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Abstract

The growth of living tissue is known to be modulated by mechanical as well as biochemi-
cal signals. We study a simple numerical model where the tissue growth rate depends on
a chemical potential describing biochemical and mechanical driving forces in the mate-
rial. In addition, the growing tissue is able to adhere to a three-dimensional surface and is
subjected to surface tension where not adhering. We first show that this model belongs to
a wider class of models describing particle growth during phase separation. We then ana-
lyse the predicted tissue shapes growing on a solid support corresponding to a cut hollow
cylinder, which could be imagined as an idealized description of a broken long bone. We
demonstrate the appearance of complex shapes described by Delauney surfaces and remi-
niscent of the shapes of callus appearing during bone healing. This complexity of shapes
arises despite the extreme simplicity of the growth model, as a consequence of the three-
dimensional boundary conditions imposed by the solid support.

Keywords Tissue growth - Phase separation - Precipitation - Surface tension - Wetting

1 Introduction

Many living tissues can be described as effective fluids on long time scales because they
are permanently subjected to tissue remodelling [1, 2]. They can have a measurable surface
energy [3, 4], and viscosity [5, 6], giving rise to collective behaviour that goes beyond the
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properties of single cells and that can be described by physical laws [7, 8]. In addition,
tissues are active and can grow in response to physical, chemical and biological stimuli
from the environment. When this growth is slow compared to local remodelling rates of
the extracellular tissue, shear stresses in the matrix are expected to relax fast enough to
reach the mechanical equilibrium status of a fluid before the volume significantly increases.
Under such conditions, the shape of the tissue “droplet” corresponds at any moment in
time to the equilibrium shape governed by the surface stress and corresponding energy
state [9]. Despite the extreme simplicity of such a model, fluid drops with remarkably com-
plex shapes can emerge simply by interacting of the surface with three-dimensional sub-
strates of complex geometry, see e.g.[9-11].

In order to get better insight into the development of geometric complexity, we further
investigate a simple model introduced in earlier work [9], where growth is described as
the time derivative of the tissue volume, V, being proportional to —y (K — K,.)V, with K
being the total surface curvature (i. e. the trace of the surface curvature tensor) of the tis-
sue aggregate. K is twice the mean curvature and should not be confused with the Gauss-
ian curvature which plays no role in the following (we use the symbol K to be consistent
with our previous papers). The parameters y and K, correspond, respectively, to the specific
surface energy and a critical curvature related to the driving force for growth. This model
was derived based on earlier work [8, 12—14], whereby tissue is described as a fluid. The
surface stress state causes a surface-curvature dependent pressure inside the tissue. This
internal pressure is proportional to the curvature K according to the Laplace—Young law. It
counteracts the pressure induced by tissue growth and compensates it exactly at a curvature
K..

When writing this relationship for a spherical droplet of radius R, it becomes appar-
ent that the tissue growth model belongs to a wider class of models that has been
intensively studied in the context of phase separation [15-17]. Indeed, the equation
R=A,(R/R.—1)/R" describes the growth of a particle from a medium that provides the
necessary source of matter, whereby R, is the critical radius and A, a kinetic coefficient.
The integer n is = 1 when particle growth rate is limited by the accretion reaction on the
surface of the particle and = 2, 3, 4 when its growth is limited by diffusion through the bulk
of the medium (such as a solution or an alloy), diffusion along planar structures (such as
grain boundaries) or along linear paths (such as dislocation lines), respectively [18]. Inter-
estingly, the tissue growth model considered here corresponds to the same class of models,
with n = 0. All these models have in common that a particle will grow when its radius R
is larger than R, but shrinks when it is smaller. In phase separation models, R, depends on
the chemical potential difference between the phases and, thus, on the supersaturation of
the solution from which the particle grows [19]. In our biological tissue growth model, the
meaning is analogous and R, describes the driving force for tissue growth [9]. In general,
R, may depend on time through the interaction with other growing or shrinking particles.
The kinetics of phase separation processes and the associated growth and coarsening of
particles has been analysed in great detail both by statistical physics and lattice methods
[20-23] as well as through particle models [24-28].

A significant increase in structural complexity occurs when phase separation models
are combined with wetting of a substrate to which the growing new phase droplet adheres.
Surface-directed phase separation has been studied in detail since the 1990s [29-32]. The
wetting surface then represents a boundary which confines the growth in certain directions,
leading to a deviation from spherical droplet shapes. In a previous paper we investigated
this for the tissue growth model assuming that the tissue wets planar annulus-like sub-
strates [9], an idealized geometry motivated by healing of the fracture gap in long bones
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[33, 34]. Here we expand this approach, exploring the increased structural complexity
based on wetting of non-planar surfaces. Inspired again by callus formation during bone
healing [33, 34] we particularly chose geometries where the tissue is wetting parts of the
outer shell of a cylinder.

Two stability criteria need to be considered when analysing droplet shapes. The first
one is mechanical stability for a constant droplet volume that we assume to be reached
nearly instantaneously. Mechanical stability corresponds to a minimum of the total
(Gibbs) energy, accounting for the surface energy and the internal pressure that fulfils
the Laplace—Young equation. In addition, there is a second stability criterion with respect
to unlimited growth or resorption of the tissue droplet. Kinetic stability implies that the
equation of growth has a stable solution with constant volume (V = 0, which means that
K =K,). Given that V ~ —y(K - KC)V, such a solution is stable if a fluctuation corre-
sponding to a small increase in volume leads to an increase in curvature, so that V < 0 by
the kinetic equation [9]. This is not the case for spherical droplets, for example, because the
curvature of a sphere decreases when its volume increases. This is the well-known instabil-
ity of droplets at the critical radius. Larger particles have a tendency to grow, while smaller
ones shrink. We showed in our previous work that this situation changes for droplets that
partially wet a substrate, so that kinetic stability exists under certain conditions [9].

In this paper we explore the mechanical and kinetic stability of tissues growing on non-
planar surfaces inspired by simple “bone-like” geometries. The analyses are not meant
to accurately describe the growth of any biological material that has usually hierarchical
structure and is controlled by a variety of signals [35]. Rather we are exploring the pre-
dictions of the model when the tissue droplets adhere to non-planar substrates. A surpris-
ingly big manifold of shapes of bodies are shown to be possible, some of which are kineti-
cally stable. These observations may have implications for our general understanding of
the development of biological form, as it shows that surprising complexity can arise from
extremely simple physical principles.

2 Theory and Methodology
2.1 A Simple Growth Model

What follows is a short outline of our growth model based on a continuum mechanics
framework. For a description of growth using continuum mechanics we refer to the over-
view article by Ambrosi et al. [7] and the book by Goriely [36]. Our approach follows
the concept of surface growth as discussed by Skalak, see e.g.[37]. However, growth is
not considered as the time-evolution of a finite displacement field. The model description
includes continuum thermodynamics as introduced by Ambrosi and co-workers [8, 12]
and thermodynamic forces. Such an approach is followed by several groups, see [38] for a
recent example. Our model was introduced to study tissue growth in confined geometries
[13, 14] involving growing volumes together with moving surfaces. Recently Swain and
Gupta [39] extended the thermodynamic concept including an incoherent interface. Details
of our model can be found in Sect. 2 of [9], only the key aspects are outlined here:

The growing tissue with volume V is assumed to behave like an ideal fluid forming a
surface A with constant curvature K (trace of the curvature tensor, e.g., 2/R for a sphere,
1/R for a cylinder, with radius R, respectively), a surface energy y and a surface stress y,.
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According to the Laplace—Young equation (from 1805, for details see [40]) the internal
pressure p follows from the local mechanical equilibrium of a surface element as [40]

p = Ky;. (1)

In the following context we follow the standard assumption that the surface energy y
exhibits the same value as the (mechanical) surface stress. The justification of this assump-
tion goes back to seminal works from the seventies of the last century [41, 42].

Any possible singularities, incompatibilities and residual stresses are assumed as com-
pensated by relaxation. Following the thermodynamic procedure by Ambrosi and co-work-
ers, see above and applying Eq. (1), a growth law for the volume V of the growing tissue is
derived in [9] as

V=-3fy(K-K)V )

with V the time rate of V, f a kinetic constant and K, a critical curvature, which is
defined as the ratio of a chemical potential ; and the surface stress y,. With y =y, and a
linear transformation of time, = = fyt, we obtain

dv/dr = =3(K = K,)V. 3)

The presence of K. meets the recently shown necessity to include a critical stress in a
growth concept (note that K, is proportional to a critical pressure p, according to Eq. (1)
to obtain, e.g., the homeostasis [43, 44]. The growth law (Egs. 2, 3) has been successfully
applied to simulate rather intricate topologies of grown tissue structures that would develop
during bone healing on a flat circular ring acting as a substrate [9]. One limitation of such
a growth law is that it assumes growth is uniform throughout a tissue. It is clear that cells
deep inside a growing tissue may change their behavior (see e.g.[45].) due to hypoxia, dif-
ferentiation or even formation of extracellular matrix and further work will be required to
incorporate the process of tissue maturation into such a model. Cell-based models such as
(e.g. [46, 47].) also show similar behaviors in cases when nutrients are sufficiently sup-
plied and no cell-maturation occurs. Our surface-stress based approach does not take into
account the relative roles of cell-cell adhesion or cortical tension [6] which may require
(local) elastic contributions to the surface energy. In the following we explore solely how
such a growth model functions for a constant surface energy.

3 Stability of Equilibrium and of Growth Process

The term “stability” is interpreted differently in biology. For example, Finean wrote on
“chemical stability” of a membrane already more than five decades ago [48]. Islam and
Dimov reported on the “mechanical stability” of membranes nearly three decades ago [49].
The term “mechanical stability” has often been used for high stiffness or high deformation
resistance of membrane-like structures in colloquial language. We consider here “stability”
in the sense of both the classical thermodynamics and the kinetics of continua.

3.1 Continuum Description

We consider a tissue body with the volume V and the surface A=Ag+Ay,. The wetted sur-
face Ay is considered to be spatially fixed to a solid substrate. The tissue surface Ay is

@ Springer



The Emergence of Complexity from a Simple Model for Tissue Growth 463

described by a constant trace of the curvature tensor K, owing to the fact that a free surface
of a fluid has a constant mean curvature at mechanical equilibrium.

3.2 Mechanical Stability

Our, starting point is the total Gibbs energy G =G(K) of the system with the only free vari-
able K given as

G(K) = yA(K) = pV(K), 4)

see, e.g., Sect. 2.2 in [50]. Note that the Gibbs energy must also include the external load
term, which has often been ignored.
Equilibrium exists, if the first variation of G becomes 6G =0, yielding

94, _pov 5
0K ~ y oK )

The equilibrium state attains (thermodynamic or static) stability, if G obtains a mini-
mum, which means that the second variation 5°G becomes > 0, yielding

0°G _ OPA; Py

— > 0. 6
k2~ "oxr Pox2 ©

However, this second variation 6°G must include Eq. (5), as a necessary condition for
an extremum, together with Eq. (1) and y=y, as side conditions. Therefore, the derivative
0A, /0K, see Eq. (5), is expressed by using these side conditions as dA,/0K = KoV /oK.
Inserting this relation in Eq. (6) yields

PG _ oV _ OV PV oV
"Eok? T Poke T ok

=y = - 0,
k2 - VoK @)

concluding that the equilibrium state is stable, if 0V /dK > 0.
The problem can also be formulated as a variational problem with the Lagrangian R
describing the tissue through

fmin = / Y dA, — p(V —Vy) | = min / (y,dA; — pdV), (8)

ody body

looking for a minimum of A, for a fixed volume V=V, with p taking the role of a Lagrange
multiplier, see, e.g., Sect. 2.3 in [50]. However this variational formulation deals with geo-
metrical quantities and not mechanical quantities.

It shall be mentioned that Gillette and Dyson [51] and later Lowry and Steen [52] inves-
tigated surfaces of revolution within a simplified variational framework. Both groups com-
pletely describe all surfaces of revolution with a constant trace of the curvature tensor K.
Nodoids, undoloids and catenoids (in addition to spheres and cylinders) meet the condition,
Eq. (8) (see Appendix). The variational framework as mentioned above can be extended
to general surfaces. However, in most cases, only a computational algorithm allows find-
ing constant mean curvature surfaces; here we refer to the Surface Evolver developed by
Brakke, see [53-55].
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A possible extension of our approach would be to take both stretching and bending energy
terms of the surface energy into account (as thin shells instead of membranes) in G (in our
case G(K)), see the early work by Helfrich [56], the book by Safran [50] and the recent paper
[57]. Also a continuum mechanical framework has been provided for this energy minimization
problem [58, 59]. By including bending and stretching deformation terms in the total elastic
strain energy one enters the field of structural stability. This very prominent field of the (struc-
tural) stability of equilibrium is being applied to biological systems as, e.g., Sect. 15.3 in [36],
and recent physically oriented publications on the stability of shells [60], sometimes in the
context of bioinspired materials [61].

3.3 Kinetic Stability

Concerning the growth law, Eq. (2), we previously formulated a stability criterion [9] which
can be summarized as following:

(i) stable behaviour of the system is observed, if a small increase of V from a starting
position leads to negative values of V, and consequently a tendency of the system to
move back to the starting position;

(i) unstable behaviour of the system exists, if a small increase of V from a starting posi-
tion leads to positive values of V, and drives, therefore, the system further away from
the starting position.

This criterion is based on Lyapunov’s stability theory framework, see e.g.[62]. The system is
subjected to a small perturbation of the (static) equilibrium configuration. If the time evolu-
tion of the perturbation is decaying to zero, then process stability occurs. Recently this cri-
terion has been denoted as “mechanobiological stability” criterion, see, e.g., the papers by
Cyron et al. [63-65]. This “mechanobiological” aspect is extended to a system approaching to
a “homeostatic” state, which is attained by remodelling, for details see Cyron and Aydin [66].

3.4 Conclusions About Stability

In Sect. 4 of our previous paper [9] the stability criterion from above was reformulated by
applying the functional relation between the volume V and the trace of the curvature tensor
K as follows:

e for branches in the K—V-diagram with positive slope the growth process is stable;
e for branches in the K—V-diagram with negative slope the growth is unstable.

Considering the stability of equilibrium (Sect. 2.2) and the stability of the growth process
(Sect. 2.3), leads to the conclusion that a single criterion ensures both static and kinetic
stability of the growing object.

4 Admissible Surfaces with Constant Curvature K

We investigate axisymmetric tissues described as fluid droplets that completely wet the top

and part of the sides of a hollow cylinder (Fig. 1a, b). The wettable surface geometry con-
sists of the outer wall (with a wetting length of WL) and the top annulus of the cylinder.
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To be mechanically stable (i.e. to satisfy the Laplace—Young equation, Eq. (1)) the surfaces
must have a constant trace of the curvature tensor, denoted as the curvature K. In general,
the set of axisymmetric constant mean curvature surfaces are the Delaunay surfaces con-
sisting of nodoids, unduloids, catenoids, cylinders and spheres [51, 67]. Due to the sharp
interface on the outer radius of the annular top of the wettable surface, there are eight dif-
ferent axisymmetric surface configurations which satisfy the boundary conditions (Fig. 1c).
It is assumed that tissues will only be pinned to the top outer edge of the cylinder, if the
resultant membrane force on this edge is directed inwards the substrate. The first three con-
figurations (Fig. lc—1a, 2a and 3a) are the same surface configuration as reported in our
previous paper [9] together with a monolayer on the outer substrate surface. The first two
surface configurations (la and 2a) are nodoids, the third consists of two joined spherical
caps with identical curvature, one of them convex up attached to the outer edge of the top
annulus, the other convex down attached to the inner edge of the annulus. The next three
configurations (Fig. 1c—1b, 2b, 3b) consist of surfaces in which the outer substrate sur-
face is completely wetted by a fluid, however pinned to the outer edge of the annulus. The
axisymmetric solutions of tissues pinned to the outer part of the cylinder are, in order of
increasing volume, described by cylinders (for zero volume), unduloids, spheres, and then
nodoids. The assumption is here that the growing tissue/fluid has the same pressure (curva-
ture) in both regions however remains pinned at the outer edge of the annulus resulting in a
kink in the surface along this line. If the surface becomes depinned on this line, additional
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Fig. 1 Geometry of the substrate surface under consideration and typical configurations that will be investi-
gated. a 2D sketch of a (red) tissue sitting on a hollow cylinder (inner radius R; and outer radius R) with a
wettable outer layer with wetting length (WL) (wettable parts in dark grey). b 3D version of the same situ-
ation with one 90° segment cut away. ¢ Eight possible axisymmetric surface configurations that satisfy the
boundary conditions defined by the substrate (1a, 2a, 3a, 1b, 2b, 3b, 4 and 5). Surfaces that cross the sub-
strate are not considered (i), neither are configurations in which the curvature of the upper annular surface
is less than that of the outer layer (ii) nor configurations which are pinned on the top outer edge of the cyl-
inder (iii). Lower insets show zoomed highlights of surface configurations la, 1b and i (Color figure online)
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two axisymmetric surface configurations can be found: nodoid surfaces (Fig. 1c, configura-
tion 4) and spherical surfaces (Fig. 1c, configuration 5). Surface configurations that inter-
sect with the substrate are not considered (Fig. 1c 1); neither are those in which the surface
curvature of the tissue on the top is different from that of the tissue on the sides (Fig. Ic
ii). Any other (similar) combination of constant mean curvature surfaces which introduce a
kink (that points inwards) have no reason to be pinned at the ridge (Fig. 1c iii) and are thus
excluded from our analysis.

5 Results and Discussion

Using the equations of Gillette and Dyson ([51], see Appendix) the volumes of all axisym-
metric configurations that satisfy the boundary condition were calculated and plotted as
a function of curvature (Fig. 2). A large number of solutions is found with configurations
providing volume-curvature relationships having regions with both positive and negative
slopes as well as having different branches with different volumes for the same curvature.
To better understand the differences between the individual configurations it helps to fol-
low the three trajectories in K-V space indicated by the black/grey, blue and red lines in
Fig. 2 starting at zero volume.

Let us consider the first trajectory given by the black (1a), and grey (1b) curves. This
trajectory starts with a monolayer of tissue growing on the top and side surfaces of our
cylinder. For the curve (1a) only the tissue on the upper surface will grow with solutions
being nodoid surfaces pinned to the upper annulus [9]. Tissue will then only start to
grow on the outer sides of the substrate when the upper curvature of the tissue matches
the curvature of the cylindrical outer walls (K=1). From this point on the tissue will
grow on both the sides and the top (with identical curvatures), with nodoid solutions
on the top annulus and unduloid solutions on the sides. At a curvature of 1.7 the outer
side surface of the tissue transits from an unduloidal through a spherical to a nodoidal
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Fig.2 (Left) Plot of volume vs the trace of the curvature tensor (V-K plot) for different combinations of
geometries of constant mean curvature surfaces satisfying the boundary conditions. Dimensions of the sub-
strate cylinder are R;=0.5, R;=1 and WL =1. For examples of each of the configurations (la, 2a, 3a, 1b,
2b, 3b, 4 and 5) see Fig. 1. Solid lines indicate geometries that are stable (i.e. have a positive slope in this
plot). Dashed lines indicate that the configurations are unstable. (Right) Surface configurations correspond-
ing to the points A-D on the plot on the left. The light dotted lines in the left figure indicate how curves 3b
and 2b would continue if configurations 4 and 5 were not available. The red circle gives the upper limit of
curvature attainable by nodoid solutions for this geometry (Color figure online)
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surface. The two nodoid solutions, despite having the same curvature, do not have a
common tangent, and are still pinned to the corner. This arises as there are two nodoid
solutions for surfaces attached to the upper annulus, and the one with smaller volume is
described in this case. The system comes to a point of maximum curvature (point D in
Fig. 2) after further growth. At this point the slope of the curve becomes negative and
the system becomes unstable to further growth.

The second trajectory (Fig. 2 in blue 2a, 2b and 4) and the third trajectory (Fig. 2 in red
3a, 3b and 5), both start with a thin tissue layer covering the hollow part of the inner cyl-
inder like a lid. If this tissue layer breaks down or is pierced, then nodoid solutions (from
the higher-volume branch) are stable. These would then grow following line 2a, again until
a curvature of 1 is reached, at which point growth is triggered also on the outer cylinder
going from unduloid to sphere to nodoid solutions. When the curvature reaches a value of
around 2 (point B in Fig. 2), both the upper nodoidal surface and the outer nodoidal surface
are tangent and the surface can unpin. At this point growth becomes unstable and will fol-
low the branch 4. The resulting configurations have a small region of stability with a maxi-
mum volume at point C (Fig. 2). The restriction to axisymmetric solutions adds additional
stability to the configurations. We explored this in more detail by performing numerical
simulations of these surfaces using Brakke’s Surface Evolver [53, 54] and demonstrated
that small perturbations in the surface geometry around point C (Fig. 2) lead to asymmetric
bulging similar to what was observed in our previous paper [9].

For the third trajectory (Fig. 2 in red 3a, 3b and 5) the thin tissue layer starts growing on
the top as two connected spherical caps (see configuration 3a in Fig. 1). These tissues again
grow up to a curvature of 1, at which point tissue starts growing on the outer side surface.
Growth continues on the top and the sides along trajectory 3b up to point A, which is a
spherical surface just touching the outer edge of the cylinder. At this point the surface is
unstable and will then follow branch 5 (red-dashed line in Fig. 2).

The set of these growth trajectories suggests that only certain configurations are attaina-
ble by growth from other configurations. More information about the relative stability of
the different configurations can be seen in Fig. 3, which illustrates the relationship between

area and total Gibbs energy [/ (ydA, —pdV) vs curvature and volume, see also
tissue body
Sect. 2.2. of this manuscript. The plot of area vs curvature (Fig. 3a) is very similar in

appearance shape to Fig. 2. This similarity can be understood from Fig. 3B, since the area
vs volume curves have similar trajectories. Configurations 1a and 1b have the lowest area
until they cross the configurations for the spherical cap (5 in Fig. 1c¢), which has the lowest
surface per volume at large volumes. Although the area vs volume curve (Fig. 3b) may give
an indication of which systems are likely to be more stable (in terms of minimum surface
area), it is more informative to plot the total energy of the system, i.e. the sum of the sur-
face energy and the potential energy of the load (i.e. the pressure p). One can see clearly in
Fig. 3c, d that a growth trajectory following the black (1a and 1b), blue (2a and 2b) or red
(3a and 3b) curves all result in a decrease in energy up until the point of instability high-
lighted by the black dots in all figures. The lower trajectory in black and grey has a much
lower energy than the other two branches. A consequence of this is that transitions between
the branches 1a or 1b to the other branches (2a, 2b, 3a 3c etc.) are unlikely as they require a
large spontaneous change in the energy of the system. In contrast, the small differences
between the branches 2 and 3, not only in terms of geometry, but also in terms of the total
energy, makes transitions between the different configurations on these two branches more
likely upon perturbation. Once the system becomes unstable with respect to growth (black
points in Fig. 3) the total energy of the growing tissue increases. These plots again
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respond to the configurations A-D in Fig. 2

volume for a growing tissue perfectly wetting the sides and top of a hollow cylinder (R;=0.5, Ro=1 and

WL =1). Black dots indicate the transition points where the system becomes unstable to growth which cor-

highlight the complexity of potential configurations arising from relatively simple bound-
ary conditions and growth laws.

6 Conclusions

A phenomenological model of tissue growth was studied to highlight the importance of
the geometry of the substrate on the resulting form of the tissue. First of all the substrate
is essential for the existence of non-trivial equilibrium forms since without substrate the
tissue would either shrink or grow infinitely [9]. Secondly, the substrate geometry gives
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rise to a multitude of tissue forms characterized by a constant mean curvature (Fig. 1).
Thirdly, these equilibrium forms are not equivalent in terms of their stability and possible
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transitions between forms can be predicted. The consideration of a wettable substrate that
is non-planar results in new features of the tissue shape. As shown in the studied example
the surface can get pinned at edges of the substrate leading to a kink in the surface. This
pinning can be stable (due to the restriction that the interface cannot penetrate the substrate
like in the configuration i) in Fig. 1C) or unstable giving rise to a change in configurations.

The multitude of resulting tissue shapes is remarkable having in mind the simplicity of
the growth law (Eq. 3) including only one crucial parameter K, defined as the ratio between
the chemical potential and the surface stress, see [9]. While a large chemical potential
favors growth, a large surface tension retains growth. Consequently, K. can be described
as the propensity of the tissue to grow. Biochemically this propensity can be enhanced by
either increasing the chemical potential by growth factors, or by decreasing the surface ten-
sion, e.g., by a slackening of the cytoskeleton of the cells in the tissue [45].

The important influence of geometrical constraints on the evolution and the equilibrium
configurations is well accepted in the context of physical systems. The role of geometrical
constraints to influence or even to guide biological processes is also starting to emerge
[68—72]. In a biological context the role of geometrical constraints goes beyond what was
explored for physical systems. Indeed, a particular fascination of biological systems is their
display of intricate forms. The seminal book by D’Arcy Thompson “On Growth and Form”
[73] is after its centennial anniversary still a source of inspiration for the richness of form
in biology. The model investigated here is just a just another example for the emergence of
complex three-dimensions form from a simple growth law and, therefore, pertains to the
more general field of pattern formation in biology [74].
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Appendix

To assist the reader in calculating the solutions of the equations for constant curvature sur-
faces of revolution we repeat the equations of Gillette and Dyson [51]. Note there is an
error in Eq. 10 of [51] where the lambda in the second equation should be a gamma. The
axial z(7), and radial r(f) components of the parametric equations generating constant mean
curvature surfaces of revolution satisfying the boundary conditions (Fig. 1), are given by
the following equations (see Gillette and Dyson [51] for the derivation).

z(t)=a+y(EO,t)+ F(0,1)cos ), )
and

rt) = yAQ@0,1), (10)
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where
1
A0, 1) = (1 —sin’0sin’t)?. (11)

F(6,1) and E(0,t) are respectively the first and second kinds of elliptic integrals given by
t
E0,1) =/A(0,t’)dt’ (12)
0
and
1

FO,1) = /dt’/A(H, 7). (13)

0

The parameter « shifts the curve up and down parallel to the z-axis, and the parameters 6
and y are scale and shape parameters respectively.

Using the first and second elliptic integrals, it is possible to calculate the mean curvature
of a surface of revolution defined by these equations which is

1

K= 0T om0y (14)

The Gauss curvature

sec°<§)sin20(coszt — cos @sin’t) (1 + cos 6 — sin*sin’*¢)

G(@) = (15)

2y%(3 + cos (21) + 2 cos (20)sin’t) (1 — sin*Osin’*t)
For the nodoid and unduloid solutions on the outer wall, the volume is given by

3 (2+3cos8 +2cos>0) (E(6,1,))

V(iym) = +2”Ty — cos? OF (0, t;,,) : (16)
+A(6.1,,) sint,, cos t;, sin> 0
and the area is given by
A(t)y) = 4my*(1 + cos 0)E(0, 1,,,,), (17

where 1, is the value of the parametrization at the top edge. The volumes of the nodoid
portions (attached to the top) are calculated in a piecewise manner, by first calculating the
volume of the outer part of the nodoid to the parameter value of the maximum axial height
and second by subtracting from this the volume of the portion that curves inwards. Area is
calculated in a similar manner.
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