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a b s t r a c t

We present a novel Python package for the uncertainty and sensitivity analysis of computational
models. The mathematical background is based on the non-intrusive generalized polynomial chaos
method allowing one to treat the investigated models as black box systems, without interfering with
their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous
transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty
of multiple quantities of interest in parallel, given the uncertainties of the system parameters and
inputs. It also yields gradient-based sensitivity measures and Sobol indices to reveal the relative
importance of model parameters.
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1. Motivation and significance

Computational modeling is crucial for the investigation of a
broad range of natural and artificial systems, such as technical
appliances, climate and weather systems, economical and social
systems, as well as the brain. The output of such models depends
on parameters that are usually not exactly known for various
reasons, but which can be described by probability density func-
tions. Therefore, it is crucial to know the degree of uncertainty
(quantified by its probability density function) of the output
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variables, given the uncertainties of the parameters. Furthermore,
we sought to reveal how sensitive the output is towards each pa-
rameter, as this tells us which parameters are the most important
to be determined accurately and which are less critical.

In order to answer these questions, the parameter space is
usually sampled in a random or systematic fashion, possibly
guided by known or assumed probability density functions. Clas-
sical methods, such as naïve Monte Carlo approaches or Brute-
force search [1], would require producing many samples of the
computationally expensive models. However, in many relevant
models the parameter spaces are large, the model evaluations
can be time consuming, and these methods quickly generate pro-
hibitive computational costs. Alternative approaches that seek to
reduce the computational effort, such as worst case evaluation [2]
or linearization [3], are much more limited in their conclusions.
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For these reasons, pygpc is based on the more efficient, non-
intrusive, generalized polynomial chaos method (gPC) [4]. It is
capable of analyzing black-box systems by virtue of a highly
efficient meta-model of the original transfer function, from which
the stochastic properties and sensitivities of the quantities of
interest (QOI) are derived. gPC in general has been applied in a
variety of applications such as computational fluid dynamics [5–
7], heat transfer [8,9], multibody dynamics [10,11], and robust
design optimization [12].

Pygpc is a Python based gPC library, with high performant C
and CUDA-C extensions, offering a user-friendly interface to an-
alyze one’s own models written in either Python, Matlab, or any
shell interfaceable program. Its efficient parallel CPU/GPU imple-
mentation allows the analysis of very complex models, including
those containing discontinuities, on computer hardware of differ-
ent performance ranging from laptops to large compute clusters.
The implemented sensitivity analysis allows the identification of
the most important parameters of the model under investigation
and considerably accelerates prototyping and model analysis.
Existing uncertainty quantification software packages, such as the
UQ Toolkit (UQTK) [13,14] (https://github.com/sandialabs/UQTk),
the MIT Uncertainty Quantification (MUQ) C++ Library (http://
muq.mit.edu/), and UQLab [15] (https://www.uqlab.com/), do not
offer this combination of advanced features.

Thus far, we have applied pygpc in the frameworks of non-
destructive testing [16] and neuroscience [17–20]. However, it
can be applied to a broad range of scientific and engineering
fields.

2. Software description

The core concept of the gPC method is to find a functional
dependence between the random variables ξ (input parame-
ters) and the quantity of interest q by means of an orthogonal
polynomial basis Ψ :

q (ξ) ≈

∑
α∈A

uαΨα (ξ) . (1)

The functions Ψα (ξ) =
∏d

i=1 ψ
i
αi
(ξi) are the joint polynomial

basis functions of the gPC. They are composed of polynomials
ψ i
αi
(ξi) that are separately defined for each random variable. The

polynomials are chosen to be orthogonal in the normed spaced
induced by the probability density functions (PDFs) pi (σi) [21].
The multi-index α of the joint basis function includes the degrees
of the individual polynomials and the set A of cardinality Nc
contains the multi-indices of the chosen basis.

Pygpc offers the possibility to use a regression or a quadrature
approach to obtain the gPC coefficients uα. For example, writing
(1) in matrix form yields the system of equations solved in the
regression approach:

[Ψ] [U] = [Q] , (2)

where [Ψ] is the gPC matrix of size [Ns × Nc ], where Ns de-
notes the number of samples (model evaluations) and Nc denotes
the number of basis functions and gPC coefficients, respectively.
[U] is the coefficient matrix of size

[
Nc × Nq

]
containing the

gPC coefficients of the Nq QOIs, and [Q] is the solution matrix
of size

[
Ns × Nq

]
containing the results of the model evalua-

tions. Solving (2) for [U] yields the polynomial surrogates of
the QOIs as a function of the random input parameters ξ. This
enables computationally efficient investigations of their statistics
and sensitivities. For example, the expectation (i.e., mean) µ and
variance ν are determined by:

µ = uα0 (3)

ν =

∑
α∈A\α0

(uα)
2 . (4)

The Sobol indices S (υ)i decompose the total variance ν of the
quantity of interest into components that can be attributed to
individual random variables ξi or combinations thereof [22,23].
For each S (υ)i , only the squared coefficients u2

α, whose multi-
indices α belong to the set Ai with non-zero values only for the
ξi of interest are considered.

S (υ)i =
1
ν

∑
α∈Ai

(uα)
2 (5)

The global derivative-based sensitivity coefficients S (∂)i are mea-
sures of the average change of the quantity of interest with
respect to the ith random variable. They are determined by means
of the gPC-coefficients and the corresponding partial derivatives
of the basis functions [24]:

S (∂)i = E
[
∂q (ξ)
∂ξi

]
=

∑
α∈Ai

uα

∫
Θ

∂Ψα (ξ)

∂ξi
p (ξ) dξ (6)

Finally, the PDFs of the QOIs are obtained by sampling the gPC
surrogate using traditional MC methods. This is possible without
much computational effort because the evaluation of the poly-
nomial description is far less time consuming than the original
computation.

The foundation of gPC is the construction of a basis capable of
emulating model behavior while choosing the most informative
sampling points in order to determine the associated gPC coeffi-
cients. There are several possibilities published in the literature,
and developed by the authors of pygpc, to increase the efficiency
of the gPC method, which will be discussed in more detail below.

2.1. Software architecture

A simplified overview of the software architecture of pygpc is
given in Fig. 1. After the model is set up by the user, using the
Model class, the uncertainty problem is defined by initializing the
Problem class. This is done by assigning the random parameters
using the RandomParameter class. The gPC algorithm is the core
element and determines how the surrogate model is constructed.
It handles the construction of the basis and manages the sampling
in the Grid class. Subsequently, the Computation class calls the
model and runs the calculations necessary to determine the gPC
coefficients in the GPC class. In case of discontinuous transfer
functions, the random space is divided into sections and the
classifier assigns the sampling points to the different sub-regions.
The analysis is completed by reaching a certain approximation
order or by satisfying a previously defined convergence crite-
rion. Thereafter, all metadata is saved in a gPC Session object,
whereas the gPC coefficients, simulation results, etc., are saved
in an associated file using the hierarchical data format (HDF5,
www.hdfgroup.org).

2.2. Software functionalities

Pygpc offers the possibility to assign uniform, beta, gamma,
and normal distributions to the random variables. The surrogate
model is constructed using the corresponding families of orthog-
onal polynomials, i.e., Legendre, Jacobi, Laguerre, and Hermite
polynomials. Besides models written in Python, it is possible to
investigate MATLAB models by installing the MATLAB Engine API
for Python [25].

An important feature of pygpc is the large variety of imple-
mented gPC algorithms. In general, there is the possibility to
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Fig. 1. Simplified software architecture of pygpc, showing the basic classes and
their interactions.

either use static algorithms [17] with a predefined approximation
order and number of sampling points, or adaptive algorithms [19],
which successively construct the basis and the grid of sampling
points until a certain error criterion is met. So far, standard
random sampling and latin hypercube sampling (LHS) [26,27]
are implemented, which will be extended by further sampling
methods in the future.

In pygpc, it is possible to use the gradient of the transfer func-
tion in order to enhance the accuracy and efficiency of gPC [28,
29]. Besides that, different solvers can be chosen to determine
the gPC coefficients including, for example, classical smooth l2
minimizers, like the Moore–Penrose pseudo inverse, or sparse l1
minimization, like least-angle regression (LARS), or orthogonal
matching pursuit (OMP) [30]. The latter, in combination with
our random sampling methods, constitutes a compressed sensing
scheme [30,31].

As the number of random variables increases, the curse of
dimensionality can make analysis considerably more difficult or
even impossible. To prevent this, pygpc allows the adaptive re-
duction of the number of random variables by re-parameterizing
the original model. An optimal rotation and reduction of the gPC
basis [32,33] is performed by identifying the principle compo-
nents of the Jacobian of the QOI.

When the quantity of interest depends discontinuously on the
input parameters, the standard gPC may lack sufficient accuracy
because it makes use of polynomials defined in the entire domain.
To overcome this, pygpc supports a multi-element gPC approach
(MEGPC), which includes a domain decomposition method based
on k-means clustering [34]. The latter subdivides the random
space and provides input data for the Multi-Layer Perceptron
classifier [35–37], in order to assign new sampling points to the
corresponding domain. Both, the clusterer and the classifier can
be replaced by different algorithms, which are implemented in
the machine learning package scikit-learn [38].

After the gPC is finished and the surrogate is constructed, the
model is post-processed by determining the output PDFs and
the first four central moments, i.e. mean, standard deviation,
skewness, and kurtosis of the QOI(s). In a subsequent sensitivity
analysis, the Sobol indices [22,23] and the global derivative based
sensitivity coefficients [9] are determined for every QOI.

The construction of the gPC matrix, its solution to determine
the coefficient matrix, and the multiplication of the gPC matrix
with the coefficient matrix are the processes with the highest
computational cost. This is especially true when the surrogate
consists of a high number of basis functions or a high num-
ber of surrogate model evaluations have to be performed. To
increase the performance of pygpc, we developed a highly ef-
ficient C++ extension. We used OpenMP and CUDA to perform
the computationally complex creation of the (possibly large) gPC
matrix in parallel. Depending on the hardware used, the perfor-
mance could be significantly increased compared to pure Python
implementations.

2.3. Sample code snippet analysis

As a first step of every gPC analysis, the user is required to
provide a wrapper of their model using the AbstractModel class
(Fig. 2). In a second step, the gPC session is set up by loading the
model, defining the uncertain parameters and their distributions
(problem definition), choosing an algorithm, and running the
analysis by starting the gPC session. The frontend of pygpc has a
modular structure of the form: model → problem → algorithm
→ session. In this way, the model can be easily replaced by an-
other one or the problem can be redefined by assigning different
properties to the random variables or by defining some of them as
constants. Alternatively, the algorithm to construct the surrogate
model can be replaced with little effort.

3. Illustrative example

In biological systems, large inter-individual differences trans-
late to considerable uncertainties in the model parameters. A
typical problem in neuroscience is to link unknown structural
parameters of the brain to recordings of brain activity [39–43].
The Jansen–Rit neural mass model (NMM) is a non-linear model
for the dynamic interaction between two excitatory and one
inhibitory population of neurons within a cortical column [44].
It is described by a set of six nonlinearly coupled differential
equations and has been previously used to infer the connection
strength and direction between brain areas from electrophysio-
logical recordings of macroscopic brain activity [45,46]. To link
this model to experimental data, an understanding of the model’s
parameter dependencies is essential. In this example, we examine
the input/output behavior of a Jansen–Rit NMM (Fig. 3b). We var-
ied the amplitude and the frequency of the external stimulation
as beta distributed random variables (Fig. 3a). The QOI is defined
as the dominant frequency f̂PC of the post-synaptic potential of
the pyramidal cells, i.e. the frequency with the highest power-
spectral-density. The model was set up using the Python package
PyRates [47]. Since the model behavior shows rapid phase tran-
sitions (Fig. 3d), we used a MEGPC approach to approximate its
behavior. The domain was split into three domains covering the
low (blue), medium (green) and high frequency regions (red). The
mean and the standard deviation of the dominant frequency in
the parameter space under investigation, considering the prob-
ability densities of the input parameters, were 10.806 Hz and
0.305 Hz, respectively. The smooth transition between the low
and high frequency domain (f ≈ 11 Hz) is approximated by the
gPC as a step. Overall, the gPC approximated the complex model
behavior quite well. The overall difference between the original
model and the gPC was about 5% (Fig. 3c). It was computed from
an independent evaluation dataset of size N using the normalized
root mean square deviation (NRMSD) between the original model
solutions qi and the gPC approximations q̃i:

NRMSD =
1
N

√∑N
i=1

(
q̃i − qi

)2
max (q)− min(q)

(7)
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Fig. 2. Example analysis and overall structure of the frontend of pygpc; (left): setting up the model; (right): setting up the associated gPC session.

Table 1
Sobol indices and global derivative based sensitivity indices of the Jansen–Rit
NMM.
Parameters Sobol indices Global derivatives

α 9.1e−4 −0.0019 V/V
f 0.4805 0.4246 V/Hz
α · f 0.5192 –

This can be explained by the higher probability density of the
input parameters in the center of the parameter space, which
further emphasizes this critical region. The results of the sensi-
tivity analysis are shown in Table 1. Both sensitivity measures
demonstrate that the dominant frequency is insensitive to the
stimulation amplitude α, but very sensitive to the stimulation
frequency f. The high Sobol coefficient of second order in combi-
nation with the coefficients of first order indicates a pronounced
discontinuity in the parameter space.

4. Impact

Data errors resulting from, for example, errors in input vari-
ables or model parameters belong to the largest sources of error
besides model and numerical errors. In most situations, the model
parameters cannot be exactly specified, due to limitations in the
available experimental data or because of inherent case-to-case
variability of the systems studied. Inaccurate knowledge of the
model parameters may lead to considerable differences between
the studied real world system and the numerical simulations.
The development process of new models should therefore always
be accompanied by a thorough sensitivity analysis to investigate
and quantify its stability and robustness. Those analyses have to
run alongside the modeling process and should not become the
main task of the modeler. The black-box character of pygpc allows
rapid integration of user defined models without the need to
make time-consuming adjustments. The combination of applying
projection techniques together with state of the art l1 mini-
mization allows the computation of sparse gPC representations
that counteract the curse of dimensionality, thus offering the
possibility of investigating high dimensional systems. Moreover,
the implemented MEGPC allows the analysis of discontinuous
transfer functions, which are very common in real world systems.

In engineering, the identification of the most important
sources of uncertainty, prior to production, makes it possible
to decrease the number of iterations during prototyping. This
shortens development time and increases cost efficiency.

Besides that, pygpc can be used to validate simulations against
real world measurements. A comprehensive validation study
must carefully take into consideration both experimental and
computational uncertainty ranges. The latter are inherently af-
fected by measurement errors and system imperfections, which
are typically represented using error bars. The post-processing
routines of pygpc allow the computation of the same measures
for the numerical model, making measurements comparable to
simulations. A practical example, where pygpc was applied, was
presented for non-destructive Lorentz force eddy current test-
ing [16,48]. By means of pygpc, it was possible to quantify the
impact of multiple unknown input parameters to cost-efficiently
improve the laboratory setup in terms of reliability and repro-
ducibility and to validate the simulation results [16].

Another area of application is reliability and risk analysis,
where the aim is to determine the probabilities and associated
parameter combinations of the system where certain critical val-
ues or operating thresholds are exceeded.

Besides the aforementioned applications, the derived surro-
gates can be used to optimize the model behavior. In this case,
the QOI is used to compute the goal function to be minimized.
After applying gPC, the optimization may be performed on the
computational efficient polynomial surrogate without the need
to run expensive model calculations.

5. Conclusions

The presented software can be used in numerous areas of
application. We demonstrated the capabilities of pygpc on a
neuronal mass model with discontinuities. It was possible to
construct a surrogate model of the complex transfer function with
an accuracy of about 95%. With the help of sensitivity analysis
it was possible to get insight into the parameter dependencies
and to identify the most important parameters influencing the
dominant frequency.

Our goal is to provide a versatile tool for efficient uncer-
tainty and sensitivity analysis of black-box systems. Over the next
years, it will be continuously maintained and further developed
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Fig. 3. Illustrative example of pygpc analyzing a Jansen–Rit type neuronal mass model in terms of its input/output behavior; (a) beta distributed input parameters
with shape parameters p = q = 3; α is the amplitude and f is the frequency of the external stimulation; (b) Jansen–Rit neuronal mass model incorporating inhibitory
interneurons (IIN), excitatory interneurons (EIN) and pyramidal cells (PC); (c) probability density function of the dominant frequency f̂PC (highest power density) of
the postsynaptic potential of the pyramidal cells; (d) Dominant frequency as a function of α and f obtained from the original model; (e) gPC approximation of the
dominant frequency; (f) absolute difference between original model and gPC approximation . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

by incorporating new sampling methods, matrix solvers, post-
processing routines and adaptive algorithms to further enhance
its efficacy. The modular structure of pygpc allows for contri-
bution and fast implementation in any of the aforementioned
fields.
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