where, for each specific set of physical indices
{i1, i2, . . . , iN}, the product of the Aij matrices gives
back the state coefficient ψi1,i2,...,iN . Each matrix Aij
has dimension Dj−1 ×Dj known as the bond dimension
and finite edge boundary conditions are assumed by im-
posing D1 = 1 and DN = 1. The bond dimension reflects
the entanglement entropy. For instance, if Dj = 1 for all
j, the matrices Aij are scalars and the state (11) reduces
to a product state with no entanglement. For arbitrary
states the bond dimension grows exponentially with the
number of particles. The advantage of the MPS ansatz
is that, in many physical scenarios as the one consid-
ered here, the entanglement grows slowly with the sys-
tem size allowing an efficient description of the state in
terms of a smaller bond dimension [31]. An important
figure of merit of the efficiency of the MPS ansatz is given
by Dmax, the maximum bond dimension, that is needed
to faithfully represent the system during the entire time
evolution (see SM for more information). We will make
use of this quantity in Sec. IV to quantify the amount of
many-body correlations present in the system.

III. MANY-BODY PULSE PROPAGATION

We are interested in studying multi-photon propaga-
tion through the chirally coupled array. Here, we consider
coherent and Fock input states with mode creation oper-

ator â†in =
∫
dxE(x)â†(x), and we evaluate the transmit-

ted field with the two methods described in the previous
section. In particular, for the exact solution we com-
pute the transmitted photon state using the eigenstates
for up to three photons while for higher excitations we
make use of the MPS ansatz. In Fig. 2 we consider the
propagation of a Gaussian photonic mode with ampli-

tude E(x) = eik0x−x2/(2σ2)/(
√
σπ1/4) where, throughout

the manuscript, resonant pulses are considered k0 = 0.
Figure 2 (a)-(c) shows the power P (x) = 〈â†(x)â(x)〉

for one-, two-, and three-photon Fock states after prop-
agating through N = 20 TLSs. Here, x = 0 is chosen
to be the reference frame of the pulse propagating in the
absence of emitters. A pulsewidth of Γσ = 3

√
2 is chosen

to have appreciable overlap with all the different types
of scattering eigenstates while remaining sufficiently nar-
row to observe the photon-number-dependent velocities.
The magnitude of the overlap of an input Gaussian pulse
with two- and three-photon bound states versus Gaus-
sian pulsewidth σ is shown in the Supplemental Mate-
rial. In Fig. 2(b) we see that the two-photon bound
state comes out earlier than the extended state. The
two-photon bound state thus clearly propagates with a

faster velocity than the extended state. The bound state
also undergoes significantly less broadening and distor-
tion. For the three-photon transport in Fig. 2(c) again
the extended state is distorted and delayed, while the
three-photon bound state has significantly less distortion
and delay. In the three-photon manifold there is also a
string combination that forms a hybrid state where one
photon is completely extended while the other two are
bound. The evolution of this state is determined by the
individual components of the state: the two bound pho-
tons propagate in a similar manner to the two-photon
bound state in Fig. 2(b), while the extended photon prop-
agates like a single photon. This separation of the prop-
agation of the bound and extended parts of this state
can be shown explicitly in the long pulse limit σΓ � 1
(see SM). This is significant because it implies that in or-
der to understand the pulse evolution one does not have
to understand the behaviour of all the different string
combinations S. Rather, one can focus on simply un-
derstanding the behaviour of the bound states. On the
other hand, for short pulses this separation is not com-
pletely true because one needs to include the effect of
interactions between the components, see Sec. V.

A. Evolution of bound states

To better quantify the difference in propagation ob-
served above, let us compute the pulse evolution in the
center-of-mass coordinate. This can be done by using the
form of the n-photon bound state and its transmission co-
efficient given in Eqs. (8) and (9). Within the n-photon
manifold the projection of an input Gaussian state on the

bound state is n〈BE |in〉 = cne
−(E−nk0)2σ2/(2n), where cn

is a constant in E. Here it is convenient to use Jacobi co-
ordinates xc =

∑n
j xj/n, xJi =

∑i
j=1 xj/i − xi+1, where

i ∈ {1, 2, . . . , n − 1}. The resulting bound-state contri-
bution is then

|out〉n,bound =
cn√
n!

∫
dnx â†(x)|0〉e−Γ

2 g(x
J )

×
∫
dE tNE,ne

iExc−E2σ2/(2n),

(12)

where g(xJ) is the exponent
∑
i<j |xi−xj | written in Ja-

cobi coordinates. The center-of-mass evolution is clearly
determined by the second integral. This now has the
standard form of Gaussian pulse propagation through
a linear dispersive medium. Defining tNE,n ≡ eiNφ(E),

the first to third derivatives of φ(E) give respectively,
the delay, broadening, and distortion that the pulse un-
dergoes per emitter. The delay per emitter is τn(k0) =
Γ/(k2

0 + n2Γ2/4). This is largest for a resonant pulse
(k0 = 0), where

τn =
4

n2Γ
. (13)

This gives the Wigner delay imparted on an n-photon
bound state by a single emitter in wQED: the photons
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propagate with a number-dependent velocity.

By taking higher-order derivatives we also compute
the pulse broadening b(k0) = −32k0Γ/[n(4k2

0 + n2Γ2)2],
which is zero on resonance. The third-order pulse distor-
tion term on resonance is d = −32/(n6Γ3). The pulse
distortion is thus drastically reduced for higher-order
bound states. This indicates that many-photon bound
states suffer negligible pulse distortion while propagat-
ing through the array of nonlinear and dispersive atoms.

In order to verify that indeed the physics of the bound
states dominates the wave-packet evolution we also com-
pute the evolution of a coherent input pulse as shown in
Figure 2(d). Here, the pulse width Γσ = 3

√
2 is the same

as in Figs. 2(a)-(c), while the average photon number in
the pulse is n̄ = 0.5. We compute the output both by
truncating the coherent state to three photons, and solv-
ing exactly using Eq. (10), or by solving Eqs. (2) and(3)
with the MPS algorithm. The evolution of the bound
states is seen in the position of the peaks of the power
distribution 〈â†(x)â(x)〉 as well as in the difference be-
tween the power and the m-th order correlation functions
G(m)(x) = 〈

[
â†(x)

]m
[â(x)]

m〉.

The localized nature of the bound states in the relative
coordinates is shown in Fig. 2(e) where we show the two-
point second-order correlation function G(2)(x1, x2) =
〈â†(x2)â†(x1)â(x1)â(x2)〉. Here the photons tend to lo-
calize around the diagonal at small values of the rela-
tive coordinate x1−x2, while they are delocalized about
the center-of-mass coordinate (x1 + x2)/2. This reflects
that the photons are tightly bound together in the bound
state, but the bound state itself is free to propagate.
While exact analytical calculations become infeasible for
n̄ � 1, the validity of our arguments and the impor-
tance of the bound states can still be seen in MPS sim-
ulations. For example, in Fig. 2(f), we calculate the
transmitted power for an input coherent state n̄ = 8
and N = 60. Here, for this particular system length,
the photon-number-dependent Wigner delay clearly man-
ifests itself as separate peaks for up to six-photon bound
states.

The low-distortion propagation of the bound states
can be intuitively explained by returning to the sim-
ple schematic shown in Fig. 1(b). When a multi-photon
bound state propagates trough the atomic array one of
the photons in the wave packet can be absorbed and re-
emitted by the atom. This process occurs on a time scale
ruled by the inverse of the photon-number dependent
stimulated emission rate that coincides with the bound-
state packet width, ∆tn ∼ 1/(Γn), allowing the pulse
to preserve its shape. This continuous absorption and
re-emission of photons during the bound-state propaga-
tion leads to a time delay of one out of n photons by an
amount 4/(Γn), leading to the group delay in Eq. (13).

B. Influence of imperfections

We have shown that the hallmark of many-body pho-
ton propagation through an ensemble of quantum emit-
ters in chiral wQED is the number-dependent velocity
of the photon bound states. Here we analyse the influ-
ence of imperfections such as losses, imperfect chirality,
and inhomogeneous broadening on this propagation. We
first consider the influence of losses, where each emit-
ter couples to an additional decay channel out of the
waveguide with a rate Γ0. It is possible to obtain an an-
alytic criterion for when these losses can be neglected.
The form of the transmission coefficient of the bound
state can be obtained in the presence of loss by mapping
the total energy to a complex energy using the replace-
ment E → E + inΓ0/2. The reduction in probability of
the output state then implies that the state can undergo
one or more quantum jumps. If the probability remains
close to unity the output state is only weakly affected.
Defining the efficiency or β-factor as β = Γ/Γtot, where
Γtot = Γ + Γ0, the transmission coefficient (9) in the
presence of loss is

tE,n =
E + inΓtot[1− β(1 + n)]/2

E + inΓtot[1− β(1− n)]/2
. (14)

After scattering off all N emitters the magnitude of the
resulting state is |tE,n|N . For small imperfections 1−β �
1, this gives |tE,n|N = 1 − 2N(1 − β)/n + O

(
(1− β)2

)
,

where the notation O(M) indicates term of order M and
higher. This means that a sufficient condition for neglect-
ing losses is N(1 − β)/n � 1. This implies that losses
have a reduced influence on higher-order bound states.
If this condition is not met, there is a sizable probability
that one or more of the photons in a photon bound state
is lost.

If a photon is lost at one point along the ensemble
the remaining photons propagate through the rest of the
atoms with a different effective group velocity and disper-
sion. In addition to a reduced ampltitude, the fact that
the remaining transmitted photons have effectively prop-
agated with a mix of velocities and dispersions causes the
peaks associated with the different bound states in Fig. 2
to broaden and eventually overlap (see SM).

In addition to photon loss, we note that a non-zero
value of Γ0 6= 0 also affects the delay τn. This is also
computed analytically, τn = 4β3/{Γ[β(2 + β(n2 − 1)) −
1]} = 4/(Γn2) − 4(1 − β)/(Γn2) + O((1 − β)2). Values
where τn diverges occur when |tE,n| approaches zero, i.e.,
no light is transmitted.

In the limit of large losses the photon bound states suf-
fer exponential damping. For a steady-state input field,
this was considered for up to two photons in Ref. [19]
where it was shown that the output shows strong pho-
ton bunching. This bunching, however arises from the
extended states and does not reflect the bound-state dy-
namics. Even with finite pulse durations it is likely that
the bound-state dynamics will be hard to discern in this
limit.
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The introduction of imperfect chirality also influences
the nature of pulse propagation through the ensemble.
This occurs when, in addition to coupling to the forward-
propagating mode, each atom also couples to the back-
ward propagating mode with a rate ΓL. The influence
of this cannot be considered analytically in a straightfor-
ward manner. We have performed numerical MPS calcu-
lations (see SM) for N = 20 emitters. When ΓL = 0.05Γ,
the shape of the output state remains qualitatively un-
changed. However, when ΓL = 0.2Γ the output state is
completely distorted. These computations indicate that
the effect observed in the ideal chiral case is robust to
imperfect chirality, provided that the imperfections are
not too large.

We also consider the influence of inhomogeneous
broadening in the two-level systems. The two-level atoms
are considered to have a normally distributed resonance
frequency with dimensionless standard deviation ς/Γ.
This affects the transmission coefficient of the bound
states, which most notably affects the pulse delay. An
expression for the mean pulse delay can be computed
analytically, and for small broadening, gives to leading
order

〈τn〉 = τn

[
1− 4ς2

n2Γ2
+O

(
ς4

Γ4

)]
. (15)

The reduction in the delay imparted by each emitter
therefore scales quadratically in ς/(nΓ). This therefore
has a reduced impact on higher-order bound states pro-
vided that the broadening is limited . Γ. We note that
the influence of inhomogeneous broadening can be com-
pensated by introducing more emitters.

IV. CONNECTION TO THE SIT SOLITON

In the previous sections we have shown how the Hamil-
tonian (1) leads to the SIT solitonic solutions in the
mean-field limit, and that the full quantum mechani-
cal treatment of this Hamiltonian predicts correlation-
ordered photon propagation. In this section we aim to
bridge the gap between these two regimes: first we show
that indeed the many-body theory reduces to the mean-
field result in the limit of large photon number. Secondly,
we derive the quantum corrections to the mean-field re-
sults which become relevant when both the number of
photons n and the number of emitters N are large. Fi-
nally, we push the numerical simulations to the many-
photon limit to verify the analytical predictions.

Let us consider a wave packet composed of a linear
combination of many-body bound states. This is ex-
pressed with the ansatz

|ψ〉 =
∑
n

∫
dEcn(E)|BE〉n. (16)

We later show that this is the expected form of the state
for a high-power coherent input with a large spectral

width. Unlike the previous sections where we selected
an input pulse and propagated it through the medium,
here we are simply considering a linear combination of
bound eigenstates and compute observables for this state.
A localized function cn(E) ensures that the bound state
ansatz is localized in the center-of-mass coordinate.

Such a state can be probed by measuring either the
field 〈ψ|â(x)|ψ〉 or the m-th normally ordered observ-
able, which we consider in the center-of-mass coordinate
〈ψ|(â†(x))m(â(x))m|ψ〉. We compute these observables
in the limit where the average photon number is large
n̄ � 1, the pulses are spectrally broad σ � 1/Γ and
the order of the correlation function is much less than
the photon number m � n. These give (see SM for full
calculations),

〈ψ|â(x)|ψ〉 =
n̄
√

Γ

2
sech

(
n̄Γx

2

)
, (17)

〈ψ|(â(x)†)m(â(x))m|ψ〉 =

[
n̄
√

Γ

2
sech

(
n̄Γx

2

)]2m

,

(18)

where n̄ is the average number of photons in the pulse.
These observables reproduce the fundamental soliton so-
lution of SIT [33, 34, 43] given in Eq. (6). Self-induced
transparency is thus the classical limit of the photon
bound state when the photon number becomes large, or
conversely photon bound states are simply the quantum
limit of a soliton, a quantum soliton. Just like the SIT
solitons, the integrated Rabi frequency of the pulse is
Ω = 2

√
Γ
∫
dx〈â(x)〉 = 2π, i.e., the intense pulse of light

rapidly excites and de-excites the emitters resulting in
a 2π Rabi oscillation. We note that, the expressions in
Eqs. (17)-(18) scale with Γ, which is the coupling to the
one-dimensional continuum. These expressions are there-
fore unchanged in the presence of coupling to an exter-
nal reservoir. This implies that, provided the ensemble
does not act like a Bragg mirror, SIT is expected to oc-
cur even in the presence of backscattering in accordance
with mean-field results.

A. Beyond mean-field theory

As a lowest-order approximation, the variation in pho-
ton number n making up the pulse (16) can be ig-
nored, and the state will simply propagate at a re-
duced speed dictated by the mean photon number. This
leads to the SIT soliton prediction, that simply maps
x → x + 4N/(n̄2Γ). However, for a coherent state, the
uncertainty in the photon number scales as ∆n ∼

√
n̄,

which leads to a gradual broadening of the pulse due to
the different photon number components accumulating
different time delays. This can become significant for a
sufficiently large number of emitters N . This broadening
is not captured by the mean-field theory. The breakdown
of the mean-field theory therefore occurs when the differ-
ence in the delay of the n̄ and the n̄+ ∆n photon bound
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FIG. 3. (a) Output power for N = 20 atoms for coherent input pulses with a solitonic shape (see text) and different mean
photon number n̄. The results are computed by directly solving the ME (3) (solid lines) with the MPS algorithm where we
fixed Dmax = 150. In the second panel we include the results given in the many-body limit (19) (dashed lines), and in the third
the mean-field solitonic ansatz (dotted line). We note that the x-axis is limited to focus on larger photon number components.
(b) Maximum bond dimensions Dmax of the MPS calculations required to obtain a tolerance less than 10−4 versus input power
n̄ for different TLS number N . The blue shading highlights the regions for which panels (1)-(3) in (a) show the output power.

states becomes on the order of the width of the n̄ photon
bound state. This gives (Tn̄+∆n − Tn)/∆tn ∼ N/n3/2.
This means that when N/n3/2 & 1 the mean-field the-
ory breaks down even for large input photon number n̄.
This provides the boundary between mean-field theory
and genuine quantum many-body dynamics.

When n̄� 1 and N & n3/2, one can consider a wave-
function composed of bound states with a number dis-
tribution given by a coherent state. In the limit where
mean-field theory breaks down, one must explicitly con-
sider the Fock-state-dependent delay. In this limit the
expression for the field and the power give (see SM),

〈â(x)〉 = e−|α|
2 ∑

n

α2n

n!

n
√

Γ

2
sech

[
nΓ

2

(
x+

4N

n2Γ

)]
,

〈â†(x)â(x)〉 = e−|α|
2 ∑

n

α2n

n!

n2Γ

4
sech

[
nΓ

2

(
x+

4N

n2Γ

)]2

,

(19)

with equivalent expressions for higher-order correlation
functions. Here, α =

√
n̄ is the coherent field amplitude,

which is assumed real. We note that similar expressions
exist for the bound state of the nonlinear Schrödinger
equation with an attractive interaction [44, 45].

Equations (19) provide a simple description of the ob-
servables of a quantum many-body state of light. In
order to investigate the full transition from the multi-
photon bound-state propagation to the formation of the
SIT solitons we make use again of the master equation

simulation. In Fig. 3(a) we plot the transmitted power of

input pulses with Ein(x) = n̄
√

Γ
2 sech

(
n̄Γx

2

)
for different

amplitude strength n̄. This pulse shape is chosen such
that its electric field matches the SIT criterion. In the
first box we see again the formation of the bound state
peaks which tend to reduce their time delay as the input
power is increased. For intermediate input pulses (sec-
ond box) the bound states with a large number of photons
get more populated, and they accumulate toward a sin-
gle peak as the difference in delay times for large photon
numbers become less distinguishable. In this regime the
transmitted power starts to be well-described by Eq. (19).
For even higher input power (third box) the individual
bound states are no longer recognizable and a solitonic
pulse well-described by mean-field theory emerges. These
results show how the SIT solitons emerge from a super-
position of photon bound states that, in the limit of few
photons, can be indeed interpreted as quantum solitons.
On the other hand it is important to emphasize the dif-
ference in physical effects. While the SIT solitons can be
fully described by a mean-field semi-classical treatment,
the formation of distinct bound-state peaks is character-
ized by a highly-correlated state of light and represents
the break down of the mean-field solution due to quan-
tum effects.

Within the MPS ansatz, one natural way to character-
ize the amount of correlations in the system is to allow the
maximum truncated bond dimension Dmax to vary, and
to record the value Dth

max(N, n̄) at which the truncation



10

0

5

10

20

15

0

5

10

20

15

0

5

10

20

15

0.1

0.2

0.3

0

0.1

0.2

0 0

0.01

0.02

0.03

0 50-50 0 50-50 0 50-50

FIG. 4. Evolution of the state |in〉 (see text) demonstrating
the interaction between a two-photon bound state centered
at a2 = −10/Γ and a single photon centered at a1 = 15/Γ
both with width σΓ = 3

√
2. The output observables (a)

〈â†(x)â(x)〉, (b) G(2)(x), and (c) G(3)(x) are plotted versus
the number of emitters N .

error exceeds some acceptable threshold value (see SM).
In Fig. 3(b), we show this quantity as a function of the
solitonic input pulse strength n̄. We see that the break-
down of the mean-field description occurs in the regime
where bound state formation occurs and the amount of
correlation in the system is high (large values of Dmax),
while in the limit of large n̄ the bond dimension tends to
shrink approaching the mean-field limit (Dth

max = 1).

V. SOLITON INTERACTIONS

So far we have characterized the propagation of light
through ideal media and shown that it can be under-
stood in terms of the photon bound states. To fully
characterize and understand these objects it is impor-
tant to also investigate their interactions and robustness
to disturbances. To this end, we now make a preliminary
investigation of a scattering experiment between a single
photon and a two-photon bound state. We consider the
input state |in〉 = C

∫
d3xa†(x)|0〉φ(x1, x2, x3) with C

being a constant and

φ(x1, x2, x3) =e−(x1−a1)2/(2σ2)e−(x2+x3−a2)2/(4σ2)

×e−Γ/2|x3−x2|+↔,
(20)

i.e., a product state composed of a two-photon bound
state and a single photon which are centered at a2 and a1

respectively with a2 < a1. Figure 4 shows the evolution
of the pulse delay for this state as it propagates through
the ensemble, i.e. for different N . As in previous figures,
a frame comoving with the pulse in the absence of inter-
actions (i.e. N = 0) is assumed. Here since a2 < a1 and
the Wigner delay is larger for single photons τ1 > τ2, the
bound-state photons catch up to and overtake the single
photon. In this process the photons interact when the
two parts overlap. The interaction causes a change in
the Wigner delays which is seen as kinks in the lines in
Figs. 4(a)-(b). The region of interaction is highlighted
by the third-order correlations shown in Fig. 4(c). After
the interaction has ended (N & 10) the lines in Fig. 4
(a) continue with the same slopes as before the inter-
action, signifying that there is still a two-photon bound

state and an unbound photon. The collision between the
bound state and the free photon is thus elastic and the
bound state is stable against external influence.

VI. OUTLOOK

Our theoretical and numerical predictions have shown
that many-body photon bound state propagation can be
observed in chiral waveguide QED geometries with many
emitters and photons. While these predictions are in
the realm of quantum many-body physics, our work also
predicts novel photon transport in the few-photon–few-
emitter landscape. This is exemplified in Fig. 5 where we
consider coherent pulse propagation with average photon
number n̄ = 0.5 and N = 2 emitters. Figures 5(a)-(b)
show the the output power and correlation functions in
the limit of ideal chiral coupling and no loss. Figure 5(a)
shows the two-time correlation function G(2)(x1, x2) for

an input pulse with width Γσ = 3
√

2. The width of this
input pulse is chosen such that, in the two-excitation sub-
space, it projects on both the two-photon bound state
subspace and the extended states with roughly equal
probability. The distinct signatures of these two states
can be seen: the bound state clearly propagates faster
and is seen as an antinode on the diagonal marked by
the intersection of the dashed lines. The spread out tails
which propagate slower are the signature of the extended
states. These are clearly not bunched in comparison to
the bound state. Figure 5(b) shows the equal-time corre-

lation function for a narrower pulse width Γσ =
√

2. Here
a narrower pulsewidth is chosen so it dominantly projects
on the two-photon bound state. The hallmark of the
photon–photon interactions is observed in the difference
between the power P (x) and the correlation functions
G(2)(x), and G(3)(x). Clearly, the left-most peak, cor-
responding to the single-photon component, undergoes
a larger time-delay than the bound states. The differ-
ence in time-delay between two- and three-photon bound
states is also visible in the slight difference between the
peak centers of G(2)(x), and G(3)(x). We note that it is
also possible to observe a difference between P (x) and
G(2)(x) for a single quantum emitter.

We have also investigated the robustness of this effect
when imperfections are introduced. Figures 5(c)-(e) con-
sider additional coupling to the left-propagating mode at
a rate ΓL = 0.1Γ for different emitter spacings kd, where
k is the propagation wavenumber, and d is the distance
between each of the emitters. Note that unlike the fully
chiral regime, when ΓL 6= 0 the distance between emit-
ters influences the dynamics of the system. Although
the output field is slightly reduced in all three cases, the
difference in the shape of the power and the correlation
functions is preserved as is the difference in the peak
positions. Finally, Fig. 5(f) considers ideal chiral cou-
pling, but with each emitter coupling to a loss reservoir
at a rate Γ0 = 0.1Γ. Here, the single-photon component
suffers the largest loss, while the bound states suffer a
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FIG. 5. Propagation of a coherent pulse with average photon number n̄ = 0.5 through N = 2 emitters. (a) Two-time

correlation function G(2)(x1, x2) for pulse width Γσ = 3
√

2 for ideal chiral coupling computed using the three-photon theory.
Dashed lines show N times the Wigner delay of the two-photon bound state τ2. (b) Power P (x) and second- and third-order

correlation functions G(2)(x) and G(3)(x) for pulsewidth Γσ =
√

2 with ideal coupling. Power and correlations when also
coupling to a backward mode with rate ΓL = 0.1Γ where the emitters are separated by (c) kd = π, (d) kd = π/2, and (e)
kd = π/4. (f) Power and correlation functions for unidirectional coupling, but with each emitter also coupled to a loss mode
with Γ0 = 0.1Γ. Panels (b)-(f) are computed using a full numerical treatment.

reduced loss. The introduction of the the loss does not
spoil the difference in the shape of the power and the
correlation functions.

The results here demonstrate that the propagation of
few-photon bound states can be observed with as few as
two quantum emitters chirally coupled to a reservoir and
is robust to imperfections. This means that the phenom-
ena shown here can be realized by several platforms cur-
rently under investigation. Optical quantum dots have
demonstrated chiral coupling between a single emitter
and a waveguide [46, 47], while coupling between two
diamond impurity centers and a photonic nanostructure
has been achieved [48]. At microwave frequencies, circuit
QED platforms can also achieve strong coupling between
a superconducting qubit and a transmission line [8] and
a scheme for unidirecitonal coupling has been proposed
[49]. Multiple qubits have also been coupled to a single
mode or propagating modes [9, 50–53]. Finally, gasses of
Rydberg atoms under the conditions of electromagnet-
ically induced transparency also exhibit strong nonlin-
earities [14] and possess bound eigenstates [54]. Under
certain limits they can also be mapped on to a nonlinear
Schrödinger equation with an attractive interaction [18].
Such a Hamiltonian possesses bound eigenstates [36, 45]
and therefore sufficiently long samples of Rydberg gasses
can also potentially exhibit the bound state propagation
shown here. Alternatively, ensembles can be engineered
using Rydberg blockade to mimic chirally coupled emit-

ters [20]. The effects we predict here are thus widely ap-
plicable and can be observed in many different physical
systems spanning vastly different energy scales.

Throughout this manuscript we have focused on un-
derstanding the fundamental physics of photonic bound
state propagation. In addition to its fundamental inter-
est, the dynamics of this system is highly interesting from
an applied perspective. As a particular example we note
that, for the output state shown in Fig. 2(a)-(d), if one
selects a temporal window centered at Γx0 = −N , a state
most likely containing either zero or two photons is pro-
duced. Launching the output on a beamsplitter and con-
ditioning on the detection of a photon will thus produce
a single-photon Fock state. For a small amplitude initial
coherent state, the main contribution to this process will
arise from the two-photon component of the incoming
field. Since this is in a pure state, the outgoing single
photon will also be in a pure state, although the tempo-
ral mode function will depend on the detection time. A
detailed investigation of using photon bound-state prop-
agation as a photon source is beyond the scope of this
work. We can however estimate that for the parame-
ters in Fig. 2(a)-(d), which are in no way optimized for
the application, choosing a window with width Γxw = 8
centered on Γx0 = −N leads to a probability of obtain-
ing two photons P2 = 0.061 and an error probability of
obtaining one or three photons P1 + P3 = 1.5 × 10−3.
The efficiency and error of the source appear promising
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as they should be compared with the those of the input
coherent state which are P2 = 0.076 and P1 + P3 = 0.32
respectively.

VII. CONCLUSION

Our results show that chiral wQED platforms provide
a highly nonlinear medium suited for exploring nonlinear
optics at the quantum level. From the most elementary
light-matter interaction — the interaction between pho-
tons and two-level systems — emerges correlated pho-
tonic states. These bound states are truly distinct phys-
ical objects with their own dispersion relation and are
stable against external influence. Our work provides a
clear recipe for how these features can potentially be
observed in experiments. In the limit where the num-
ber of photons is high, the bound states approach the
well-known soliton solution of SIT. Our full quantum de-
scription on the other hand covers the entire spectrum
from few-photon quantum propagation to genuine quan-
tum many-body (atom and photon) phenomena, and ul-
timately the quantum-to-classical transition. In partic-
ular, the analysis highlights how the mean-field solution
with weak quantum correlations breaks down through a

region of maximal quantum correlations, until finally re-
sulting in a state with weaker correlations. This work
therefore paves the way for observing many-body quan-
tum states of light in waveguide QED.
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Supplemental Material: Dynamics of many-body photon bound states in chiral
waveguide QED

S1. SELF-INDUCED TRANSPARENCY

Here we derive the fundamental soliton solution of self-induced transparency. While this calculation is covered in
detail in [34], we include it here for completeness. The calculations in the main text set vg = 1. Here we include the
group velocity in the calculations to keep track of the units of each expression. The Hamiltonian (1) becomes

Ĥ = −ivg
∫
dx â†(x)

∂

∂x
â(x) +

√
Γvg

N∑
i=1

[
σ̂−i â

†(xi) + σ̂+
i â(xi)

]
. (S1)

The two-level systems in SIT are modelled as a spin continuum. We do this via the mapping σ̂i → σ̂(x)/ν, where
σ̂i is any of the Pauli operators for the ith TLS, and ν is the linear density of TLSs. This mapping produces the
commutation relation

[σ̂−(x), σ̂+(x′)] = −σ̂z(x) δ (x− x′). (S2)

We note that the continuum spin operators now have units of linear density. Within the continuum limit the Hamil-
tonian is

Ĥ = −ivg
∫
dx â†(x)

∂

∂x
â(x) +

√
Γvg

∫
dx
[
σ̂−(x)â†(xi) + σ̂+(x)â(xi)

]
. (S3)

Obtaining the equations of motion for the operators and taking their expectation values within a mean-field approx-
imation gives the SIT equations [

∂

∂t
+

∂

∂x

]
a(x, t) = −i

√
Γvgσ−(x, t),

∂

∂t
σ−(x, t) = i

√
Γvgσz(x, t)a(x, t),

∂

∂t
σz(x, t) = 4

√
Γvg Im

[
a(x, t)σ∗−(x, t)

]
.

(S4)

Since we are considering a resonant pulse, σ−(x, t) is imaginary and we can thus set σ−(x, t) = is(x, t). Examining
the form of the last two equations of (S4), they can both be satisfied by defining

s(x, t) = −ν
2

sin [2χ(x, t)],

σz(x, t) = −ν cos [2χ(x, t)],
(S5)

where

χ(x, t) =
√

Γvg

∫ t

−∞
dt′a(x, t′). (S6)

Here s(x, t) and σz(x, t) are chosen such that in the limit of no field σz(x, t)→ −ν, which is the desired physical limit.
Noting that a(x, t) = ∂χ/∂t/

√
Γvg, the first equation in (S4) becomes[

∂2

∂t2
+

∂2

∂x∂t

]
χ(x, t) =

Γvgν

2
sin [2χ(x, t)]. (S7)

Since we are looking for soliton solutions, we look for a functional form that propagates without changing shape. Such
functions therefore only depend on a single variable ξ = x− V ′t, where V ′ is the propagation velocity of the soliton.
One can then express (S7) as

∂2

∂ξ2
χ(ξ) =

κ2

2
sin [2χ(ξ)], (S8)
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where

κ2 =
Γvgν

V ′(vg − V ′)
. (S9)

Equation (S8) has the solution χ(ξ) = arcsin [tanh (κξ)]. This gives the solution

a(x, t) =
V ′κ√
Γvg

sech [κ(x− V ′t)]. (S10)

This solution fulfills the criterion for the fundamental SIT soliton 2
√

Γvg
∫
dxa(x, t)/V ′ = 2π. An expression for the

velocity can be obtained in terms of the average photon number n̄ = vg
∫
dxa(x, t)2/V ′. This gives

V ′ =
n̄2vgΓ

n̄2Γ + 4vgν
. (S11)

Substituting the velocity back into the expression for the field gives

a(x, t) =
n̄
√

Γ

2
√
vg

sech

[
n̄Γ

2

( x
V ′
− t
)]
. (S12)

In the main text we consider a frame comoving with the pulse in the absence of atoms, i.e., at velocity vg. Within

this frame the pulse has a velocity in the backwards direction V = vg − V ′ =
4v2
gν

n̄2Γ (1 + 4vgν/n̄
2Γ)−1. The delay per

emitter can be obtained by noting that the velocity can be expressed in terms of the time it takes for the pulse to
pass an atom V ′ = ν−1/

[
(νvg)

−1 + τn̄
]
. This gives an average delay per emitter of τn̄ = 4/(n̄2Γ) which is equivalent

to the delay of the n-photon bound state.

S2. ONE-, TWO- AND THREE-PHOTON TRANSPORT USING SCATTERING EIGENSTATES

In this section we detail how we compute the output photon states when N emitters are impinged upon by one,
two, or three photons. We also combine these scattering calculations to consider scattering of a coherent state with
up to three photons.

A. Single-Photon Transport

In the few-photon transport calculations we consider Gaussian input states. The normalized single-photon input
state has the form

|in〉1 =

∫
dx â†(x)|0〉 1

√
σπ

1
4

eik0xe−x
2/(2σ2) (S13)

with its Fourier representation

|in〉1 =

∫
dk â†(k)|0〉

√
σ

π1/4
e−(k−k0)2σ2/2. (S14)

The creation operators â†(k) are eigenstates of the single-photon scattering operator. After N scattering events, we
have â†(k)→ tNk â

†(k), with the transmission coefficient

tk =
k − iΓ/2
k + iΓ/2

. (S15)

Throughout we consider an ideal 1D reservoir without losses, and with vg = 1. The scattered state is thus

|out〉1 =

√
σ

2π

1

π1/4

∫
dx â†(x)|0〉

∫
dk tNk e

−(k−k0)2σ2/2eikx. (S16)

This is computed numerically. Most of the integrals that appear in the few-photon transport calculations are Fourier
integrals, which can be efficiently computed using Fast Fourier Transforms.
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B. Two-Photon Transport

The two-photon scattering matrix has two types of eigenstates, extended states |WE,∆〉 and bound states |BE〉 [38].
The scattering matrix has the form

ŜN22 =
1

2

∫
dEd∆ tNE

2 +∆
tNE

2 −∆
|WE,∆〉2〈WE,∆|+

∫
dE tNE,2|BE〉2〈BE |, (S17)

where all integrals range from −∞ to ∞. The two-photon scattering eigenstates can be obtained from Bethe’s ansatz
in the main text (7). In a position-space representation they are

|WE,∆〉2 =
1√
2

∫
dx1dx2â

†(x1)â†(x2)|0〉WE,∆(xc, x)

|BE〉2 =
1√
2

∫
dx1dx2â

†(x1)â†(x2)|0〉BE(xc, x).

(S18)

Here,

WE,∆(xc, x) =
1√

4∆2 + Γ2

√
2

2π
eiExc [2∆ cos (∆x)− Γ sgn (x) sin (∆x)] ,

BE(xc, x) =

√
Γ

4π
eiExc e−

Γ
2 |x|,

(S19)

and

tE,2 =
E − 2iΓ

E + 2iΓ
, (S20)

and xc = x1+x2

2 , x = x1 − x2, E = k + p is a two-photon detuning, and ∆ = k−p
2 is a difference in photon energies,

where k and p are photon detunings.
The input state for two photons is

|in〉2 =
1√
2

∫
dx1dx2 â

†(x1)â†(x2)|0〉 1

σ
√
π
e−x

2
1/2σ

2

e−x
2
2/2σ

2

eik0(x1+x2)

=
1√
2

∫
dx1dx2 â

†(x1)â†(x2)|0〉 1

σ
√
π
e−x

2
c/σ

2

e−x
2/4σ2

e2ik0xc .

(S21)

Projecting this on the two-photon states gives

2〈BE |in〉2 =
√

Γσe−(E−2k0)2σ2/4eΓ2σ2/4 Erfc

(
Γσ

2

)
(S22)

and

2〈WE,∆|in〉2 =
4σ

π
√

2

1√
4∆2 + Γ2

e−(E−2k0)2σ2/4
[√

π∆e−∆2σ2 − ΓDF (∆σ)
]
, (S23)

where Erfc = 1− Erf, where Erf is the error function, and DF is Dawson’s Function.
The output state is then written in terms of two integrals given by the bound-state and extended-state contributions

|out〉2 =
1√
2

∫
dx1dx2 â

†(x1)â†(x2)|0〉 [ψB(xc, x) + ψW (xc, x)] , (S24)

with

ψB(xc, x) =
√

Γσ

√
Γ

4π
eΓ2σ2/4 Erfc

(
Γσ

2

)
e−

Γ
2 |x|

∫
dE tNE,2e

−(E−2k0)2σ2/4eiExc , (S25)

and

ψW (xc, x) =
σ

π2

∫
dEd∆ tNE

2 +∆
tNE

2 −∆
e−(E−2k0)2σ2/4eiExc

1

4∆2 + Γ2

[√
π∆e−∆2σ2 − ΓDF (∆σ)

]
× [2∆ cos (∆x)− Γ sgn (x) sin (∆x)] .

(S26)

The integrals in these two functions are computed numerically.
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C. Three-photon transport

Using the same rules rules we construct the three-photon scattering matrix for N emitters

ŜN33 =
1

3!

∫
d3k tNk |Wk〉3〈Wk|+

1

2

∫
dKdk tNk t

N
K,2|HK,k〉3〈HK,k|+

∫
dE tNE,3 |BE〉3〈BE |, (S27)

where

tE,3 = tE/3−iΓtE/3tE/3+iΓ =
E − 9iΓ/2

E + 9iΓ/2
. (S28)

The eigenstates are

|Wk〉3 =
1√
3!

∫
dx1dx2dx3â

†(x1)â†(x2)â†(x3)|0〉Wk,3(x1, x2, x3)

|HK,k〉3 =
1√
3!

∫
dx1dx2dx3â

†(x1)â†(x2)â†(x3)|0〉HK,k,3(x1, x2, x3)

|BE〉3 =
1√
3!

∫
dx1dx2dx3â

†(x1)â†(x2)â†(x3)|0〉BE,3(x1, x2, x3)

(S29)

with the normalized real-space representations,

Wk,3(x1, x2, x3) =
1√

3!(2π)3
∏3
m<n [(km − kn)2 + Γ2]


3∏

m<n

[km − kn − iΓ sgn (xn − xm)]

3∏
j=1

eikjxj

+↔,

HK,k,3(x1, x2, x3) =
−iΓ

2π
√

3Γ
[
(K2 − k)2 + Γ2

4

] [
(K2 − k)2 + 9Γ2

4

]θ(x2 − x1)

[
K

2
− k − iΓ

2
− iΓ sgn (x3 − x1)

]

×
[
K

2
− k +

iΓ

2
− iΓ sgn (x3 − x2)

]
ei
K
2 (x1+x2)e−

Γ
2 (x2−x1)eikx3+↔,

BE,3(x1, x2, x3) =
Γ√
3π
eiE(x1+x2+x3)/3e−Γ/2(|x1−x2|+|x1−x3|+|x2−x3|).

(S30)

The three-photon Gaussian input state is

|in〉3 =
1√
3!

∫
dx1dx2dx3â

†(x1)â†(x2)â†(x3)|0〉 1

π3/4σ3/2
eik0(x1+x2+x3)e−x

2
1/(2σ

2)e−x
2
2/(2σ

2)e−x
2
3/(2σ

2). (S31)

Both the projection of the input state on the scattering eigenstates and the subsequent integrals in (S27) are performed
numerically.

The total contribution of the bound state varies with the input pulse width. Figure S1 shows the overlap between
the three-photon bound state and an input Gaussian versus pulsewidth. We note that the maximum overlap for the
three-photon bound state occurs for shorter pulses than the two-photon bound state.

D. Output states and observables

We now have one-, two-, and three-photon output states which we express as

|out〉1 =

∫
dx1 â

†(x1)|0〉ψ1(x1),

|out〉2 =
1√
2

∫
dx1dx2 â

†(x1)â†(x2)|0〉ψ2(x1, x2),

|out〉3 =
1√
3!

∫
dx1dx2dx3 â

†(x1)â†(x2)â†(x3)|0〉ψ3(x1, x2, x3).

(S32)

These are also used to compute the output for coherent states

|αout〉 = e−|α|
2/2

[
|0〉+ α|out〉1 +

α2

√
2
|out〉2 +

α3

√
3!
|out〉3 + . . .

]
(S33)
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FIG. S1. Overlap of a two- and three-photon Gaussian states with two- and three-photon bound states versus the width of
the Gaussian state σΓ.

We are interested in computing the normally ordered expectation values and correlations 〈â†(x)â(x)〉, G(2)(xc, x) =
〈â†(xc)â†(xc + x)â(xc + x)â(xc)〉, and G(3)(xc, x, y) = 〈â†(xc)â†(xc + x)â†(xc + y)â(xc + y)â(xc + x)â(xc)〉. For a
coherent state with up to three photons, these give the expressions

〈â†(x)â(x)〉 = |α|2|ψ1(x)|2 + |α|4
[∫

dx1|ψ2(x, x1)|2 − |ψ1(x)|2
]

+ |α|6
[

1

2

∫
dx1dx2|ψ3(x, x1, x2)|2 −

∫
dx1|ψ2(x, x1)|2 +

1

2
|ψ1(x)|2

]
,

G(2)(xc, x) = |α|4|ψ2(xc, xc + x)|2 + |α|6
[∫

dx1|ψ3(xc, xc + x, x1)|2 − |ψ2(xc, xc + x)|2
]
,

G(3)(xc, x, y) = |α|6|ψ3(xc, xc + x, xc + y)|2.

(S34)

S3. SEPARABILITY OF THREE-PHOTON HYBRID STATES

The behaviour of the hybrid state in Fig. 2(c) of the main text is significant. Its shape indicates that the bound
two-photon part of this state propagates with the same effective velocity as the actual two-photon bound state, while
the extended photon in the hybrid state evolves like a single photon.

In this section we show that, for spectrally narrow input states, the evolution of the Hybrid state follows that of
an independent two-photon bound state and an independent single photon. We consider the input state |in〉3 given
in (S31) that is on resonance k0 = 0. The hybrid state has the form given in (S30). The contribution of the hybrid
state to the full three-photon output state is

|out〉hybrid =
1

2

∫
dKdk tNK,2t

N
k |HK,k〉3〈HK,k|in〉

=
1√
3!

∫
dx1dx2dx3ψhybrid(x1, x2, x3)â†(x1)â†(x2)â†(x3)|0〉

(S35)

We now focus on the inner product 〈HK,k|in〉. Noting that the input state is separable and therefore already fully
symmetric we can relabel the 3! terms in the Hybrid state to make them identical. We end up with

3〈in|HK,k〉3 =
−iΓ

2π
√

3Γ
[
(K2 − k)2 + Γ2

4

] [
(K2 − k)2 + 9Γ2

4

] 3!

π3/4σ3/2

∫
dx1dx2dx3 e

−(x2
1+x2

2+x2
3)/(2σ2)θ(x2 − x1)

[
K

2
− k − iΓ

2
− iΓ sgn (x3 − x1)

] [
K

2
− k +

iΓ

2
− iΓ sgn (x3 − x2)

]
ei
K
2 (x1+x2)e−

Γ
2 (x2−x1)eikx3 .

(S36)
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Using the two-body coordinates xc = x1 + x2/2 and x = x1 − x2 allows writing the integral as

I(K, k) =

∫
dxcdx dx3 e

−(2x2
c+x

2/2+x2
3)/(2σ2)θ(−x)

[
K

2
− k − iΓ

2
− iΓ sgn

(
x3 − xc −

x

2

)]
[
K

2
− k +

iΓ

2
− iΓ sgn

(
x3 − xc +

x

2

)]
eiKxce

Γ
2 xeikx3

=

∫
dxcdx3e

−(2x2
c+x

2
3)/(2σ2)eiKxceikx3

∫
dx e

Γ
2 xe−x

2/(4σ2) θ(−x)

[
K

2
− k − iΓ

2
− iΓ sgn

(
x3 − xc −

x

2

)]
[
K

2
− k +

iΓ

2
− iΓ sgn

(
x3 − xc +

x

2

)]
.

(S37)

Unfortunately all the integrals cannot be computed exactly. We now perform the integrals over the x coordinate by
considering Γσ � 1. The exponentially decaying functions decay with Γ, while the Gaussian functions have a width

∼ 1/σ. When taking Γσ � 1, we can make the approximation eΓ/2xe−x
2/(2σ2) ∼ eΓ/2x for x < 0. We can then write

the integral over x as∫
dx e

Γ
2 x θ(−x)

[(
K

2
− k
)2

+
Γ2

4
− Γ2

2
sgn

(x
2
− a
)

+ iΓ

(
K

2
− k
)

sgn
(x

2
+ a
)

−iΓ
(
K

2
− k
)

sgn
(x

2
− a
)
− Γ2

2
sgn

(x
2

+ a
)

+ Γ2 sgn
(x

2
− a
)

sgn
(x

2
+ a
)]
,

(S38)

where a = x3 − xc. We then compute the integrals

I0 =

∫
dx θ(−x)eΓ/2x =

2

Γ

I1 =

∫
dx θ(−x)eΓ/2x sgn

(x
2

+ a
)

=
2

Γ

[
(1− 2e−aΓ)θ(a)− θ(−a)

]
I2 =

∫
dx θ(−x)eΓ/2x sgn

(x
2
− a
)

=
2

Γ

[
(1− 2eaΓ)θ(−a)− θ(a)

]
I3 =

∫
dx θ(−x)eΓ/2x sgn

(x
2
− a
)

sgn
(x

2
+ a
)

=
2

Γ

(
2e−Γ|a| − 1

)
.

(S39)

The integral in (S37) then becomes

I(K, k) =
2

Γ

∫
dxcdx3e

−(2x2
c+x

2
3)/(2σ2)eiKxceikx3

{(
K

2
− k
)2

+
Γ2

4
+ Γ2e−Γ|a|

−2iΓ

(
K

2
− k
)

sgn (a)(1− e−Γ|a|) + Γ2(2e−Γ|a| − 1)

}
,

(S40)

where we have used I1 + I2 = −4/Γe−Γ|a| and I1 − I2 = 4/Γ sgn (a)(1 − e−Γ|a|). Unfortunately we are unable to

compute I(K, k) exactly. Instead we compute the projection of this function on the K-axis, i.e. Ĩ(K) =
∫
dkI(K, k).

We show that this function is much narrower than the linewidth. Consequently, conservation of energy E = K + k
will imply that its projection on the k-axis Ī(k) =

∫
dKI(K, k) is also narrower than the linewidth. After computing

the integrals and some manipulation, in the limit Γσ � 1, we obtain

I(K) = π
√
πe−K

2σ2/4

(
K2σ2

Γσ
− 3Γσ +

4

Γσ

)
+

8πΓ2

K2 + Γ2
+ 4πK

[
2K

K2 + Γ2
−√πσe−K2σ2/4 Erfi

(
Kσ

2

)]
, (S41)

where Erfi is the imaginary error function (which is actually real-valued). In the limit K → 0 and Γσ � 1 the function
is

I(K) = π
√
π

(
−3Γσ +

4

Γσ

)
e−K

2σ2/4 +O(K2σ2). (S42)

On the other hand, in the limit Kσ � 1 and Γσ � 1, using the large argument approximation e−x
2/4 Erfi (x/2) =

2/(
√
πx) +O(1/x3) we have

I(K) = π
√
πe−K

2σ2/4

(
K2σ2

Γσ
− 3Γσ +

4

Γσ

)
+O

(
1

K2σ2

)
. (S43)
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The Gaussian part becomes negligible here and the function therefore scales as 1/K2σ2 which is much less than one
when K → Γ. Within the linewidth of the emitter, the function is largest when Kσ � 1, where it is well-approximated
by a Gaussian function. Since the tails of this function scales as 1/K2σ2, they only serve to slightly broaden the
Gaussian function. This implies that (S42) is a reasonable approximation for the function.

This means that the Gaussian part of the function is dominant over the other parts. This part of the function
I(K, k) comes from the integrals I0 and I3 and can actually be computed analytically when Γσ � 1. It is given by

I(K, k) ∼ 2

Γ

[(
K

2
− k
)2

− 3Γ2

4

]
√

2πσ2e−K
2σ2/4e−k

2σ2/2

∼ 3Γ

2

√
2πσ2e−K

2σ2/4e−k
2σ2/2.

(S44)

This then gives

〈in|HK,k〉 ∼
−iΓ

2π
√

3Γ
[
(K2 − k)2 + Γ2

4

] [
(K2 − k)2 + 9Γ2

4

] 3!

π3/4σ3/2

3Γ

2

√
2πσ2e−K

2σ2/4e−k
2σ2/2. (S45)

This projection has two very useful features. The Gaussian part is separable in K and k and this part is highly
localized about the origin. In fact the function multiplying the Gaussians can be approximated by a constant in K
and k when Γσ � 1.

Substituting the projection 〈HK,k|in〉 into the (S35) gives the hybrid wavefunction

ψhybrid(x1, x2, x3) =
1

2

∫
dKdk tNK,2t

N
k

Γ2

12π2Γ
[
(K2 − k)2 + Γ2

4

] [
(K2 − k)2 + 9Γ2

4

] 3!

π3/4σ3/2

3Γ

2

√
2πσ2e−K

2σ2/4e−k
2σ2/2

{
θ(x2 − x1)

[
K

2
− k − iΓ

2
− iΓ sgn (x3 − x1)

] [
K

2
− k +

iΓ

2
− iΓ sgn (x3 − x2)

]
ei
K
2 (x1+x2)e−

Γ
2 (x2−x1)eikx3+↔

}
.

∼ 4Γ2σ2
√

2π

Γ2

1

π3/4σ3/2

1

2

∫
dKdk tNK,2t

N
k e
−K2σ2/4e−k

2σ2/2{
θ(x2 − x1)

[
1

2
+ sgn (x3 − x1)

] [
1

2
− sgn (x3 − x2)

]
ei
K
2 (x1+x2)e−

Γ
2 (x2−x1)eikx3+↔

}
.

(S46)

The integrals over K and k are separable and can be computed individually. They are simply inverse Fourier
transforms of the Gaussian functions multiplied by their transmission coefficients. The two-photon bound part of
the hybrid state therefore evolves according to the two-photon bound state transmission coefficient, while the single
photon part evolves according to the single-photon transmission coefficient. One can therefore interpret the hybrid
eigenstates as a two-photon bound state and a single photon which are weakly interacting. The effect of interactions
then becomes negligible in the long pulse limit, since the two components are unlikely to be at the same spatial
positions.

S4. ELECTRIC FIELD OF BOUND STATES AND RELATION TO SELF-INDUCED TRANSPARENCY

In this section we compute the electric field of a linear combination of bound states. In particular, we show that
in the classical limit, where the sum is composed of a sum of many-body bound states, the field resembles that of a
self-induced transparency soliton.

We begin by considering an arbitrary state composed of a sum of bound states

|ψ〉 =
∑
n

∫
dEcn(E)|BE〉n (S47)

The electric field is then proportional to

〈â(x)〉 = 〈ψ|â(x)|ψ〉 =
∑
n

∫
dEdE′c∗n−1(E′)cn(E)n−1〈BE |â(x)|BE〉n. (S48)
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The bulk of this calculation involves computing the matrix element in the integrand. Using the expression for the
n-photon bound state in (8) of the main text, the matrix element is

n−1〈BE |â(x)|BE〉n =

√
n

2π

√
Γn−2(n− 2)!

n− 1

√
Γn−1(n− 1)!

n

∫
dx1dx2 . . . dxn−1e

i
(
E
n− E′

n−1

)
(x1+x2+...xn−1)

× e−Γ
∑n−1
i<j |xi−xj |eiEx/ne−

Γ
2

∑
i |xi−x|

=

√
Γ

2π
Γn−2(n− 2)! eiEx/n

∫
dx1dx2 . . . dxn−1e

iKn(x1+x2+...xn−1)/ne−Γ
∑n−1
i<j |xi−xj |e−

Γ
2

∑
i |xi−x|,

(S49)

where Kn = E − nE′

n−1 .
The bound-state wave functions are highly symmetric, which can be used to greatly restrict the domain of in-

tegration. This symmetry will be exploited to reduce the exponentials with negative absolute value arguments to
exponentials without absolute values, but with arguments that are always negative. Noting that the integral is in-
variant under permutation of any xi ↔ xj , we can restrict the domain of integration to x1 > x2 > . . . xn−1 and
correspondingly multiply by (n− 1)!. This gives

n−1〈BE |â(x)|BE〉n =

√
Γ

2π
Γn−2(n− 2)!(n− 1)! eiEx/n

∫
>

dx1dx2 . . . dxn−1e
iKn(x1+x2+...xn−1)/ne−

Γ
2

∑
i |xi−x|

× e−Γ(x1−x2)e−Γ(x1−x3)e−Γ(x1−x4) × . . .× e−Γ(x1−xn−1)

× e−Γ(x2−x3)e−Γ(x2−x4) × . . .× e−Γ(x2−xn−1)

...
...

× e−Γ(xn−3−xn−2)e−Γ(xn−3−xn−1)

× e−Γ(xn−2−xn−1),

(S50)

where the subscript > of the integral indicates the domain x1 > x2 > . . . > xn−1. All these exponents can be
combined to give

e−Γ(n−2)x1e−Γ(n−4)x2e−Γ(n−6)x3 . . . e−Γ[n−2−2(i−1)]xi . . . eΓ(n−2)xn−1 . (S51)

There is still an exponential factor with an absolute value in its exponent. This is

e−
Γ
2

∑n−1
i |xi−x| =

n−1∏
i=1

[
θ(xi − x)e−

Γ
2 (xi−x) + θ(x− xi)e

Γ
2 (xi−x)

]
, (S52)

where θ(x) is Heaviside’s step function. In general, this contains 2n−1 terms when fully expanded, but most of these
terms integrate to zero because the integral is over x1 > x2 > . . . > xn−1. In fact, there are only n terms that
contribute,

e−
Γ
2

∑n−1
i |xi−x| → θ(x > x1 > x2 > . . . > xn−1)e−

Γ
2 (x−x1)e−

Γ
2 (x−x2) . . . e−

Γ
2 (x−x1)

+ θ(x1 > x > x2 > . . . > xn−1)e
Γ
2 (x−x1)e−

Γ
2 (x−x2) . . . e−

Γ
2 (x−x1)

+ θ(x1 > x2 > x > . . . > xn−1)e
Γ
2 (x−x1)e

Γ
2 (x−x2) . . . e−

Γ
2 (x−x1)

+ . . .+

+ θ(x1 > x2 > . . . > xn−1 > x)e
Γ
2 (x−x1)e

Γ
2 (x−x2) . . . e

Γ
2 (x−x1),

(S53)

where the notation θ(x > x1 > x2 > . . . > xn−1) = θ(x− x1)θ(x1 − x2)θ(x2 − x3) . . . θ(xn−2 − xn−1).
This then gives n many-body integrals each over n− 1 variables,

n−1〈BE |â(x)|BE〉n =

√
Γ

2π
Γn−2(n− 2)!(n− 1)!eiEx/n

∫
>

dx1dx2 . . . dxn−1e
iKn(x1+x2+...+xn)/n

× e−Γ(n−2)x1e−Γ(n−4)x2 . . . e−Γ[n−2n−2−2(k−1)]xk . . . eΓ(n−2)xn−1{
θ(x− x1)e−

Γ
2 (n−1)xe

Γ
2

∑n−1
i=1 xi + θ(x1 − x)θ(x− x2)e−

Γ
3 (n−1)xe−

Γ
2 x1e

Γ
2

∑n−1
i=2 xi

+ . . .+ θ(xj−1 − x)θ(x− xj)e−
Γ
2 [n−1−2(j−1)]xe−

Γ
2

∑j−1
i=1 xie

Γ
2

∑n−1
i=j xi

+ . . .+ θ(xn−1 − x)e
Γ
2 (n−1)xe−

Γ
2

∑n−1
i=1 xi

}
.

(S54)
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The j-th integral is

Ij(x) = e−
Γ
2 [n−1−2(j−1)]

∫
>

dx1dx2 . . . dxn−1e
iKn(x1+x2+...+xn)/ne−Γ(n−2)x1e−Γ(n−4)x2e−Γ(n−6)x3

. . . e−Γ[n−2−2(i−1)]xi . . . eΓ(n−2)xn−1θ(xj−1 − x)θ(x− xj)e−
Γ
2 (x1+x2+...+xj−1)e−

Γ
2 (xh+xj+1+...+xn−1)

= e−
Γ
2 [n−1−2(j−1)]

∫ ∞
x

dx1e
−Γ(n−2)x1eiKnx1/ne−

Γ
2 x1

∫ x1

x

dx2e
−Γ(n−4)x2eiKnx2/ne−

Γ
2 x2

× . . .×
∫ xj−2

x

dxj−1e
−Γ[n−2−2(j−2)]xj−1eiKnxj−1/n∫ x

−∞
dxje

−Γ[n−2−2(j−1)]xjeiKnxj/n
∫ xj

−∞
dxj+1e

−Γ[n−2−2j]xj+1eiKnxj+1/n

× . . .×
∫ xn−2

−∞
dxn−1e

Γ(n−2)xn−1eiKnxn−1/ne
Γ
2 xn−1 .

(S55)

The n− 1 integrals thus split into two sets of integrals: the first j− 1 integrals and the second n− j. The first j− 1
integrals have a form giving

K̃j−1(x) =

∫ ∞
x

dx1e
−α1x1

∫ x1

x

dx2e
−α2x2 × . . .×

∫ xj−2

x

dxj−1e
−αj−1xj−1 =

exp
[
−∑j−1

i=1 αix
]

∏j−1
i=1

(∑i
k=1 αk

) , (S56)

where αk = Γ [n− 2− 2(j − 1) + 1/2]−iKn/n and the sums over αk can be easily evaluated. The latter n−j integrals
must be evaluated in reverse order. They give

Ĩn−j(x) =

n−j∏
m=1

1

Γm (n−m− 1/2) + imKn/n
eiKn(n−j)x/neΓ(n−j)(j−1/2)x. (S57)

Combining the two integrals we have

Ij(x) = e−
Γ
2 [n−1−2(j−1)]xĨn−j(x)K̃j−1(x)

= eiK
′
n(n−1)x

n−j∏
m=1

1

Γm (n−m− 1/2) + imK ′n

j−1∏
k=1

1

Γk (n− k − 1/2)− ikK ′n
≡ eiK′n(n−1)xI ′j(K

′
n),

(S58)

where we have defined K ′n = Kn/n. We note that in Ij(x) the exponents containing Γ all cancel each other.
Putting everything together the matrix element can be written

n−1〈BE |â(x)|BE〉n =

√
Γ

2π
Γn−2(n− 2)!(n− 1)!ei(E−E

′)x
n∑
j=1

I ′j(K
′
n). (S59)

Using the properties of the complex Gamma function Γ (z) one can express

n∑
j=1

I ′j(K
′
n) =

π Γ1−n sech
[
K′nπ

Γ

]
Γ
(
n− 1

2 − iK ′n/Γ
)

Γ
(
n− 1

2 + iK ′n/Γ
) (S60)

The entire expression becomes

〈â(x)〉 =
1

2
√

Γ

∑
n

(n− 2)!(n− 1)!

∫
dE dE′c∗n−1(E′)cn(E)ei(E−E

′)x
sech

[
K′nπ

Γ

]
Γ
(
n− 1

2 − iK ′n/Γ
)

Γ
(
n− 1

2 + iK ′n/Γ
) , (S61)

which is thus far an exact result without approximation.
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A. Recovering the result of self-induced transparency

We now consider Gaussian wavepackets of bound states. Here cn(E) = n〈BE |in〉. We do not need to know the full
form of cn(E), but it is separable and can be written as

cn(E) = e−(E−nk0)2σ2/(2n)cn, (S62)

where cn is not known but is constrained by the normalization of the state 〈ψ|ψ〉 = 1. Using this expression in (S61)
gives

〈â(x)〉 =
1

2
√

Γ

∑
n

(n− 2)!(n− 1)!cnc
∗
n−1

∫
dE dE′e−(E′−(n−1)k0)2σ2/[2(n−1)]e−(E−nk0)2σ2/(2n)ei(E−E

′)x

×
sech

[
K′nπ

Γ

]
Γ
(
n− 1

2 − iK ′n/Γ
)

Γ
(
n− 1

2 + iK ′n/Γ
) . (S63)

Again, as in the previous section, the integral can be recast over K ′n = E/n−E′/(n− 1) and K̄n = E/n+E′/(n− 1)
with Jacobian n(n− 1)/2 giving

〈â(x)〉 =
1

4
√

Γ

∑
n

n!(n− 1)!cnc
∗
n−1

∫
dK ′n dK̄ne

−(K̄n−2k0)2nσ2/4e−K
′2
n nσ

2/4eiK
′
nnx

×
sech

[
K′nπ

Γ

]
Γ
(
n− 1

2 − iK ′n/Γ
)

Γ
(
n− 1

2 + iK ′n/Γ
) , (S64)

where we have used the approximation n/(n− 1) ∼ 1 for large n to simplify the Gaussian functions. Integrating over
K̄n gives

〈â(x)〉 =
1

4
√

Γ

∑
n

cnc
∗
n−1

2
√
π√

nσ2

∫
dK ′n e

−K′2n nσ2/4eiK
′
nnx

×
n!(n− 1)! sech

[
K′nπ

Γ

]
Γ
(
n− 1

2 − iK ′n/Γ
)

Γ
(
n− 1

2 + iK ′n/Γ
) , (S65)

Again, we make the approximation in the limit of large n,

n!(n− 1)!

Γ
(
n− 1

2 − iK ′n/Γ
)

Γ
(
n− 1

2 + iK ′n/Γ
) = n2 +O(n), (S66)

which leads to

〈â(x)〉 =
1

2
√

Γ

∑
n

cnc
∗
n−1

n2
√
π√

nσ2

∫
dK ′n e

−K′2n nσ2/4eiK
′
nnx sech

[
K ′nπ

Γ

]
. (S67)

If the Gaussian function is slowly varying with respect to the sech function, one can expand it about K ′n = 0 giving
1 +O(K ′n). Taking this limit and evaluating the Fourier integral gives

〈â(x)〉 =

√
Γ

2

∑
n

cnc
∗
n−1

n2
√
π√

nσ2
sech

[
nΓx

2

]
. (S68)

Defining the integration Rabi frequency as Ω = 2
√

Γ
∫
dx〈â(x)〉, one obtains

Ω = 2π
∑
n

cnc
∗
n−1

√
nπ

σ
. (S69)

The normalization of the wavefunction implies 1 =
∑
n

∫
dE|cn(E)|2 =

∑
n |cn|2

√
nπ
σ and therefore the integrated

Rabi frequency in the large n limit approaches

Ω = 2π. (S70)
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From (S68), in the limit of a large average photon number and a narrow photon distribution, the electric field can
also be approximated as

〈â(x)〉 =
n̄
√

Γ

2
sech

(
n̄Γx

2

)
, (S71)

where n̄ is the average photon number.

S5. NORMALLY-ORDERED CORRELATION FUNCTION OF BOUND STATES AND MEAN-FIELD
THEORY

Here we compute the m-th-order normally ordered correlation function of the bound states (n ≥ m). Following the
previous section one obtains an integral

n〈BE
′ |
[
â†(x)

]m
[â(x)]

m |BE〉n =
Γn−1(n− 1)!

2πn

n!

(n−m)!

∫
dx1dx2 . . . dxn−me

i(E−E′)(x1+x2+...xn−m)/n

× e−Γ
∑n−m
i<j |xi−xj |eiEmx/n

n−m∏
i=1

e−mΓ|xi−x|.

(S72)

As before, one must reduce the integral to the domain x1 > x2 > . . . > xn−m and then expand the product and
reduce it to its n −m + 1 non-zero terms. Computing all the integrals using the techniques of the previous section,
one obtains

n〈BE
′ |
[
â†(x)

]m
[â(x)]

m |BE〉n =
Γm−1

2πn

(
n!

(n−m)!

)
(n− 1)!(n+m− 1)!

(2m− 1)!

Γ (1− n− i KnΓ ) Γ (1− n+ i KnΓ )

Γ (1−m− i KnΓ ) Γ (1−m+ i KnΓ )
eiKx,

(S73)

where now K = E − E′.

A. Reduction to mean-field theory (n� m)

We now show that if the particle number n is much large than the order of the correlation function m, the outcome
of the measurement probes the mean fields and the correlation function factorizes. One can start by making the
approximation

(n!)2 Γ

(
1− n− i K

nΓ

)
Γ

(
1− n+ i

K

nΓ

)
=

π2n2

sinh2 (πKnΓ )
+O(n). (S74)

Additionally one can use the recurrence relation of the Gamma function Γ(z − n) = Γ(z)/ [(z − 1)(z − 2) . . . (z − n)]
to write

Γ

(
1−m− i K

nΓ

)
Γ

(
1−m+ i

K

nΓ

)
= Γ

(
− iK
nΓ

)
Γ

(
iK

nΓ

)m−1∏
k=1

1

k2 + K2

n2Γ2

=
π

K
nΓ sinh

(
πK
nΓ

) m−1∏
k=1

1

k2 + K2

n2Γ2

.

(S75)

Combining these, the matrix element becomes

n〈BE
′ |
[
â†(x)

]m
[â(x)]

m |BE〉n =
Γm−1

2

n2m−1

(2m− 1)!

K

nΓ
cosech

(
πK

nΓ

)
eiKx

m−1∏
k=1

(
k2 +

K2

n2Γ2

)
, (S76)

where we have used Stirling’s approximation to write (n+m−1)!
(n−m)! ∼ n2m−1.

One can now consider an n-photon Fock state composed of bound states

|ψ〉n =

(
σ√
nπ

)1/2 ∫
dE e−(E−nk0)2σ2/(2n)|BEn 〉. (S77)
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The correlation function of this state is given by

n〈ψ|
[
â†(x)

]m
[â(x)]

m |ψ〉n =
σ√
nπ

∫
dEdE′ e−(E′−nk0)2σ2/(2n)e−(E−nk0)2σ2/(2n)〈BE′n |

[
â†(x)

]m
[â(x)]

m |BEn 〉. (S78)

Changing the integration variables to K = E − E′ and K̄ = (E + E′)/2 and integrating out K̄ gives

n〈ψ|
[
â†(x)

]m
[â(x)]

m |ψ〉n =
Γm−1

2

n2m−1

(2m− 1)!

∫
dK

K

nΓ
cosech

(
πK

nΓ

)
e−

K2σ2

4n eiKx
m−1∏
k=1

(
k2 +

K2

n2Γ2

)
. (S79)

At this point one can make use of the tabulated Fourier Transform [55],

[sech (ax)]2n =

∫
dy eiyx

4n−1

(2n− 1)!a

y

2a
cosech

(πy
2a

) n−1∏
r=1

(
y2

4a2
+ r2

)
. (S80)

In the limit σΓ� 1 the Gaussian factor approaches unity and the tabulated integral can be used to give

n〈ψ|
[
â†(x)

]m
[â(x)]

m |ψ〉n =
Γm−1n2m−1

2

nΓ

2

1

4m−1

[
sech

(
nΓx

2

)]2m

=

[
n
√

Γ

2
sech

(
nΓx

2

)]2m

.

(S81)

As in the previous section, one can also consider a state composed of different Fock states n. Such a state returns
the same result but with n replaced with the average photon number n̄. Comparing this result with (S71) indicates
that the m-th order correlation function can be obtained using mean-field theory when n � m. We note that the
expression for the correlation function has a different form when n ∼ m. This is particularly clear from (S73) when
n = m which causes the Gamma functions to evaluate to unity leaving only the plane-wave factor varying with K.

S6. PROPAGATION IN THE LARGE n LIMIT

In this section we show how the observables change under propagation when n� 1. We start with the electric field
〈â(x)〉 which is given in (S61). For an incident coherent field in the limit of n� 1, we expect that the field amplitudes
of the bound states approach those of a coherent state and therefore

cn(E) ∼ e−|α|2/2 α
n

√
n!

(
σ√
nπ

)1/2

e−(E−nk0)2σ2/(2n) (S82)

Since the bound states are eigenstates, scattering off N emitters simply maps cn(E) → tNE,ncn(E). As in the main

text, one can write tNE,n = eiNφn(E) and Taylor expand φn(E). Since we have found the pulse distortion terms decrease

rapidly as n increases we simply consider the first order term in the expansion of φn(E). Following the calculations
starting from (S63) one obtains for zero detuning (k0 = 0)

〈â(x)〉 = e−|α|
2 ∑

n

α2n

n!

n
√

Γ

2
sech

[
nΓ

2

(
x+

4N

n2Γ

)]
, (S83)

which gives (19) from the main text. A similar process can be followed to obtain the normally ordered correlation
functions.

S7. EFFECTIVE SPIN MODEL AND MPS ANSATZ

In this appendix we present an alternative route to the S-matrix scattering formalism used in the main text to
describe the light propagation through an array of chirally coupled emitters. The full system dynamics can be indeed
described by the combination of a driven-dissipative master equation for the emitters and a generalized input-output
relation that allowed to reconstruct the electric field [26, 27]. The dynamics of the emitter can than be efficiently
solved by using a matrix product states (MPS) ansatz [27, 30, 31, 42] which allow us to push the simulation to larger
atomic arrays and higher input power.
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FIG. S2. Comparison between the results obtained by directly solving the master equation (continuous line) and by using the
quantum trajectories algorithm (markers points) for the same parameters used in Fig.2(d) of the main text.

A. Effective spin model

Let us consider the most general case (extension of the cascade scenario described by Eq.(1) of the main text) of N
TLA with equal frequency ω0 = ck0 coupled asymmetrically to a waveguide with decay rates ΓR and ΓL associated
respectively to the emission of right and left propagating photons. The addition of the two decay rates gives the total
emission rate of the TLA into the waveguide Γ = ΓL+ ΓR. In a realistic implementation the emitters can also radiate
into other external channels, the decay rate associated to this emission is indicated with Γ0. The right propagating
input pulse is treated as a classical coherent field, Ein(t, x) = Ein(t)eikinx and for the rest of the discussion we will
assume it to be on resonance with the atomic transition, i.e. kin = k0. The coupling of the emitters to the input field is
given by the Hamiltonian Hdrive =

∑
j

√
ΓR
[
Ein(t, xj)σ̂

+
j +H.c.

]
where σ̂+

j = |g〉〈e|j is the j-th emitter annihilation
operator.

Under Born-Markov approximation the emitters dynamics is known to be described by a chiral master equation(ME)
of the general form [29]:

ρ̇ = −i
(
Heffρ− ρH†eff

)
+ J [ρ], (S84)

where

Heff = −i
∑
j

(Γ + Γ0)

2
σ̂+
j σ̂
−
j +Hdrive − i

∑
l>j

(
ΓLe

ik0|xl−xj |σ̂+
j σ̂
−
l + ΓRe

ik0|xl−xj |σ̂+
l σ̂
−
j

)
(S85)

is the effective Hamiltonian which provides the non-Hermitian collective evolution of the emitters. The recycling term

J [ρ] = (Γ + Γ0)
∑
j

σ̂−j ρσ̂
+
j +

∑
l>j

[(
ΓRe

ik0|xl−xj | + ΓLe
−ik0|xl−xj |

)
σ̂−j ρσ̂

+
l + H.c.

]
(S86)

assures the conservation of the density operator trace and it arises by the quantum jumps that the emitters experience
after the emission of a photon into the waveguide or into free space. For ΓL = ΓR Eq. (S84) coincides with the
standard waveguide QED master equation [56, 57] where both coherent and dissipative interactions between the
emitters occur depending on the atoms position. In the limit of a perfect chiral waveguide considered in the main
text, i.e. ΓL = Γ0 = 0 and Γ = ΓR, the master equation Eq. (S84) reduces to the well known cascade master
equation [28, 29] characterized by an unidirectional purely dissipative interaction between the emitters. In this limit
only the spatial order of the atoms and not the specific positions matters and the excitation is transferred only to the
right without any back action.
Once solved the emitters dynamics, the transmitted and reflected (for the semi-chiral case) electric field is obtained
by the following generalized input-output relations [26, 27]:

ER(t) = Ein(t) + i
∑
j

√
ΓRe

−ik0xj σ̂−j (t), (S87)
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EL(t) = i
∑
j

√
ΓLe

ik0xj σ̂−j (t). (S88)

The combination of Eq. (S84), (S87), and (S88) allows to correctly describes the photon propagation trough the chiral
medium.

B. MPS ansatz

In order to observe the main results obtained in the main text, e.g. photon number dependent bound states
separation, it is necessary to consider substantial input pulse amplitudes and large atomic arrays, a scenario that
is challenging to simulate with standard numerical techniques. To treat this many body problem we use a recently
developed algorithm which involve an MPS representation to efficiently describe the effective spin dynamics [27]. The
system evolution can be solved with two different approaches, either by directly solving the ME (S84) [42](method
used for Fig. 3 of the main text) or by using a quantum trajectories algorithm where the state of the system evolves
under the effective Hamiltonian (S85) and it stochastically experiences the occurring of quantum jumps [27] (method
used for Fig. 2(f) of the main text). In both case an MPS representation is applied either to the quantum state or
to the the density matrix once mapped to a vector. The MPS ansatz consists in reshaping the generic quantum state
|φ/ρ〉 =

∑
i1,..iN

ψi1,i2,..iN |i1, i2, ..iN 〉 into a matrix product state of the form:

|φ/ρ〉 =
∑
i1,..iN

Ai1Ai2 ...AiN |i1, i2, ..iN 〉 (S89)

where, for each specific set of physical indices {̄i1, ī2, ..̄iN}, the product of the Aīj matrices gives back the state
coefficient ψī1 ,̄i2,..̄iN . Each matrix Aīj has dimension Dj−1 ×Dj known as bond dimension and finite-edge boundary
conditions are assumed by imposing D1 = 1 and DN = 1. The bond dimension reflects the entanglement entropy.
For arbitrary states the bond dimensions grow exponentially with the system size. The advantage of the MPS ansatz
it is that, in many physical scenarios, as the one considered here, the entanglement can grow slowly with the system
size allowing an efficient description of the state in terms of a smaller bond dimension [31].

In order to compute the evolution of the system it is possible, in both methods, to derive a matrix product operator
(MPO) representation for either the Liouvillian or the effective Hamiltonian and jump operators. The derivation of
this representation for our semi-chiral case follows straightforwardly from the bi-directional case presented in [27, 42].
The evolution of the system is then computed by applying a linear expansion of the master equation (or of the time
evolution operator) 1 + dtL(Heff) or a Runge-Kutta method. In addition a MPO representation can be derived also
for the observables and it allows to evaluate the expectation values. After each application of an MPO to an MPS the
MPS bond dimension increases. The bond dimension is than truncated after each step in order to keep an efficient
description of the state. We indicate as Dmax the maximum bond dimension used to represent the system during
an entire time evolution. In all the plots considered in this work we used Dmax = 150 for the ME simulations and
Dmax = 40 for the quantum trajectories algorithm.

S8. EFFECT OF OTHER DECAY CHANNELS

In the main text we considered the ideal scenario of an array of atoms perfectly chirally coupled to a waveguide.
In real implementations this is not always the case and the atoms can either emit into the other direction or into
free space. Let us first assume that the atoms can emit also into the direction opposite to the pulse propagation, i.e.
ΓL 6= 0, while the emission to other external channels is suppressed Γ0 = 0. In this case the master equation (S84)
becomes dependent on the atomic positions. To better understand this point we consider the two paradigmatic cases
of atoms equally spaced either by a distance k0d = k0|xi−xj | = (n+1)π/2 or k0d = k0|xi−xj | = nπ with n = 1, 2, ...
We focus on these two configurations because in the bi-directional limit they are the ones providing purely coherent
or dissipative interactions respectively. In Fig.S3(a)-(b) we plot the transmitted intensity for the two cases and we
compare it to the one obtained in the perfectly chiral scenario. We observe that the emission into the opposite
channel affects the intensity in a totally different manner depending on the atomic distance. In the first configuration,
Fig.S3(a), it leads to an overall spreading of the bound states peaks for increasing values of ΓL. In the second,
Fig.S3(b), the bound state separation not only seems to be robust to the deviation from a perfect chiral emission, but
it even leads to a better resolution of the bound state peaks at the price of a weaker pulse in transmission. This effect
is caused by an additional time-delay of the BS peaks, induced by partial reflection, which affects mostly the few
photon bound states making the bound states separation even more evident. The many-photons BS, on the contrary,



29

0.04

0.16

0

0.08

0.12

-50 -40 -20 0-10-30 10

0.04

0.16

0

0.08

0.12

-50 -40 -20 0-10-30 10

0.04

0.16

0

0.08

0.12

-50 -40 -20 0-10-30 10

0

0.02

0.04

0.08

0.06

0.1

-50 -40 -20 0-10-30 10

(a) (b)

(c) (d)

transmitted field

reflected field

input

FIG. S3. (a)-(b) Transmitted power as function of the position for different values of the decay along the left direction. In
(a) we fixed the atomic distance to kd = π/2 while in (b) to kd = π. (c) Transmitted and reflected power for ΓL/Γ = 0.2 and
kd = π. (d) Transmitted power for different values of an external decay rate Γ0. In panels (a),(b) and (d) the dashed lines
show the expected delay of the BS for the ΓL = Γ0 = 0 case while in panel (c) it shows the input field position. In all panels
N = 20, n̄ = 1.8, Γσ = 2

√
2 and Dmax = 170.

not only experience less delay than their few-photons counterpart, but they are also more robust against distortion
tending to keep their solitonic behaviour. These features are more evident in Fig. S3(c) where we plot the reflected
field intensity. Here the majority of the reflection occurs at the interface and it causes the damping in transmission.
On the other end, when the pulse enter in the medium, we observe a major reflection for the BS with few photons.
This phenomena make sense in light of the connection to the SIT limit at large photon pulses. In this limit, the
chirality is not an essential requirement to observe the formation of solitons. The role of chirality is however crucial
to bring the solitonic behaviour to the level of few photons.

In addition this observation suggests that the k0d = k0|xi−xj | = nπ spacing is the optimal configuration to observe
the effect in an experiment. On the other hand, in many realistic implementation, it is difficult to have control on
the position of the emitters. For this reason it makes sense consider the effect of a semi-chiral emission by making an
average on random positions. This scenario is similar to consider a decay of the atoms in an external channel with
rate Γ0. The effect of this external decay is plotted in Fig. S3(d) and shows that in general the effect is visible for
values Γ0 ≤ 0.2. Again we expect the overall effect to be robust for many-photon BS.


	Dynamics of many-body photon bound states in chiral waveguide QED
	Abstract
	I Introduction
	II Model
	A Mean-field Theory and Self-induced Transparency
	B Many-body Scattering Eigenstates
	C MPS Ansatz

	III Many-body Pulse Propagation
	A Evolution of bound states
	B Influence of imperfections

	IV Connection to the SIT soliton
	A Beyond mean-field theory

	V Soliton Interactions
	VI Outlook
	VII Conclusion
	VIII Acknowledgements
	 References
	S1 Self-induced Transparency
	S2 One-, Two- and Three-photon Transport using Scattering Eigenstates
	A Single-Photon Transport
	B Two-Photon Transport
	C Three-photon transport
	D Output states and observables

	S3 Separability of three-photon hybrid states
	S4 Electric field of bound states and relation to self-induced transparency
	A Recovering the result of self-induced transparency

	S5 Normally-ordered correlation function of bound states and mean-field theory
	A Reduction to mean-field theory (n m)

	S6 Propagation in the large n limit
	S7 Effective spin model and MPS ansatz
	A Effective spin model
	B MPS ansatz

	S8 Effect of other decay channels


