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Abstract
We propose a protocol that allows to assess the precise correspondence between thought and
practical experiments, a critical point for addressing experimental clumsiness in a test of macro- or
micro-realism. Two-time generalized von Neumann measurements of properties A and B are
shown to obey the so-called no-signaling in time condition for initial states defined as an
incoherent sum of eigenstates of A. An experiment for witnessing the use of this type of
measurements in the laboratory is then devised by proving the existence of five conditions that
have to be fulfilled by any generalized von Neumann measurement. Ensuring the use of this type of
measurements and then testing the no-signaling in time condition for a range of system-meter
coupling strengths allows to test realism in a highly reproducible manner and to critically narrow
the so-called clumsiness loophole. The resulting protocol is applicable to general (not only
dichotomic) variables, and it is employed to show, both analytically for general systems and
numerically for a collection of harmonic oscillators, that quantum systems made of a large number
of uncorrelated particles are genuinely macrorealist, i.e., realistic with respect to all intensive
properties at any time.

1. Introduction

The concept of realism, viz, objects have well defined properties independently of whether they are
measured, has been an unquestioned pillar in the development of many physical theories. The advent of
quantum mechanics, however, shook up those foundations from the bottom up [1, 2]. Today, despite the
overwhelming success of the quantum theory to reproduce many types of experiments, the reality of
quantum objects is still a lively topic of debate [3, 4].

Based on the measurements of a property A of a quantum object at a spatial position and of another
property B of another quantum object (entangled with the first one) at another distant location, John Bell
derived an inequality for the probabilities of the measurements of A and B assuming spatial independence
between the two measurements [5–7]. Such spatial independence is named locality in the literature.
Inspired on Bell’s test of locality, Leggett and Garg [8] derived an inequality for the probabilities of the
consecutive measurement of properties A and B of a quantum object when temporal independence
between the two measurements is assumed. Such temporal independence is understood as the
non-invasiveness of the first measurement. In the literature, historically, the invasiveness of a measurement
has been linked to the definition of quantum reality. The orthodox eigenstate–eigenvalue link ensures that
whenever a quantum object is described by an eigensate of the property A, it can be measured in a
non-invasive way, and thus, one can assume that the property A ‘was there’ before the measurement (and
hence that it is a ‘real’ property) [9–11].
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Notwithstanding the recent surge of interest in the Leggett–Garg inequalities [12–15], controversy
remains on what precise reality is shown by its violation [16, 17]. The confusion arises because while
general definitions of locality or non-invasiveness are applicable to any ontic model, a general definition of
reality, valid for all ontic models, does not exist. For example, the reality in orthodox quantum mechanics is
different from the reality in Bohmian mechanics, and both are different from the reality invoked by
stochastic collapse theories. The controversy disappears when it is recognized that either Leggett–Garg
inequalities can be used only as a test of non-invasive measurability (valid for any ontic model), or as a test
of the reality of orthodox quantum mechanics [16, 17]. In this paper, as mostly assumed in the literature,
we will adopt this second viewpoint.

It is the goal of this work to address the so-called clumsiness loophole in a test of realism. Before we get
to that point, however, and to avoid any possible semantics conflict, let us carefully introduce the concept of
microrealism in contrast to the concept of macrorealism4.

1.1. Macrorealism versus microrealism
First of all let us notice that macrorealism cannot be proven true once and for all, viz, for any property at
any time. If a test of macrorealism aims at evaluating our notion of classical realism, then a quantum object
should satisfy the Leggett–Garg inequalities for any property at any time. However, even if an object were to
pass a number of tests for different properties at different times, one never knows whether another property
or lapse of time exists which the corresponding inequality would fail to pass. It is thus not a coincidence
that most of experimental works testing Leggett and Garg inequalities in the laboratory are focused on
ordinary quantum systems rather than on the type of ‘macroscopically distinct states’ invoked by Leggett
and Garg [19]. That is, existing tests only investigate a particular observable of interest A of a microscopic
object (expected to behave quantum mechanically) at a given time [12, 20, 21]. All this amounts to the
relaxation of what Leggett and Garg called macrorealism into a definition of realism that is based on the
so-called ‘eigenstate–eigenvalue link’, i.e., the assumption that a system only has a determinate value for a
particular observable when its state is an eigenstate of the corresponding operator [17, 22].

We define microrealism or realism with respect to a property A when the following two conditions are
fulfilled:

• (R1) Realism of an object with respect to a property A at a given time: given a property A associated to
an operator Â which has available to it two or more distinct eigenvalues (and eigenstates), a realistic
object with respect to property A is, at a given time, in a definite one of these eigenstates.

• (R2) Discernibility between coherent and incoherent sums of eigenstates of Â: it is possible, in principle,
to determine experimentally whether an object is a coherent sum of eigenstates of Â or it is an
incoherent sum of eigenstates of Â.

Condition (R1) defines the reality of a property of an object according to orthodox quantum mechanics.
Alternatively, (R2) forces the ontological definition of realism to be, in principle, empirically testable. The
correspondence between thought (i.e., in principle) and practical experiments is at the heart of the so-called
‘clumsiness loophole’ and will be the subject of discussion in section 1.2.

In this paper, we will use the term “incoherent sum of eigenstates” to refer to proper mixtures [59], i.e.,
those mixed states for which it can be given an ignorance interpretation and hence that obey a unitary
evolution5. In this respect, the need of condition (R2) can be justified as follows. One may think that by
simply comparing the outcome of an ensemble of projective measurements of A, microrealism could be
already confirmed or ruled out. That is, the system is in an eigenstate of Â if the same outcome is obtained
over and over again and it is in a superposition state of Â otherwise. Unfortunately, in the presence of a
certain degree of uncertainty in the preparation of the system due to technological limitations, this
procedure might lead to erroneously concluding that property A of such system is non-microrealistic when
it is actually microrealistic. Another reason why condition (R2) is better formulated in terms of an
incoherent sum of eigenstates because we could be explicitly interested in testing the reality of a property of
a system that is naturally defined as a proper mixture of eigenstates of Â.

Following the original idea of Leggett and Garg, and with the same spirit of Bell’s theorem without
inequalities [23, 24], two recent works by Kofler and Brukner [16] and independently by Li et al [25] have
proposed an alternative to the Leggett–Garg inequalities. Solely based on comparing the probability
distribution for a property at some time for the cases where previously a measurement has or has not been
performed, the conditions derived in references [16, 25], commonly called ‘no-signaling in time’ (NSIT),

4 Note that the concept of microrealism was introduced much before the word macrorealism was coined by Leggett and Garg. See, for
example, the work by Maxwell [18].
5 Note that this is in contrast to improper mixtures, for which the density operator arises from tracing out a certain number of degrees
of freedom and hence its evolution is generally nonunitary.
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can be violated according to quantum mechanical predictions. As it will be shown later, in this work we will
adopt the NSIT condition as a statistical realization of (R2).

1.2. The clumsiness loophole
Either tests of microrealism, based on the Leggett–Garg inequalities or on the NSIT condition, suffer from a
serious vulnerability. While Leggett–Garg inequalities and the NSIT conditions may serve well conceptually
to define (R2), they do not assert that it is impossible to affect a realistic object by a clumsy measurement.
Take a classical system for example. If the first measurement of A at time t induces a strong enough
perturbation on the system, then both Leggett–Garg inequalities and the NSIT condition could be easily
violated and one would erroneously conclude that the classical system is not realistic. In other words, the
violation of Leggett–Garg inequalities or the NSIT condition can only be a proof that the property A of the
system is either (i) non-realistic or (ii) realistic but subjected to a clumsy measurement technique [26].

This problem can be summarized as the impossibility of assessing the fulfillment of the following
condition:

• (R3) Correspondence between thought (in principle) and practical (implemented) measuring apparatus: it
is possible to ensure that the measurement scheme that has been designed at the theoretical level to
test realism corresponds exactly to the experimental set-up that has been implemented in the
laboratory.

That is, an hypothesis such as (R3) can be easily falsified but cannot be proven true once and for all.
Even if the measurement set-up were to pass a number of tests for non-invasiveness, one never knows
whether some test exists which the measurement scheme would fail. This problem is known as the
‘clumsiness loophole’ [26], and such loophole can always be exploited to refute the implications of a
Leggett–Garg or NSIT test of realism.

There are experiments, however, where it is more difficult to accept that a bad-functioning apparatus
yielded erroneous conclusions. Leggett and Garg themselves [8] acknowledged the existence of such a
loophole, but maintained that clever measurement schemes might be designed to minimize it. A number of
works have thus addressed the clumsiness loophole by relying on the so called ideal negative measurements,
where information is obtained from the lack of response of a detector [12–15]. However, even this type of
measurements should pass a number of tests to address a possible lack of correspondence between thought
and practical experiment. Since the apparatuses for measuring properties A and B are located in the same
lab, as part of the same experimental setup, it is not obvious how to discard (uncontrolled) variables with
spurious effects on the measurement of A that may imply a non-negligible effect on the measurement of B.
Thus the clumsiness loophole remains a topic of debate6.

1.3. The objective of this paper
In the above context, the best one can do is to address the clumsiness loophole by making the ‘violation’ of
(R3) so contrived as to be doubtful. Following this consideration, the notion of ‘adroit measurement’ has
been introduced in reference [26]. By witnessing first the use of adroit measurements in the laboratory
using projective measurements, the authors were able to conclude that a system violating the Leggett–Garg
inequalities was either (i) non-realistic or (ii) realistic but with the property that two adroit measurements
can somehow collude to cheat the experimentalists. In the same line of thought but using a different
strategy, in this work we propose a protocol that allows to address the precise correspondence between
thought and practical experiments and hence to cope with the clumsiness loophole.

In section 2 we will first frame the notion of ‘two-time generalized von Neumann’ measurements as a
sub-class of positive-operator valued measure. The von Neumann model, originally developed for projective
measurements, is generalized by introducing an ancilla that interacts with the system. The ancilla is then
strongly measured and provides more or less precise information of the system depending on the their
mutual coupling strength. According to recent literature [19, 32], we will define strong, semi-weak and weak
measurements depending on the system-meter coupling strength, while we will use the notion of
generalized von Neumann measurements to refer indistinctly to these three measurement regimes.

Generalized von Neumann measurements are not the focus of our work, but in section 3 will be proven
to be good candidates for testing microrealism as they fulfill the NSIT condition for quantum objects with
well defined properties. Therefore, an experiment for witnessing the use of this type of measurements in the

6 In a Bell test of local realism, special relativity can be used to close the so-called ‘communication loophole’ between bad measur-
ing apparatus at both labs separated by a large distance [27–30]. One could still argue, however, the existence of two ‘conspiratorial
demons’ inside the measuring apparatus of such labs that, without communicating among them, have decided, in advance, what
type of output data will be provided to cheat the experimentalists [31]. It is generally accepted that such type of hypothesis are ‘too
conspiratorial’ to be taken seriously, so that recent tests of Bell inequalities are, for most of the scientific community, considered to be
free from this type of ‘loophole’. Unfortunately, no such clear defense exists for the clumsiness loophole affecting a test of realism.
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laboratory will be devised by proving the existence of five conditions that have to be fulfilled by these type
of measurements. Explaining the violation of NSIT under the fulfillment of these five conditions in terms of
experimental clumsiness, while possible, will be ruled out as wildly implausible (or too conspiratorial). The
clumsiness loophole will be thus critically narrowed, and only a considerably smaller conspiracy loophole
remains because the use of generalized von Neumann measurements can be highly promoted but not
completely ensured.

In section 4, we will address the question of whether microrealism can help to understand the
quantum-to-classical transition. We will define genuine macrorealism as the status of a quantum object that
is microrealistic with respect to all intensive (non-additive) properties at any time. In this respect, we will show
(both analytically and numerically for a case example) that weakly-correlated quantum systems with a large
number of particles satisfy (R1) for any intensive property at any time. These results suggest the viewpoint
where what we call classical objects are, in fact, quantum objects that are realistic at the macroscopic level
with respect to some (not all) properties7. We will conclude in section 5.

2. Two-time generalized von Neumann weak measurements

Consider that we want to test the reality of an object with respect to a property A (associated to an operator
Â). Consider also that the object of interest is a quantum many-body system described by a (non-separable)
pure state at time t,

|ψ(t)〉 =
∑

i

ci(t)|ai〉, (1)

where ci(t) = 〈ai|ψ(t)〉, and |ai〉 are the eigenstates of the operator Â, i.e., Â|ai〉 = ai|ai〉 with ai the
corresponding eigenvalues. Note that, without the loss of generality, we have assumed that the spectral
decomposition of Â is non-degenerate and hence that it can be written using Dirac’s bra-ket
formalism.

The expectation value of A can be then evaluated by repeatedly reading-out the pointer position of the
corresponding measuring apparatus over a large ensemble of identically prepared experiments. In a
generalized von Neumann measurement [33–35], each experiment in the ensemble can be described as
follows. The read-out of the property A is obtained through the pointer position yA(t) of the measuring
apparatus, which we consider to be initially described by the state |φ(t)〉 =

∫
Ωy(t)|y〉dy. A

pre-measurement first entangles the ancilla and the system and yields:

|Ψ(t)〉 =
∑

i

ci(t)|ai〉 ⊗
∫

Ωy−ai (t)|y〉 dy, (2)

where Ωy−ai (t) is the displaced wavefunction of the ancilla by an amount ai. Subsequently, the read-out
process consists on strongly measuring the ancilla, which provides a definite value of the meter position
yA.8 This step is described by the action of the non-unitary operator ÎS ⊗ P̂yA on the wavefunction in

equation (2), where ÎS is the many-body identity operator and P̂yA = |yA〉〈yA| causes the collapse of the
ancilla wavefunction into a given read-out value yA, i.e.:

|ΨA(t)〉 =
∑

i

ci(t)|ai〉 ⊗ ΩyA−ai (t)|yA〉. (3)

According to equation (3), the above (two-step) measurement process can be effectively described in the
subspace of the system by introducing the (non-normalized) state:

|ψA(t)〉 =
∑

i

ΩyA−ai (t)ci(t)|ai〉, (4)

where the ability of the generalized von Neumann measurement to provide the information yA without
collapsing the system state is highlighted. To avoid unnecessary complexity, hereafter we will refer to both
the ancilla interacting with the system and the pointer measuring the ancilla as the meter or measuring
apparatus.

7 For example, the center-of-mass of the Sun follows a classical trajectory, but this well-defined (center-of-mass) position is fully com-
patible with a pure quantum nuclear fusion of hydrogen nuclei into helium inside it. In this respect, what we call genuine macrorealism
could be also referred to as anthropomorphic macrorealism.
8 For simplicity, we assume along the paper that the variables y and ai are both microscopic variables. If this were not the case, then an
irrelevant multiplicative (macroscopic) factor would be needed.
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2.1. One-time probabilities
Following Born’s rule, the probability of finding a value yA of the pointer position at time t can be
equivalently expressed either as P(yA) = 〈ΨA(t)|ΨA(t)〉 or as P(yA) = 〈ψA(t)|ψA(t)〉:

P(yA) =
∑

i

|ΩyA−ai (t)|2|ci(t)|2. (5)

At this point, a degree of mixedness on the definition of the initial state in equation (1) can be easily
introduced through a (proper) density matrix,

ρ̂ =
∑

s

ps|ψs〉〈ψs|, (6)

where ps is the fraction of the ensemble that is represented by the pure state |ψs〉. Each state |ψs〉
corresponds to one possible s-definition of the initial state |ψ〉 in equation (1). Note that we are considering
proper mixtures of pure states that are only due to our ignorance about the initial conditions.

A mixed initial state can be thus accounted for in the probability distribution of equation (5) by simply
summing over ps as:

P(yA) =
∑

s

psPs(yA), (7)

where we have identified Ps(yA) =
∑

i|ΩyA−ai (t)|2|cs
i (t)|2 and cs

i (t) = 〈ai|ψs〉. The above result tells us that,
for generalized von Neumann measurements, one time probabilities do always depend on the measuring
apparatus. In particular, the probability distribution in equation (7) depends on the wavefunction of the
measuring apparatus, and it is so even if the system happens to be defined as an incoherent sum of
eigenstates of Â. In such a case, |ψs〉 = |as〉 in equation (6) and hence Ps(yA) = |ΩyA−as (t)|2, which still
depends on the meter wavefunction.

The unavoidable dependence of the probability distribution in equation (7) on the measuring apparatus
is a trivial but significant result that can be used to define a first condition to be fulfilled by any generalized
von Neumann measurement, i.e.:

C1:
d

dσA
P(yA) �= 0 ∀t, (8)

where we have introduced σA as the inverse of the system-meter coupling strength or, equivalently, the
support (or dispersion) of the meter wavefunction ΩyA−as (t). Note that σA is directly related to the
resolution of the measuring apparatus [36–39]. In reference [14], for example, the coupling of the system to
an auxiliary qubit essentially provides the measurement with an adjustable strength σA that can be
experimentally modified. While not necessary, the meter wavefunction could be approximated to have a
Gaussian form with a standard deviation σA [40–43]. This type of meter wavepackets are known as
Gaussian (Kraus) operators [36, 44].

Hereafter we will distinguish between three measurements regimes, viz, strong, weak and semi-weak.
For that, we define the effective dimension of the system with respect to a property A as deff := max({ΔA}),
where {ΔA} is a list of distances between occupied eigenvalues of Â, and thus max({ΔA}) refers to the
distance between the two eigenvalues that correspond to the highest and lowest occupied eigenstates of Â.
Note that the effective dimension of the system is only zero, i.e., deff = 0, for microrealistic properties of
pure states as only one eigenstate of Â is occupied. Either for incoherent sums of eigenstates or coherent
states deff �= 0. Accordingly, we can define the following three measurement regimes:

• Projective (or strong) measurement: it is the regime where σA � deff. In this regime each output value
yA is linked to a single eigenvalue ai, and hence it is a precise measurement.

• Semi-weak measurements: it is the regime where σA ∼ deff. In this regime each output values yA can
be linked to a number of eigenvalues ai of Â, and hence it is an imprecise measurement.

• Weak measurement: it is the regime where σA 	 deff. In this regime each output values yA is linked to
all occupied eigenvalues ai of Â, and hence it is the least precise measurement.

Interestingly, we will see that certain relevant quantities that involve two-time measurements become
independent of σA in the weak measurement regime. Hereafter, we will use the acronym WM to refer only
to the weak measurement regime defined above.

2.2. One-time expectation values
In order to ensure that the probability distribution in equation (7) provides the correct expectation value of
Â at any time t, i.e.:

5
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〈yA(t)〉 =
∑

s

ps

∫
dyAyAPs(yA) =

∑
s

ps〈ψs|Â|ψs〉 = 〈Â(t)〉, (9)

it is enough to make the pointer wavefunction to be well normalized, viz,
∫

dyA|ΩyA|2 = 1, and obeying:∫
dyAyA|ΩyA−ai |2 = ai ∀t. (10)

This property is again consistent with the idea that it is more probable that an actual eigenvalue of Â lies
close to the measured value yA and that the probability to be the actual value then decreases smoothly by
growth of |yA − ai|.

Note that while each outcome probability distribution Ps(yA) depends on the meter wavefunction
through |ΩyA−ai |2, the expectation value in equation (9) does not. Therefore, provided that the condition in
equation (10) is fulfilled, one should always obtain the same expectation value in equation (9)
independently of the specific system-meter interaction strength σA, i.e.:

C2:
d

dσA
〈yA(t)〉 = 0, ∀t. (11)

This result should be understood as a second, unarguable, condition to be fulfilled by a generalized von
Neumann measurement.

2.3. Two-time (joint) probabilities
A subsequent measurement of a second property B, associated to the operator B̂ =

∑
i bi|bi〉〈bi|, with bi

and |bi〉 the corresponding eigenvalues and eigenstates, can be easily introduced in the above scheme by
simply reading-out the pointer position of a second measuring apparatus at time τ � t. For that, we first let
the state in equation (4) to evolve freely from t until τ . Using the identity operator I =

∑
j|bj〉〈bj|, the state

of the system right before the second pre-measurement can be written as:

|ψA(τ)〉 =
∑

i,j

ΩyA−ai(t)ci(t)ci,j(τ)|bj〉, (12)

where we have defined the coefficients ci,j(τ) = 〈bj|Ûτ |ai〉, and Ûτ = exp(iĤτ/�) is the (free)
time-evolution operator of the system between t and τ . We then let the system and the measuring apparatus
to get entangled, so that at time τ the full system-meter wavefunction reads:

|ΨA(τ)〉 =
∑

i,j

ΩyA−ai(t)ci(t)ci,j(τ)|bj〉 ⊗
∫

Ωy−bj (τ)|y〉 dy. (13)

Reading-out the pointer position yB at time τ yields:

|ΨA,B(τ)〉 =
∑

i,j

ΩyA−ai (t)ci(t)ci,j(τ)|bj〉 ⊗ ΩyB−bj (τ)|yB〉. (14)

Again, the state of the system after the two-time measurement process can be effectively written in the
Hilbert space of the system as:

|ψA,B(τ)〉 =
∑

i,j

ΩyB−bj (τ)ΩyA−ai(t)ci(t)ci,j(τ)|bj〉, (15)

and therefore, according to Born’s law, the joint probability of measuring yA at time t and yB at time τ can
be written either as P(yA, yB) = 〈ΨA,B(τ)|ΨA,B(τ)〉 or as P(yA, yB) = 〈ψA,B(τ)|ψA,B(τ)〉, i.e.:

P(yA, yB) =
∑

j

|ΩyB−bj (τ)|2
∑

i,i′
C j

i,i′(τ , t)Li,i′(ΩyA(t)), (16)

where we have defined the coefficients C j
i,i′ = c∗i′(t)c∗i′ ,j(τ)ci,j(τ)ci(t), and a function of the first meter

wavefunction Li,i′ = Ω∗
yA−ai′

(t)ΩyA−ai (t).
A (proper) mixedness can be added to the result in equation (16) through the density matrix in

equation (6). This yields:

P(yA, yB) =
∑

s

ps

∑
j

|ΩyB−bj (τ)|2
∑

i,i′
C j,s

i,i′(t, τ)Li,i′ (ΩyA(t)), (17)

6
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where now C j,s
i,i′ = cs,∗

i′ (t)cs,∗
i′,j(τ)cs

i,j(τ)cs
i (t).

The explicit dependence of equation (17) on the wavefunction of the first measuring apparatus tells us
that the joint probability of subsequently reading-out the values yA and yB will be, in most general
conditions, a function of the system-meter coupling strength of the first measurement. As it will be evident
later, the fact that equation (17) depends on the second measuring apparatus is irrelevant for the purposes
of this work.

Note that, when the state of the system prior to the measurement of A can be defined as an incoherent
sum of eigenstates of Â, equation (17) reduces to (see appendix A),

P(yA, yB) =
∑

s

ps|ΩyA−as (t)|2
∑

j

|ΩyB−bj (τ)|2|cs
j (τ)|2, (18)

where cs
j (τ) = 〈bj|Ûτ |as〉. Equation (18) can be equivalently written as,

P(yA, yB) =
∑

s

psPs(yA)Ps(yB), (19)

where we have identified Ps(yA) = |ΩyA−as (t)|2 and Ps(yB) =
∑

j|ΩyB−bj (τ)|2|cs
j (τ)|2. Therefore, even if the

two-time measurement process becomes two independent (single-time) measurement processes, the result
in equation (19) still depends on the wavefunction of the first measuring apparatus through Ps(yA). This
can be expressed more succinctly as:

C3:
d

dσA
P(yA, yB) �= 0, (20)

which represents a third condition for witnessing the use of generalized von Neumann measurements in the
laboratory.

As the reader may have noticed, there is only one escape to the condition in equation (20), viz, that the
classical distribution of pure states ps in equation (6) is such that the sum in equations (17) or (19) leads to

d
dσA

P(yA, yB) = 0. This situation, however, could be understood only under a ‘conspiratorial’ action. To see

that, note that the classical distribution ps that makes d
dσA

P(yA, yB) = 0 depends on the number of different
σA considered to experimentally evaluate equation (20). That is, the violation of equation (20) requires the
design of ps as well as the number of pure states involved in the initial mixed state of equation (6) to be in
accordance with the specific experimental receipt that is later used to evaluate the derivative d/dσA.

Let us finally note that there is some confusion in the literature with respect to the WM regime. It is not
uncommon to find works where it is stated that a WM is one for which it is always possible to extract
information of a system and at the same time reduce the backaction on the system to an arbitrary small
amount by adjusting the strength of the coupling between system and measuring apparatus. Such a
conclusion is wrong. Even the so-called ‘ideal negative result measurements’ [12–15] may not change the
properties of objects themselves, but they alter their subsequent time evolution due to an instant (nonlocal)
change of the quantum wave function, thus violating the result in equation (19) [16]. This consideration
will bring us later in section 3.2 to introduce one of the main results of our work: even if the quantum
backaction of the measuring apparatus cannot be eliminated, and hence two-time probabilities depend on
σA, this backaction can be minimized to the level where marginal probabilities are independent of the
coupling strength between system and measuring apparatus.

2.4. Two-time expectation values
Starting from the general result in equation (17) it is easy to evaluate the expectation value of the two-time
correlation function 〈yA(t)yB(τ)〉 =

∫∫
dyA dyByAyBP(yA, yB) as:

〈yA(t)yB(τ)〉 =
∑

s

ps

∫
dyByB

∑
j

|ΩyB−bj (τ)|2
∑

i,i′
C j,s

i,i′(t, τ)

∫
dyAyALi,i′(ΩyA(t)). (21)

Using the center-of-mass property of the meter wavefunction,
∫

dyByB|ΩyB−bj (τ)|2 = bj, the above
equation reduces to:

〈yA(t)yB(τ)〉 =
∑

s

ps

∑
j

bj

∑
i,i′

C j,s
i,i′(t, τ)

∫
dyAyALi,i′(ΩyA(t)). (22)

In general equation (22) depends on the wavefunction of the measuring apparatus of the property A.
However, the result in equation (22) can be simplified when the initial state is an incoherent sum of
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eigenstates of Â. Specifically, the joint probability can be then written as in equation (19) and consequently
the two-time correlation function in equation (22) reduces to:

〈yA(t)yB(τ)〉 =
∑

s

ps

∫
dyAyAPs(yA)

∫
dyByBPs(yB) =

∑
s

ps〈ψs|Â(t)|ψs〉〈ψs|B̂(τ)|ψs〉, (23)

where we have introduced the definition of the Heisenberg operators, B̂(τ) = Û†
τ B̂Ûτ and Â(t) = Â.

Therefore, for incoherent sums of eigenstates of Â, two-time expectation values do not depend on the
measuring apparatus of the first measurement of A.

Note that, except for initial pure states, the equality in equation (23) cannot be assessed experimentally
because the terms 〈ψs|Â(t)|ψs〉 and 〈ψs|B̂(τ)|ψs〉 cannot be practically evaluated (since ps expresses our
ignorance about the initial state).

3. Testing realism with generalized von Neumann measurements

We now want to show that the two-time generalized von Neumann measurements described above are good
candidates for testing microrealism. As it will be shown in section 3.1, two-time generalized von Neumann
measurements fulfill the so-called NSIT condition for systems with a property A fulfilling (R1). Therefore
testing the NSIT condition using two-time generalized von Neumann measurements can be used to
accomplish (R2) and hence to design a thought experiment to distinguish between coherent and incoherent
sum of eigenstates of a property A. Later in section 3.2 we will conceive a protocol that allows to address
(R3) by witnessing the proper implementation of generalized von Neumann measurements in the lab.

3.1. No-signaling in time
To see that generalized von Neumann measurements fulfill the NSIT condition for realistic properties we
simply need to evaluate the marginal probability of the joint probability P(yA, yB) for mixed states of the
form ρ̂ =

∑
s ps|as〉〈as|. Using the joint probability in equation (19) we can already write,

NSIT :

∫
dyAP(yA, yB) =

∫
dyA

∑
s

psPs(yA)Ps(yB) =
∑

s

psPs(yB) = P(yB), (24)

where we have used
∫

dyAPs(yA) = 1. For initial states described by an incoherent sum of eigenstates of Â,
we have thus trivially recovered the NSIT condition of references [16, 25, 45]. On the contrary, for initial
states where |ψs〉 =

∑
ic

s
i (t)|ai〉 are not eigenstates of Â, equation (17) does not simplify to equation (19)

and thus the NSIT condition in equation (24) cannot be reached except for a very particular system-meter
coupling regime (as it will be shown below). Therefore two-time generalized von Neumann measurements
in combination with the NSIT condition are hereby proven to be ‘good’ measurements for testing the
realism of a quantum object with respect to a property A and hence can be thought of as a realization of
(R2).

3.2. The weak measurement regime: addressing (R3)
If one could witness the proper implementation of generalized von Neumann measurements in the
laboratory, and thus ensure (R3), then the fulfillment of the NSIT condition in equation (24) would readily
imply that the property A is microrealistic (and that it is non-microrealistic otherwise). If, on the contrary,
we cannot assert the use of generalized von Neumann measurements in the laboratory, then, based on the
violation of equation (24) one can only conclude that the property A of a system is either (i)
non-microrealistic or (ii) microrealistic but subjected to a measurement technique that happens to be
invasive.

We thus need to conceive an experiment that allows us to enforce the correspondence between thought
and practical experiments. In other words, we need to make sure that the implementation of the two-time
generalized von Neumann measurements in the lab has been done correctly. In this respect, in section 2 we
have already derived three preliminary conditions (C1)–(C3), viz equations (8), (11) and (20), that have to
be fulfilled by any generalized von Neumann measurement. Unfortunately, these conditions have been
proven to be necessary but not sufficient for an experimental setup to be representative of a two-time
generalized von Neumann measurement. In order to make the validation of the use of this type of
measurements in the laboratory more convincing and hence minimize a hypothetical experimental
clumsiness, we here introduce two more necessary conditions. These two additional conditions will be
based on the WM regime defined in section 2.1, under which two-time correlation functions and marginal
probabilities will be proven to be independent of the system-meter coupling strength of first measurement

8
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apparatus. As it will be evident later, the existence of the WM regime will also facilitate the reproducibility
of tests of realism based on generalized von Neumann measurements.

In the WM regime, where σA 	 deff, the meter wavefunction of the measuring apparatus of A can be
approximated using a Taylor series up to first order around yA and thus the last addend in equation (17)
can be written as:

C j,s
i,i′(t, τ)Li,i′ (ΩyA(t)) = C j,s

i,i′(t, τ)

(
ΩyA(t) − ∂ΩyA(t)

∂yA
ai

)(
ΩyA(t) − ∂ΩyA(t)

∂yA
ai′

)
. (25)

Introducing the above expansion in equation (17) and integrating over yA, the marginal of the joint
probability P(yA, yB) can be written as:

∫
dyAP(yA, yB) =

∑
s

ps

∑
j

|ΩyB−bj (τ)|2
∑

i,i′
C j,s

i,i′(t, τ)

(
1 + ai′ai

∫
dyA

(
∂ΩyA(t)

∂yA

)2
)

, (26)

where we have used the normalization condition
∫

dyA|ΩyA|2 = 1 and also that (integrating by parts)∫
dyAΩyA

∂ΩyA
∂yA

= |ΩyA|2|
+∞
−∞ −

∫
dyA

∂ΩyA
∂yA

ΩyA = 0 for well normalized wavefunctions that fulfill

|ΩyA|2 → 0 when yA →−∞,∞.
Next we evaluate the integral in equation (26) by parts, i.e.:

∫
dyA

(
∂ΩyA(t)

∂yA

)2

=
∂ΩyA(t)

∂yA
ΩyA(t)|∞−∞ −

∫
dyA

∂2ΩyA(t)

∂y2
A

ΩyA(t). (27)

The first term on the r.h.s of Equation (27) is zero because ΩyA → 0 when yA →−∞,∞. The second term
in Equation (27) can also be equated to zero when multiplied by ai′ai and the corresponding coefficients
Cj,s

i,i′ if we notice that in Equation (25) we already considered terms containing higher order derivatives to be
negligible under the WM regime. We then conclude that:

∫
dyAP(yA, yB) =

∑
s

ps

∑
j

|ΩyB−bj (τ)|2
∑

i,i′
C j,s

i,i′(t, τ) = P(yB), (28)

where we have used that
∑

i,i′ C
j,s
i,i′(t, τ) = |cs

j (τ)|2 and that P(yB) =
∑

spsPs(yB) =
∑

sps
∑

j|ΩyB−bj (τ)|2
|cs

j (τ)|2.
The result in (28) has a clear cut meaning. In the WM regime where σA 	 deff the NSIT condition in

(24) is fulfilled either for initial states described by a coherent or an incoherent sum of eigenstates of A. In
other words:

C4:

∫
dyAP(yA, yB) = P(yB) ∀σA 	 deff. (29)

Note that the above result can be equivalently stated as d
∫

dyAP(yA, yB)/dσA = 0 for any σA 	 deff, as
P(yB) is independent of σA. That is, in the WM regime the marginal probability of the joint probability
describing a two-time generalized von Neumann measurement is independent of the system-meter coupling
of the first measurement.

The WM regime has also implications on the two-time correlation function 〈yA(t)yB(τ)〉 of
equation (22). Specifically, it can be shown (see appendix B) that two-time correlation functions are also
independent of the coupling parameter σA when this parameter is much larger than the effective dimension
of the system, i.e.:

C5:
d

dσA
〈yA(t)yB(τ)〉 =

∑
s

ps
d

dσA
Re〈ψs(t)|B̂(τ)Â(t)|ψs(t)〉 = 0 ∀σA 	 deff, (30)

where we have used again the definition of the Heisenberg operators, B̂(τ) = Û†
τ B̂Ûτ and Â(t) = Â.

Note that since deff is not known in practice, assessing the WM regime (by evaluating equations (29) and
(30)) requires the design of a number of measurement set-ups with different system-meter coupling
strengths σA. The larger the number of measurement set-ups that are compared one against each other the
more trustworthy the assessment of the WM regime will be. Put differently, the probability that (C4) and
(C5) are fulfilled simultaneously by a number of measurement apparatuses different from the generalized
von Neumann measurements described here is expected to decrease with the number of experimental
set-ups used to validate these two conditions.

9
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3.3. Proposal for a test of realism
We are now in a position to propose a test of microrealism. This test is based on the following two steps:

(S1) Make sure that the measurement of A at time t is carried out using a generalized von Neumann
measurement. This can be done by assessing conditions (C1)–(C5).

(S2) Test the NSIT condition for a range of system-meter couplings (0 � σA � ∞). A property A is
realistic if the NSIT condition is satisfied for all σA and non-realistic otherwise.

Note that for a system consisting of a coherent sum of eigenstates of Â at time t, the NSIT condition is
fulfilled only for a certain range of σA, which defines the WM regime. Therefore, whenever the NSIT
condition is violated, having proven the validity of conditions (C1)–(C5) will be the only guarantee that the
actual experimental set-up represents a generalized von Neumann measurement. Alternatively, for a system
consisting of an incoherent sum of eigenstates at time t, the NSIT condition is fulfilled independently of σA,
which means that any generalized von Neumann measurement is, by construction, carried out in the WM
regime.

Also important is the fact that the proposed test in (S1) and (S2) is highly reproducible. Reproducibility
is certainly a delicate issue in quantum mechanics. Measuring an observable A at time t and correlating the
outcome, yA(t), with the measured value of B, yB(τ), at a later time τ � t, represents an unequivocal way of
representing the dynamics of classical systems in terms of joint probabilities, i.e.,
P(yA, yB) ↔ system dynamics. In quantum mechanics, however, the unavoidable backaction of the
measurement process [46, 47] precludes such a clear-cut connection. Even using the best technological
means, different measurement schemes, can yield different probability distributions, i.e.,
P(yA, yB) ↔ system + apparatus dynamics. Potentially, this property of quantum mechanics could result in
contradictions among different tests of realism that are based on different experimental set-ups. In this
respect, testing the NSIT condition for a previously validated, through conditions (C1)–(C5), experimental
set-up makes the results of different experiments easy to compare one to each other.

Let us note that the use of two operators Â and B̂ that commute with the Hamiltonian has to be
excluded from our test. This is because for this type of properties the time order of the measurements is
irrelevant and the two-time measurements can be understood as a single measurement at a particular time
with two different ancillas. In this circumstance, it is impossible to discern between a coherent and
incoherent sum of states by simply analysing the statistics of a single measurement, and hence our test
would not work. However, since we are only interested in knowing the nature of a property with respect to
the initial state (prior to the first measurement), it is enough to ensure that the second measured property B
does not commute with the Hamiltonian. Therefore, the property B must be always chosen such that its
corresponding operator B̂ does not commute with Â. This makes our test robust against any type of
property.

Let us finally mention that the test defined by steps (S1) and (S2) is based on the NSIT condition and
hence it allows to witness the nature of very general type of properties, i.e., not only of (bounded)
dichotomic variables as it happens in tests based on the Leggett–Garg inequalities.

3.4. Collusion loopholes
The reader can still mention an unavoidable loophole the existence of which is sustained on the ability of,
for example, classical simulations to reproduce any quantum measurement statistics. Certainly, classical
simulations of quantum measurement statistics can be always thought of as alternative descriptions of
Leggett–Garg’s (but also Bell’s) inequalities that are simply possible at the conceptual level. Following this
line of thought, a sufficiently adroit ‘demon’ could always introduce a classical computer within our
measuring instruments to falsify the output statistics. This type of loophole is indeed inherent to the
consideration of any no-go theorem from the conceptual point of view, and hence it could invalidate not
only any existing test of micro- or macrorealism (e.g., [12, 48] or [49]), but achingly, also any test of local
realism reported to date (e.g., [50, 51], or [52]). In the practical context, however, while possible, loopholes
based on, e.g., superluminal causes, super-determinism or acyclic retro-causation are commonly ruled out
as wildly implausible. Examples of thorough philosophical accounts on conspiratorial loopholes can be
found in references [31, 53, 54].

But, moreover, let us notice that one of the main virtues of the proposed protocol, (S1) and (S2), is that,
due to its intrinsic (possibly collaborative) nature involving a number of different experimental set-ups for
assessing the WM regime, it can be also utilized to unveil a hypothetical conspiracy. Testing the WM
conditions (C4) and (C5) as well as conditions (C1)–(C3) should allow us to confine the type of
measurements used in the lab to the class of generalized von Neumann measurements described in
section 2.
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4. When to expect genuine macrorealism?

The protocol described in (S1) and (S2) only assesses realism for a quantum object at a given time t and
with respect to a property A. As we indicated in the introduction, in a test of macrorealism where our
classical intuition about physical objects is at stake, the validity of the NSIT condition in equation (24)
should be proven for all observables at any time. In this respect, it is well-known that the
Bell–Kochen–Specker theorems [7, 55] puts important restrictions on how such macrorealism can be made
compatible with quantum mechanics. Here we argue that what Leggett and Garg called macrorealism
should be expected only with respect to observables representing intensive (non-additive) properties of
systems with a (very) large number of particles. More precisely, we define genuine macrorealism as follows:

• A quantum object is genuinely macrorealistic when it is microrealistic with respect to all intensive
(non-additive) properties at any time.

For pure states, the concept of genuine macrorealism can be understood as follows. Let us consider an
intensive property A associated to the N-particle operator:

Â =
1

N

N∑
ξ=1

Âξ, (31)

where Âξ = Î ⊗ · · · ⊗ â ⊗ · · · ⊗ Î, and the index ξ denotes the degree of freedom that the single-particle
operator, â, acts on. We then define the states |ai1 , . . . , aiN 〉 = |ai1〉 ⊗ · · · ⊗ |aiN 〉 to be the eigenstates of Â,
i.e., Â|ai1 , . . . , aiN 〉 = āi|ai1 , . . . , aiN 〉, where

āi =
1

N

N∑
ξ=1

aiξ , (32)

are the corresponding eigenvalues, with â|aiξ 〉 = aiξ |aiξ 〉.
Given the above definition, we now want to determine in what circumstances the general state in

equation (1) becomes an eigenstate of the intensive operator Â in equation (31), i.e.,
Â|ψ(t)〉 ≈ 〈Â(t)〉|ψ(t)〉. For that, we will look for the identity 〈Â2(t)〉 = 〈Â(t)〉2 which is satisfied only for
quantum systems whose property A is at any time t coincident with the expectation value 〈Â(t)〉. At this
point we will consider only pure many-particle states, as the addition of a classical degree of uncertainty in
the form of a mixed state will only require a post-processing (without any conceptual implication).

We start by writing the expectation value 〈Â(t)〉 as:

〈Â(t)〉 =
∑

i1,...,iN

āi|ci1,...,iN (t)|2 = 1

N

∑
i1,...,iN

N∑
ξ=1

|ci1,...,iN (t)|2aiξ , (33)

where we have introduced the coefficients ci1,...,iN (t) = 〈ai1 | ⊗ · · · ⊗ 〈aiN |ψ(t)〉 and we have used that
〈ai1 , . . . , aiN |Âξ|ai′1

, . . . , ai′N
〉 = ai′

ξ
δi1,i′1

· · · δiN ,i′N
. Thus,

〈Â(t)〉2 =
1

N2

∑
i1,...,iN
i′1,...,i′N

N∑
ξ,ν

|ci1,...,iN (t)|2|ci′1,...,i′N
(t)|2aiξ ai′ν . (34)

On the other hand, by writing

Â2 =
1

N2

⎛
⎝ N∑

ξ=1

Â2
ξ +

N∑
ξ=1

N∑
ν �=ξ

ÂξÂν

⎞
⎠ , (35)

we can easily evaluate 〈Â2(t)〉 as:

〈Â2(t)〉 = 1

N2

⎛
⎝ ∑

i1,...,iN

N∑
ξ=1

|ci1,...,iN (t)|2a2
iξ
+

∑
i1,...,iN

N∑
ξ=1

N∑
ν �=ξ

|ci1,...,iN (t)|2aiξ aiν

⎞
⎠ . (36)

To make the comparison between equations (34) and (36) simpler, we rewrite the above expression as:

〈Â2(t)〉 = 1

N2

∑
i1,...,iN
i′1,...,i′N

N∑
ξ,ν

|ci1,...,iN (t)|2|ci′1,...,i′N
(t)|2aiξ aiν , (37)

11
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where we have introduced the identity
∑

i′1,...,i′N
|ci′1,...,i′N

(t)|2 = 1. The dispersion of the intensive property A,

defined as Var(A(t)) = 〈Â(t)〉2 − 〈Â2(t)〉, can be finally written as:

Var(A(t)) =
1

N2

∑
i1,...,iN
i′1,...,i′N

N∑
ξ,ν

|ci1,...,iN (t)|2|ci′1,...,i′N
(t)|2aiξ

(
ai′ν − aiν

)
, (38)

which is in general different from zero.

4.1. Genuine macrorealistic many-particle systems
Examples of genuine macrorealism, far from being atypical, can be common for large systems made of
weakly-correlated particles. Assume that a many particle quantum system can be well approximated by a
separable state:

|ψ(t)〉 = |ψ1(t)〉 ⊗ · · · ⊗ |ψN (t)〉, (39)

where |ψi(t)〉 are arbitrary time-dependent single-particle states. Introducing equation (39) into
equation (34) one gets:

〈Â(t)〉2 =
1

N2

N∑
ξ=1

〈aξ(t)〉2 +
1

N2

N∑
ξ=1

〈aξ(t)〉
N∑

ν �=ξ

〈aν(t)〉 (40)

where 〈aξ(t)〉 =
∑

i|ciξ (t)|2aiξ and we have used that ci1,...,iN (t) = ci1 (t) · · · ciN (t) and that
∑

i|ciξ (t)|2 = 1
for any ξ. On the other hand, introducing equation (39) into equation (36) we get:

〈Â2(t)〉 = 1

N2

N∑
ξ=1

〈a2
ξ(t)〉+ 1

N2

N∑
ξ=1

〈aξ(t)〉
N∑

ν �=ξ

〈aν(t)〉, (41)

where 〈a2
ξ(t)〉 =

∑
i|ciξ (t)|2a2

iξ
. We can now write Var(A(t)) = 〈Â(t)2〉 − 〈Â(t)〉2 using equations (40) and

(41) as:

Var(A(t)) =
1

N2

N∑
ξ=1

(
〈a2

ξ(t)〉 − 〈aξ(t)〉2
)
=

1

N2

N∑
ξ=1

Var(aξ(t)). (42)

In view of equation (42), the identity 〈Â2〉 = 〈Â〉2 is not valid in general because
Var(aξ(t)) = 〈a2

ξ(t)〉 − 〈aξ(t)〉2 �= 0, which means that the state in (39) is not an eigenstate of the operator
Â in equation (31). However, as N →∞, Var(A(t)) → 0 because, even though equation (42) involves N
finite addends, it is divided by N2. Then, the many particle quantum state in equation (39) meets the
condition 〈Â2〉 = 〈Â〉2, and hence we conclude that Â|ψ(t)〉 = 〈Â〉|ψ(t)〉 in the limit N →∞.

This result means that, even if individually |ψξ(t)〉 are not eigenstates of â, in the limit N →∞ the many
particle quantum state in (39) is an eigenstate of Â. We emphasize that the reason why the many-particle
state in (39) becomes an eigenstate of Â is not because of the specific nature of the single particle states
|ψξ(t)〉 or the operator â, but because of the limit N →∞ that we have taken into account to evaluate
equation (42). Note that this result might have been explained also using the central limit theorem. For the
type of state in equation (39) we know that there is no correlation between the distribution of
single-particle eigenvalues {aξ} and {aν} that define the distribution of many-particle eigenvalues {ā} in
(32). Then, {ā} can be understood as a normalized sum of independent random variables whose
distribution tends towards a normal distribution with a standard deviation given in (42) that goes to zero
when N →∞. This is true for any initial probability distributions of {aξ} and {aν}, as far as they are
uncorrelated. Thus, according to our previous definitions, we could argue that the many particle quantum
state in (39) satisfies genuine macrorealism. This is in contrast with the quantumness of each individual
degree of freedom of the quantum system itself, which, being preserved, would prevent us to talk about
realism at the microscopic level.

This result can be understood in the context of the quantum-to-classical transition, as it indicates that
what we call classical objects are in fact quantum objects with many degrees of freedom that, obeying the
laws of quantum mechanics at the microscopic level, do not show quantum uncertainty for non-additive
properties. According to the Ehrenfest theorem, an intensive property A that fulfills Var(A(t)) = 0 at any
time t seems to imply that its dynamics is compatible with Newton dynamics. This conclusion, which is in
accordance with previous works [56–58], can be understood from a pure operational point of view and
hence it does not depend on the different interpretations of quantum mechanics.
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Finally, let us note that the above exercise based on the evaluation of Var(A), while valid for pure states,
cannot be used in practice for general mixed states. Alternatively, the test in (S1) and (S2), based on the
NSIT condition and the use of generalized von Neumann measurements, should be applied.

4.2. Non-macrorealistic many-particle systems
We now seek for quantum systems with a large number N of particles that do not satisfy genuine
macrorealism because of the strong correlations among different particles. One can think, for example, of a
non-separable quantum state with probabilities |ci1,...,iN (t)|2 = 0.5 when aξ = α, ∀ξ and |ci1,...,iN (t)|2 = 0.5
when aξ = β, ∀ξ. The resulting state,

|ψ(t)〉 =
√

0.5|α, . . . ,α〉+
√

0.5|β, . . . ,β〉, (43)

is the superposition of two states with different values of the property linked to the single-particle operator
â, so that the mean value of Â in (33) can be written as:

〈Â(t)〉 = 1

2N

N∑
ξ=1

α+
1

2N

N∑
ξ=1

β =
1

2
(α+ β), (44)

which tells that there is a 50% probability of measuring all N particles with a well-defined value α of the
property a, and another 50% probability of measuring all N particles with a well-defined value β of the
property a. Introducing the state in equation (43) into (36) we also get:

〈Â2(t)〉 = 1

2N2

N∑
ξ,ν

α2 +
1

2N2

N∑
ξ,ν

β2 =
1

2
(α2 + β2). (45)

We can now write Var(A(t)) = 〈Â(t)〉2 − 〈Â2(t)〉 = (α− β)2/4. Clearly, 〈Â2(t)〉 �= 〈Â(t)〉2 even when
N →∞. This means that the state defined in (43) will never be an eigensate of Â, and hence the interference
effects between the state |α, . . . ,α〉 and the state |β, . . . ,β〉 will prevail at the macroscopic (N →∞) level9.

4.3. Numerical example: center-of-mass position of N uncoupled harmonic oscillators
To illustrate the proposed test of microrealism, we consider a simple numerical experiment. For a simple
analytical example, the reader can take a look at the results in appendix C for a spin qubit. Alternatively,
here we will evaluate the autocorrelation function of the center-of-mass position operator, X̂ =

∑N
ξ=1 X̂ξ/N

(where the index ξ denotes the degree of freedom that the single-particle operator X̂ξ acts on for a number
N of uncoupled one-dimensional double-well oscillator (see figure 1). Hereafter we use atomic units,
� = m = 1, and define the single-particle oscillator Hamiltonian as:

Ĥ =

N∑
ξ=1

P̂2
ξ/2 + ω2

0X̂2
ξ/2 + cosh−2(αX̂ξ), (46)

where P̂ξ is the ξth momentum operator and the natural frequency of the underlying harmonic oscillator is
ω0 = 4.3 × 10−3 a.u. The characteristic width of the barrier between the two wells is set to α = 5 × 10−2

a.u and we choose t = 0 such that the only relevant time in the discussion is τ � 0.
We consider an initial pure state which consists of all the oscillators being prepared in the ground state,

i.e., |ψ(t)〉 = |ψ(g)
1 (t)〉 ⊗ · · · ⊗ |ψ(g)

N (t)〉, where |ψ(g)
i (t)〉 represents the ground state of the i-th harmonic

oscillator. For pure states, assessing the NSIT condition is equivalent to checking equation (23), i.e.:

NSIT ⇔ 〈yA(t)yB(τ)〉 = 〈yA(t)〉〈yB(τ)〉 ∀ pure state. (47)

Note that for initial mixed states the equivalence in equation (47) cannot be attained due to the (classical)
ignorance associated to the result in equation (23), i.e., 〈yA(t)yB(τ)〉 =

∑
sps〈ψs|Â|ψs〉〈ψs|B̂|ψs〉 �=

〈yA(t)〉〈yB(τ)〉. This explains why, for general mixed states, a test of realism must be based on the NSIT
condition in equation (24) instead.

By assuming at this point a Gaussian-type meter wavefunction of the form
Ωy−aj =

1
2σ

√
π

exp
[
−(y − aj)2/4σ2

]
, and taking the non-interacting limit of equation (22) we obtain (see

appendix D):

9 A relevant question is which type of state, equation (39) or equation (43), is more common in nature as N →∞. Although such dis-
cussion is far from the scope of this work, we believe that entropic arguments can be invoked to justify that genuine macrorealism is
more and more common as the number of particles grows. By far, the state (43) requires much more order than the state in (39).
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Figure 1. Schematic picture of the double-well oscillator. The potential energy curve is plot in solid black line. The initial state of
the system (area in green) is taken to be the ground state of the system. Two main frequencies are involved in the dynamics of the
system, viz, ω0 and 1.28ω0, related respectively with the inter-well and intra-well dynamics. The relevant upper and lower bounds
of the spectrum of X̂ are denoted by xmax and xmin respectively, and the exponential function defined in equation (49b) is
depicted for a particular value of σX in dashed blue line.

〈yA(t)yB(τ)〉 = 1

2N

∞∑
i,j

Ej,iBj,i

(
ai + (N − 1)〈Â(t)〉

)
+ c.c., (48)

where we have defined the coefficients:

Bi1,...,iN
j1,...,jN

= 〈aj1 , . . . , ajN |B̂(τ)|ai1 , . . . , aiN 〉, (49a)

Ei1,...,iN
j1,...,jN

= c ∗
j1,...,jN

exp

⎡
⎢⎣−

(∑N
ν aiν − ajν

)2

8σ2
AN2

⎤
⎥⎦ ci1,...,iN . (49b)

Note that in the limit of N →∞ equation (48) trivially reduces to 〈yA(t)〉〈yB(τ)〉. The result in
equation (48) generally depends on the system-meter coupling σA, and only in the limit where the
measuring apparatus for measuring the property A has a dispersion σA much larger than the effective
dimension of the system deff :=

∑N
ν=1 max({ΔAν})/N, where max({ΔAν}) is the distance between the

highest and lowest occupied eigenstates of the spectrum of Âν , then equation (48) reduces to:

WM ⇔ 〈yA(t)yB(τ)〉 = Re
(
〈ψ(t)|B̂(τ)Â(t)|ψ(t)〉

)
∀ pure state. (50)

The dynamics of a single oscillator for different values of σX is shown in figure 2. For a projective
measurement, i.e., σX → 0, the dynamics presents a central resonance peak at ω0 (in dashed red line). This
is due to the strong perturbation induced by the projective measurement at t = 0, which yields a
subsequent dynamics characterized by a large amplitude (over-the-barrier) oscillation. Contrarily, in the
limit σX →∞ the measurement produces only a small perturbation to the initial state and yields an ensuing
dynamics confined in the wells with a characteristic frequency ω = 1.28ω0 (in dashed blue line). In between
these two regimes, an infinite number of dynamics can be inferred depending on the system-meter coupling
σX (in black solid lines).

To conclude whether the position of a single oscillator is microrealistic in a reproducible manner, we
need to ensure that the measurement of X is carried out using a generalized von Neumann measurement,
and then compare the expectation values 〈y(0)y(τ)〉 and 〈y(0)〉〈y(τ)〉. Steps (S1) and (S2), or equivalently
equations (47) and (50), can be assessed in a compact way through the quantity:

Δ(σX , N) =
d〈yX(0)yX(τ)〉

dσX
dσX −ΔQC (51)

where ΔQC = 〈yX(0)yX(τ)〉 − 〈yX(0)〉〈yX(τ )〉. This can be seen as follows. Consider first the WM regime
where (C4) and (C5) are fulfilled. Then equation (51) reduces to Δ(σX, N) = −ΔQC = f(N), where f(N) is
a function only of N (not of σX). This can be seen by noticing that equation (50) does not depend on σX

(see also the condition (C5) in equation (30)) and thus the first term in equation (51) is zero. Also,
according to (C2) in equation (11) the term ΔQC does not depend on σX and thus Δ(σX, N) is a function

14
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Figure 2. Semi-log plot of the Fourier transform of the autocorrelation function in equation (48) as a function of σX and τ
(solid black lines). The limits of σX → 0 and σX →∞ are shown respectively in dashed red and blue lines. In the inset: the same
results but for the autocorrelation function.

Figure 3. Δ(σX, N) as a function of σX and the number N of oscillators for τ = 33.3π. Results for the strong, semi-weak and
weak measurement regimes, depending on the system-meter coupling parameter σX, have different underlying colors associated.
Non-realistic and realistic results are shown in black and blue respectively.

only of N. Thus, the fulfillment of (S1) implies, in particular, the existence of a plateau of Δ(σX, N) for large
enough σA.

Step (S2) is as follows. If the NSIT condition in equation (47) is fulfilled then
〈yX(0)yX(τ)〉 = 〈yX(0)〉〈yX(τ)〉 and hence ΔQC = 0. If this holds for any σA and not only in the WM
regime, then the property is realist. Alternatively, if the NSIT condition in equation (47) is not fulfilled or
fulfilled only in the WM regime, then the property is non-realist.

In figure 3 we plot the quantity Δ(σX, N) as a function of σX and the number N of oscillators. Whenever
Δ(σX, N) becomes constant, equation (50) is fulfilled, and whether the center-of-mass position is realistic
or not can be checked by simply evaluating Δ(σX, N) in the asymptotic region, i.e., X is realistic if Δ(σX, N)
vanishes in the asymptotic region and non-realistic otherwise. A single oscillator is non-microrealistic with
respect to X because Δ(σX, 1) changes with σA and furthermore it converges to a non-zero value in the
WM regime (i.e., for σA →∞). For N > 1, the N oscillators become entangled right after the first
measurement process. This yields a smooth transition (exponential decay with N) between the
non-microrealistic (in black) and macrorealistic (in blue) results (for N � 30 and N � 30 respectively).
That is, for a large enough number of double well oscillators, the dynamics of X̂ becomes entirely
independent of σX, which is a clear-cut signature of genuine macrorealism.

5. Conclusions

Testing the reality of an object according to orthodox quantum mechanics requires a strict control of the
correspondence between thought and real (implemented) experiments. This is crucial, e.g., to avoid the
so-called ‘clumsiness loophole’. In this work we have proposed a test of realism that is based on witnessing
the use of generalized von Neumann measurements in the lab. Assessing conditions (C1)–(C3), respectively
in equations (8), (11) and (20), and conditions (C4) and (C5), in equations (29) and (30), allows to
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critically narrow experimental clumsiness and thereafter testing the NSIT condition in equation (24) for a
range of system-meter couplings σA allows to determine, unequivocally, whether a property A is realistic or
not.

Importantly, the resulting protocol, i.e., (S1) and (S2), is robust for any type of property. This includes
tests in situations where Leggett–Garg inequalities and ideal negative measurement cannot be used at all,
e.g., unbounded and non-dichotomic properties. Furthermore, the fact that the proposed test involves the
validation of the measurement apparatus in the WM regime makes its conclusions independent of the
system-meter coupling of the first measurement and thus also highly reproducible.

We have also showed that any intensive property A of a quantum system made of a large enough
number of weakly-correlated particles is microrealistic at any time. Only rather exotic quantum systems,
with a very high degree of order, do not satisfy this property. This result has been used to define genuine
macrorealistic objects as quantum objects that are microrealistic with respect to all intensive properties at
any time. Noticeably, genuine macrorealism is compatible with the existence of non-microrealistic
properties of the quantum object at the microscopic level (when, for example, only a fraction of the total
number of the degrees of freedom is considered).

The above conclusions have been numerically exemplified by testing the nature of the center-of-mass
position of a number N of one-dimensional double-well oscillators. In general, the N oscillators become
entangled right after the first measurement and this allows a smooth transition between the
non-microrealistic and microrealistic results. For a large enough number N of oscillators, the dynamics of
the center-of-mass position becomes completely independent of the system-meter coupling strength of the
first measurement, a clear signature of genuine macrorealism.

Our results, in accordance with previous works, indicate that what we call classical objects are in fact
quantum objects with many degrees of freedom that, obeying the laws of quantum mechanics, satisfy
microrealism for all intensive properties at any time.
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Appendix A. Derivation of joint probability in equation (18)

We start with the general expression for the two-time joint probability in equation (17),

P(yA, yB) =
∑

s

ps

∑
j

|ΩyB−bj (τ)|2
∑

i,i′
C j,s

i,i′(t, τ)Li,i′(ΩyA(t)). (A.1)

By rewriting the coefficients C j,s
i,i′(t, τ) as:

C j,s
i,i′(t, τ) = cs, ∗

i′ (t)cs,∗
i′,j (τ)cs

i,j(τ)cs
i (t) = 〈ψs(t)|ai′ 〉〈ai′ |Û†

τ |bj〉〈bj|Ûτ |ai〉〈ai|ψs(t)〉, (A.2)

and using |ψs〉 = |as〉 we get,
C j,s

i,i′ = δs,i′ 〈ai′ |Û†
τ |bj〉〈bj|Ûτ |ai〉δi,s. (A.3)

Introducing equation (A.3) back into equation (A.1) we already get equation (18) of the main text:

P(yA, yB) =
∑

s

ps|ΩyA−as (t)|2
∑

j

|cs
j (τ)|2|ΩyB−bj (τ)|2, (A.4)

where cs
j (τ) = 〈bj|Ûτ |as〉. By identifying Ps(yA) = |ΩyA−as (t)|2 and Ps(yB) =

∑
j|cs

j (τ)|2|ΩyB−bj (τ)|2,
equation (A.4) can be finally written as in equation (19), i.e.:

P(yA, yB) =
∑

s

psPs(yA)Ps(yB). (A.5)
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Appendix B. Derivation of equation (30)

Using equation (25) and the center-of-mass property of the meter wavefunction
∫

dyB|ΩyB−bj |2 = bj,
equation (22) reads:

〈yA(t)yB(τ)〉 =
∫

dyAyA
∑

s

ps

∑
j

bj

∑
i,i′

C j,s
i,i′(t, τ)

(
ΩyA(t) − ∂ΩyA(t)

∂yA
ai

)(
ΩyA(t) − ∂ΩyA(t)

∂yA
ai′

)
. (B.1)

Now, using the following three equalities,
∫

dyAyAΩyA
∂ΩyA
∂yA

= −1/2,
∫

dyAyA
(

∂ΩyA
∂yA

)2
= 0, and∫

dyAyAΩ
2
yA = 0, equation (B.1) can be written as:

〈yA(t)yB(τ)〉 =
∑

s

ps

∑
j

bj

∑
i,i′

C j,s
i,i′(t, τ)

(ai + a′i)

2
. (B.2)

Using then the explicit form of the coefficients,

C j,s
i,i′(t, τ) = 〈ψs(t)|ai′ 〉〈ai′ |Û†

τ |bj〉〈bj|Ûτ |ai〉〈ai|ψs(t)〉, (B.3)

and the spectral decomposition of the operators Â and B̂, equation (B.2) finally simplifies to:

〈yA(t)yB(τ)〉 =
∑

s

ps Re
(
〈ψs(t)|B̂(τ)Â(t)|ψs(t)〉

)
, (B.4)

where we have introduced the definition of the Heisenberg operators, B̂(τ) = Û†
τ B̂Ûτ and Â(t) = Â. The

above result is independent of the wavefunction of the meter of A, and hence we conclude that in the WM
regime the following equation must be fulfilled:

C5 :
d

dσA
〈yA(t)yB(τ)〉 = 0 ∀σA 	 deff. (B.5)

Appendix C. Test of microrealism for a single qubit state

Consider a spin qubit represented by the state:

|ψ(t)〉 = c0|sx0〉+ c1|sx1〉 (C.1)

where |c0|2 + |c1|2 = 1, and |sx0〉 = 1√
2

(
1
1

)
and |sx1〉 = 1√

2

(
1
−1

)
are the eigenstates of the Pauli matrix

σ̂x. The evolution of the state in equation (C.1) is dictated by the following Hamiltonian,

Ĥ = Ŝz =
�

2
σ̂z, (C.2)

where Ŝz is the spin operator in the z direction and σ̂z is the z Pauli matrix.
Whether the initial state in equation (C.1) is an eigenstate of the spin operator Ŝx =

�

2 σ̂x can be tested
using our protocol in (S1) and (S2). In a real experiment we should first address (S1), however, in this
thought experiment we can presuppose (S1) and move directly to step (S2). For that, we only need to test
the NSIT condition in equation (24). This can be done by comparing the probability distribution of
measuring Ŝx only at time τ , i.e., P(ysτ ) =

∑2
j=1 |Ωysτ −sj (τ)|2|cj(τ)|2, with the result in equation (16), which

here reads: ∫
dyst P(yst , ysτ ) =

2∑
j=1

|Ωysτ −sj (τ)|2
2∑

i,i′=1

C j
i,i′(τ , t)

∫
dystΩ

∗
yst −si′

(t)Ωyst −si (t), (C.3)

where yst and ysτ are the outcomes of the first (at time t) and second (at time τ) measurement of Ŝx

respectively. Now, for superposition states where both c0 and c1 are different from zero, it is easy to realize
that: ∫

dyst P(yst , ysτ ) �= P(ysτ ), (C.4)

except for the case where the measurement of Ŝx is carried out in the WM regime, where∫
dystΩ

∗
yst −si′

(t)Ωyst −si (t) = 1 and thus we can use
∑2

i,i′=1 C
j
i,i′(τ , t) = |〈sxj|Uτ |ψ(t)〉|2 = |cj(τ)|2. Therefore,

for general system-meter coupling strengths the NSIT condition (see equation (24)) is not fulfilled, and thus

17



New J. Phys. 22 (2020) 073047 D Pandey et al

the property Ŝx of the system is non-microrealistic. Alternatively, if the initial state in equation (C.1) is an
eigenstate of Ŝx, then either c0 or c1 is zero, and according to the definition of the coefficients Cj

i,i′ it is easy
to see that (C.3) always reduces to: ∫

dyst P(yst , ysτ ) = P(ysτ ), (C.5)

independently of the system-meter coupling strength. Therefore, we can conclude that the system is
microrealistic with respect to Ŝx.

C.1. Alternative test based on two-time time-correlation functions
Since in our example we considered a pure initial state, we also could have used two-time correlation
functions instead of joint probabilities to arrive to the same conclusions. To see that, let us first consider
equation (22), which here reads:

〈yst ysτ 〉 =
2∑

i′,i=1

c ∗
i′ 〈sxi′ |Ŝx(τ)|sxi〉ci

∫
dyst ystΩ

∗
yst −si′

(t)Ωyst −si (t), (C.6)

where we have defined Ŝx(τ) = Û†
τ Ŝx(t)Ûτ . In our particular example the operator

Ŝx(t) = |sx0〉s0〈sx0|+ |sx1〉s1〈sx1| where s0 = +1 and s1 = −1 are the eigenvalues corresponding to the
eigenstates |sx0〉 and |sx1〉 respectively. We can alternately define Ŝx(t) = |sz0〉s0〈sz1| − |sz1〉s1〈sz0| in the basis
of our Hamiltonian Ŝz just to facilitate the derivation. The evolution of Ŝx(t) in the Heisenberg picture can
be then written as:

Ŝx(τ) = eiτω |sz0〉s0〈sz1| − e−iτω|sz1〉s1〈sz0|, (C.7)

where we have defined ω = (E0 − E1)/�. Introducing equation (C.7) into equation (C.6) we obtain,

〈yst ysτ 〉 =
2∑

i′ ,i=1

c ∗
i′ ci

(
eiτω〈sxi′ |sz0〉s0〈sz1|sxi〉 − e−iτω〈sxi′ |sz1〉s1〈sz0|sxi〉

) ∫
dyst ystΩ

∗
yst −si′

(t)Ωyst −si (t). (C.8)

We now switch back to the Ŝx basis, i.e., |sz0〉 = 1√
2
|sx0〉+ 1√

2
|sx1〉 and |sz1〉 = 1√

2
|sx0〉 − 1√

2
|sx1〉, and note

that for a real ancilla wavepacket
∫

dyst ystΩ
∗
yst −s0

(t)Ωyst −s1 (t) =
∫

dyst ystΩ
∗
yst −s1

(t)Ωyst −s0 (t). Furthermore
since s0 = −s1, then equation (C.8) can be finally written as:

〈yst ysτ 〉 =
(
s2
0|c0|2 + s2

1|c1|2
)

cos(ωτ) +

(
2s1 Im

(
c0c ∗

1

) ∫
dys(t)ys(t)Ω

∗
ys(t)−s0

(t)Ωys(t)−s1 (t)

)
sin(ωτ). (C.9)

Arrived at this point, it is easy to test whether our initial state is an eigenstate of Ŝx or not. We only need
to compare the result in equation (C.9) with the product of single-time expectation values 〈Ŝx(t)〉〈Ŝx(τ)〉.
When the initial state in equation (C.1) is an eigenstate of Ŝx, then either c1 or c0 is zero and thus
equation (C.9) reduces to:

〈yst ysτ 〉 = s2
0 cos ωτ , (C.10)

in the case where |c0|2 = 1 or to 〈yst ysτ 〉 = s2
1 cos ωτ in the case where |c1|2 = 1. For the particular case

where |c0|2 = 1, we also know that 〈Ŝx(t)〉 = 〈yst 〉 = s0 and that 〈Ŝx(τ)〉 = 〈ysτ 〉 = 〈sx0|Ŝx(τ)|sx0〉 which
using equation (C.7) yields 〈Ŝx(τ)〉 = s0cos ωτ . Therefore, we can write:

〈yst ysτ 〉 = 〈yst 〉〈ysτ 〉, (C.11)

and hence conclude that the system is microrealistic with respect to Ŝx. Note that the same conclusion is
reached if we consider |c1|2 = 1 and c0 = 0. Alternatively, for general superposition states where c0 and c1

are both different from zero, equation (C.9) cannot be written as the product of two single-time mean
values, i.e.:

〈yst ysτ 〉 �= 〈yst 〉〈ysτ 〉, (C.12)

and hence we have to conclude that the system is non-microrealistic with respect to Ŝx.

Appendix D. Two-time correlation function for Gaussian meters and separable
many-body states: derivation of expression equation (48)

For pure initial states and, equation (22) reduces to:

〈yA(t)yB(τ)〉 =
∑

j

bj

∑
i,i′

C j
i,i′(t, τ)

∫
dyAyALi,i′(ΩyA(t)). (D.1)
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Assuming at this point a Gaussian-type meter wavefunction of the form
Ωy−aj =

1
2σ

√
π

exp
[
−(y − aj)2/4σ2

A
]
, then we can use the property:

∫
dyAyAΩ

∗
yA−ai′

(t)ΩyA−ai (t) =
1

2
(ai + ai′)e

−
(ai−ai′ )2

8σ2
A (D.2)

to rewrite (D.1) as:

〈yA(t)yB(τ)〉 = 1

2

∑
j

bj

∑
i,i′

C j
i,i′(t, τ)(ai + ai′)e

−
(ai−ai′ )2

8σ2
A , (D.3)

where C j
i,i′(t, τ) = c∗i′(t)c∗i′,j(τ)ci,j(τ)ci(t).

Now, for A being an intensive property as defined in equation (31), the coefficients ci(t)
and ci,j(τ) read ci(t) ≡ 〈aj1 , . . . , ajN |ψ(t)〉 and ci,j(τ) ≡ 〈bj1 , . . . , bjN |Ûτ |ai1 , . . . , aiN 〉, where
|ai1 , . . . , aiN 〉 = |ai1〉 ⊗ · · · ⊗ |aiN 〉 and |bj1 , . . . , bjN 〉 = |bj1〉 ⊗ · · · ⊗ |bjN 〉. Considering a separable state
|ψ(t)〉 = |ψ1(t)〉 ⊗ · · · ⊗ |ψN(t)〉 and the definition of the eigenvalues in equation (32), then equation (D.3)
can be rewritten as:

〈yA(t)yB(τ)〉 = 1

2N2

N∑
ξ,ξ′

∑
j1,...,jN

bjξ

∑
i1,...,iN
i′1,...,i′N

(aiξ′ + ai′
ξ′

)e
−

(
∑N

ξ′′ aiξ′′
−a

i′
ξ′′

)2

8σ2
AN2

×
(
〈ψ1(t)|ai′1

〉〈ai′1
|Û†

τ |bj1〉〈bj1 |Ûτ |ai1〉〈ai1 |ψ1(t)〉

× 〈ψN (t)|ai′N
〉〈ai′N

|Û†
τ |bjN 〉〈bjN |Ûτ |aiN 〉〈aiN |ψN (t)〉

)
. (D.4)

Now, by separating equation (D.4) into ξ = ξ ′ and ξ �= ξ′ terms we can write:

〈yA(t)yB(τ)〉 = 1

2N2

N∑
ξ

⎡
⎢⎢⎣∑

iξ ,i′
ξ

(aiξ + ai′
ξ
)e

−
(aiξ

−a
i′
ξ

)2

8σ2
AN2 〈ψA|ai′

ξ
〉〈ai′

ξ
|Û†

τ B̂Ûτ |aiξ 〉〈aiξ |ψξ〉

+
∑
ξ′ �=ξ

∑
i1,...,iN
i′1,...,i′N

(aiξ′ + ai′
ξ′

)e
−

(
∑N

ξ′′ ai
ξ′′

−a
i′
ξ′′

)2

8σ2
AN2

(
〈ψ1(t)|ai′1

〉〈ai′1
|ai1〉〈ai1 |ψ1(t)〉〈ψξ(t)|ai′

ξ
〉

× 〈ai′
ξ
|Û†

τ B̂Ûτ |aiξ 〉〈aiξ |ψξ(t)〉〈ψξ′(t)|ai′
ξ′
〉〈ai′

ξ′
|aiξ′ 〉〈aiξ′ |ψξ′(t)〉〈ψN (t)|ai′N

〉〈ai′N
|aiN 〉

× 〈aiN |ψN (t)〉
)]

, (D.5)

which, in turn, by using 〈ai′
ξ′
|aiξ′ 〉 = δi′ ,i ∀k can be simplified as:

〈yA(t)yB(τ)〉 = 1

N2

N∑
ξ

∑
iξ ,i′

ξ

aiξ e
−

(aiξ
−a

i′
ξ

)2

8σ2
AN2 〈ψξ |ai′

ξ
〉〈ai′

ξ
|Û†

τ B̂Ûτ |aiξ 〉〈aiξ |ψξ〉

+

N∑
ξ′ �=ξ

∑
iξ ,i′

ξ

e
−

(aiξ
−a

i′
k

)2

8σ2
AN2 〈ψξ(t)|ai′

ξ
〉〈ai′

ξ
|Û†

τ B̂Ûτ |aiξ 〉〈aiξ |ψξ(t)〉〈ψξ′(t)|Â|ψξ′(t)〉+ c.c. (D.6)

By rearranging terms we can re-express (D.6) as:

〈yA(t)yB(τ)〉 = 1

2N2

N∑
ξ

∑
iξ ,i′

ξ

e
−

(aiξ
−a

i′
ξ

)2

8σ2
AN2 〈ψξ |ai′

ξ
〉〈ai′

ξ
|B̂(τ)|aiξ 〉〈aiξ |ψξ〉

⎛
⎝aiξ +

N∑
k �=ξ′

〈ψξ′(t)|Â(t)|ψξ′(t)〉

⎞
⎠+ c.c.

(D.7)
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Finally, by assuming |ψξ(t)〉 = |ψ(t)〉 ∀k we obtain:

〈yA(t)yB(τ)〉 = 1

2N

∑
i,i′

e
−

(ai−ai′ )2

8σ2
AN2 〈ψ|ai′ 〉〈ai′ |B̂(τ)|ai〉〈ai|ψ〉

(
ai + (N − 1)〈Â(t)〉

)
+ c.c., (D.8)

which, using the definitions in equations (49a) and (49b), can be rewritten as in equation (48) of the main
text:

〈yA(t)yB(τ)〉 = 1

2N

∑
i,j

Ej,iBj,i

(
ai + (N − 1)〈Â(t)〉

)
+ c.c. (D.9)
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