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Abstract
Purpose of Review The changes or updates in ocean biogeochemistry component have been mapped between CMIP5 and
CMIP6 model versions, and an assessment made of how far these have led to improvements in the simulated mean state of
marine biogeochemical models within the current generation of Earth system models (ESMs).
Recent Findings The representation of marine biogeochemistry has progressed within the current generation of Earth system
models. However, it remains difficult to identify which model updates are responsible for a given improvement. In addition, the
full potential of marine biogeochemistry in terms of Earth system interactions and climate feedback remains poorly examined in
the current generation of Earth system models.
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Summary Increasing availability of ocean biogeochemical data, as well as an improved understanding of the underlying pro-
cesses, allows advances in the marine biogeochemical components of the current generation of ESMs. The present study
scrutinizes the extent to which marine biogeochemistry components of ESMs have progressed between the 5th and the 6th
phases of the Coupled Model Intercomparison Project (CMIP).

Keywords Marine Biogeochemistry . CMIP5 . CMIP6 . Biogeochemistry-Climate Feedbacks .Model Performance

Introduction

Marine biogeochemistry plays a key role in the Earth system.
By regulating the exchange of CO2 and other climatically
active gases with the atmosphere [1], it is involved in a large
range of climate feedbacks [2]. As a result, changes in ocean
biogeochemistry can have important consequences for climate
[3–5]. Marine biogeochemistry is also deeply interwoven with
the functioning of marine ecosystems and ultimately food
webs [6–8]. Marine ecosystems are affected by anthropogenic
environmental change [9–11], particularly through climate-
induced changes in physical properties and CO2-induced
ocean acidification [12–16]. Understanding and quantifying
the response of ocean biogeochemistry to global changes, as
well as its role in Earth system feedbacks [12, 17], are essen-
tial to improve our capacity to project ecosystem services and
climate change in this century and beyond.

In this context, ocean biogeochemical models are acknowl-
edged as powerful tools to study the ocean carbon cycle and
its response to past and future climate and chemical changes
[2]. Since the pioneering assessment of anthropogenic carbon
uptake by the ocean by Maier-Reimer and Hasselmann [18]
and Sarmiento et al. [19], and the Ocean Carbon Model
Intercomparison Project (OCMIP) of Orr et al. [20], ocean
biogeochemical models have been successfully integrated in
many Earth system models (e.g. [21–31]).

Over the last few decades, the results from ocean biogeo-
chemical models running within ESMs have increasingly
been used to drive research on the carbon cycle. Their results
have supported the assessment of carbon cycle feedbacks
[32–35] and have improved the understanding of mechanisms
behind the near-linear transient climate response to cumula-
tive CO2 emissions [36]. Consequently, they have helped de-
termine the change in carbon budgets that is compatible with a
given level of warming since pre-industrial times. Ocean bio-
geochemical models have also been used to investigate poten-
tial geoengineering solutions to climate change such as solar
radiation management [37–39], ocean fertilization [40–47],
alkalinity addition [48–52] and reversibility experiments
(e.g. [53, 54]).

Recent advances in marine ecosystem modelling have also
led to diversification in the use of ocean biogeochemistry
models within ESMs to study a wide range of potential im-
pacts [55–58]. These research activities are now grouped

under the umbrella of the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP), with the FishMIP initiative
being a specific example for fisheries impacts [59, 60].

Over recent years, models are increasingly being used in a
semi-operational mode to aid with investigations of the pre-
dictability of key policy-relevant ocean biogeochemistry
fields (e.g. net primary productivity, ocean acidity, ocean car-
bon uptake) [61–67]. Because of their close relationship with
important living marine resources, skillful predictions of these
properties have led to ocean biogeochemistry models being
recognized as valuable tools when developing environmental
policies (e.g. [68]) or designing fisheries management [64, 65,
69].

Because this large array of applications goes well beyond
the conventional scientific investigation of the ocean carbon
cycle, marine biogeochemical models have been developed in
a number of directions over recent years. These developments
are generally supported by progress in process understanding,
which in turn is driven by an increasing number of observa-
tional databases [70–72]. However, from one generation to
another, the development of marine biogeochemical models
is driven not only by common scientific considerations but
also by the internal priorities of individual modelling groups.
As a consequence, it is difficult to anticipate how far the rep-
resentation of marine biogeochemistry within the current gen-
eration of Earth system models differs from—and has im-
proved upon—the previous one.

The present study maps the changes or updates in ocean
biogeochemistry components that have arisen between
CMIP5 and CMIP6 and assesses how far these have led to
actual improvements in model skill against present-day obser-
vations. Overall, our assessment demonstrates that the simu-
lated mean state of ocean biogeochemistry models in CMIP6
is more realistic than that produced by their CMIP5 analogues
in many aspects, but that it remains difficult to clearly identify
which changes in a given ocean biogeochemistry model are
responsible for these improvements.

Mapping Changes or Updates in Ocean
Biogeochemistry

In this section, we review the changes or updates implemented
by participating modelling groups. The following method was
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employed to collect relevant model details as shown in
Table 1. First, all of the modelling groups contributing both
to CMIP5 and CMIP6 were approached. Next, a questionnaire
in the form of a spreadsheet was proposed and developed.
This sought details around (1) model resolution, (2) complex-
ity in marine biology, (3) the representation of bacteria, (4)
internal physiology, (5) organic matter cycling, (6) sediments,
(7) nutrients and elemental cycling, (8) the level of
interactions with the other components of the Earth system
and (9) modelling approaches including spin-up protocols
and tuning/calibration. The latter includes external inputs/
outputs and biophysical interactions. The resulting master ta-
ble of model properties is provided in Supplementary mate-
rials (Table S1).

Tables 1, 2 and 3 map the key updates made between
CMIP5 and CMIP6 (full details are available in Table S1).
Table 1 suggests that most of the changes have tried to address
at least one missing process of major importance for marine
biogeochemistry, as highlighted in IPCCAR5 ([2], page 499),
that is, representation of the lower trophic level including bac-
teria, organic matter cycling including sinking particles or
variation in stoichiometric ratios.

Table 1 includes a brief overview of the key updates in
ocean physics between CMIP5 and CMIP6 because marine
biogeochemistry is prominently driven by ocean circulation
(large-scale circulation and mesoscale eddies) and vertical
mixing.

Table 1 tracks not only updates in the horizontal and verti-
cal resolution of physical ocean models but also changes in
related ocean physical parameterization. As suggested by
Griffies et al. [103], an increase in horizontal or vertical reso-
lution enables the representation of finer-scale ocean physical
processes (e.g. mesoscale eddies) in relation with the activa-
tion of more realistic ocean physical parameterizations (such
as vertical mixing, diurnal cycle or coupling with the
atmosphere).

The first common difference between CMIP5 and CMIP6
ESMs comes from the ocean-sea ice components. Indeed, it is
interesting to note that 8 ESM groups out of 12 use an
upgraded version of the ocean models or employ a new ocean
model (Table 1). These changes imply substantial updates or
revisions in ocean physical parameterizations that may have
an impact on large-scale circulation and vertical mixing.

In addition, another common difference between ocean
models used in CMIP5 and CMIP6 is the grid resolution. It
is interesting to note that all of the ocean models, with the
exception of MPI-ESM1-2-LR, now resolve ocean dynamics
at a minimum horizontal nominal resolution of 100 km. The
highest horizontal nominal resolution in the available multi-
model ensemble is 50 km (GFDL-ESM4). Despite this gener-
al increase in horizontal resolution, only GFDL-CM4 uses an
eddy-permitting ocean model (~ 25 km). In addition, the

current generation of ocean models also better represent ver-
tical physical processes with a typically finer vertical
resolution.

Another common difference between the two generations
of models is the complexity of the marine ecosystem descrip-
tion and related parameterizations. Here, the complexity en-
compasses the diversity of model trophic web (i.e. the number
of specific model phytoplankton and zooplankton types), the
representation of bacteria, ecosystem functioning including
macro- and micro-nutrient limitation (e.g. iron), and the vari-
ation in modelled stoichiometric ratios of carbon, nitrogen and
other elements (e.g. photosynthetic pigment). Greater com-
plexity does not necessarily imply a better representation of
cycles and processes associated with each biogeochemical
species, as it may introduce new degrees of freedom and/or
non-linear (or at least not well controlled) interactions be-
tween parameterizations.

Table 1 shows that ocean biogeochemistry models span a
wide range of complexity levels. The simplest models use
ocean carbon cycle models based on the OCMIP protocol
[20] that do not include marine biota or nutrients.
Meanwhile, the most complex models include a broad trophic
structure that groups marine organisms into plankton func-
tional types based on their biogeochemical role, with mecha-
nistic representations of nutrient limitation and variable stoi-
chiometric ratios.

Table 1 also highlights noticeable changes in biogeochem-
ical parameterizations between CMIP5 and CMIP6. They
concern 10 biogeochemical models out of 12 reviewed in this
study. These changes may be related to the change in model
complexity or to a revised set of parameterizations (e.g.
nitrogen fixation, remineralization, grazing, flux feeding; see
Table S1).

We map updates and changes in ocean biogeochemical
models along three major axes; axis 1. The trophic food
web, the plankton internal physiology (e.g. variable stoichi-
ometry, chlorophyll pigment) and nutrients cycling (iron cy-
cle, nutrients cycles). This axis aims to track updates in bio-
geochemical dynamics and ecosystem functioning; axis 2.
The external sources of nutrients; axis 3. The interactions of
marine biogeochemistry with climate or ocean physics. The
latter two axes track the level of integration of the marine
biogeochemical model in the modelled Earth system.

It is important to stress that an increase or a decrease along
one of those three axes does not necessarily imply an improve-
ment in model performance or skill. In most cases, it reflects
progress in process understanding (physical, biogeochemical
or both), the inclusion of new Earth system interactions or the
representation of climate feedbacks is required to investigate
future scenarios.

Table 1 shows that the current generation of CMIP6 dis-
plays a greater diversity of marine biogeochemical models
than CMIP5.
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COBALTv2 (in GFDL-ESM 4), for instance, displays the
highest trophic complexity level with 3 explicit phytoplankton
classes, 1 implicit phytoplankton class, 3 explicit zooplankton
classes and 1 explicit heterotrophic bacteria class; however,
this model still employs a relatively simple parameterization
of iron cycling. In comparison, PISCESv2-gas (in CNRM-
ESM2-1) or PISCESv2 (in IPSL-CM6A-LR) includes 4 ex-
plicit plankton types (2 phytoplankton and 2 zooplankton), but
two iron ligands and 5 iron forms [104]. MARBL-BEC (in
CESM2) also includes an iron ligand and has opted for in-
creasing ecosystem complexity by introducing variable C:P
stoichiometry, based on PO4 concentrations [105], while
maintaining 4 plankton types. It is interesting to note that,
while limiting the number of nutrients, CanESM5-CanOE
have evolved toward a more comprehensive treatment of ma-
rine biogeochemistry with 4 explicit plankton types and using
variable stoichiometry [89]. In contrast with a general increase
in complexity, NOAA-GFDL has started to use a reduced
complexity marine biogeochemical model embedded in the
high-resolution ocean model of GFDL-CM4. This approach
implies a trade-off between computational costs and essential
biogeochemical processes to represent the ocean carbon cycle
as explained in Galbraith et al. [105]. Such diversity tends to
mirror progress in the understanding of the impact of variable
stoichiometric ratios on ecosystem dynamics and carbon as-
similation by phytoplankton cells [106–110].

Table 1 shows that all CMIP6 models except GFDL-CM4
have evolved toward a more comprehensive treatment of ele-
mental cycling including nitrogen, oxygen and iron cycling.
This moderate increase in model complexity is supported by
recent observations in phytoplankton functioning, nutrient
limitation or plankton physiology [111–116] and the availabil-
ity of a larger array of observational data (bio-ARGO and
GEOTRACES) supporting the model evaluation and develop-
ment (e.g. Tagliabue et al. [117]). On the other hand, this
increase in complexity is also encouraged by the growing
range of applications to which ESMs are being dedicated
(e.g. marine resource applications as investigated in Lotze
et al. [59] or Park et al. [64]).

Finally, Table 1 shows that all CMIP6 models have
progressed toward a better representation of marine organic
carbon cycling, sinking particles and marine sediments. In
most cases, this component of marine biogeochemistry is pa-
rameterized using either a sediment box module or a meta-
model based on downward fluxes of organic matter. Indeed,
for several CMIP6 marine biogeochemical models, a more
complex representation of sinking particles and organic matter
pools (refractory classes or flux attenuation parameterization)
replaces the generalized pools of organic matter used in the
CMIP5 predecessors.

Table 1 also sheds light on noticeable changes in the rep-
resentation of sediment interactions. Most of the reviewed
CMIP6 ESMs now simulate this compartment with

biogeochemical parameterization (e.g. balance, meta-model,
sediment box) or with a comprehensive sediment module
(12-layer sediments module).

Table 2 also shows that the representation of the external
sources of nutrients (i.e. the third axis of our model complex-
ity breakdown) has grown in complexity between CMIP5 and
CMIP6. It mirrors a more comprehensive treatment of bound-
ary conditions between ESM components (atmosphere, rivers,
glaciers, etc.). Most of the current generation of ocean biogeo-
chemical models now consider inputs of biogeochemical ele-
ments via atmospheric deposition or from rivers. The iron
delivery from sediment mobilization, hydrothermal sources
or ice melting is additionally considered by a small set of
models. This reflects recent advances in understanding the
global iron cycle [111–116]. In contrast, despite a better un-
derstanding of the role of submarine water discharge in ocean
nutrient supply [118–121], this particular boundary condition
is not considered in the current generation of ocean biogeo-
chemical models.

Besides, it is interesting to note that a couple of CMIP6
ESMs now includes a more comprehensive treatment of
interactions between the marine biogeochemistry and the
other Earth system components. For instance, GFDL-ESM 4
simulates interactively most of the primary source of iron
for marine biogeochemistry (atmospheric dust deposition,
iceberg melting and river supply), enabling the representation
of biogeochemical couplings observed in the real world (e.g.
[122]).

Table 2 highlights that the current generation of ESMs
displays a wider range of Earth system feedbacks or interac-
tions. In our review, we have decomposed Earth system inter-
actions involving marine biogeochemistry along two axes: (1)
the air-sea exchange of greenhouse gases or reactive chemical
compounds interacting with Earth’s radiative budget (and
hence climate); (2) the represented Earth system interactions
involving marine biogeochemistry (including the air-sea ex-
change of greenhouse gases or reactive chemical compounds
and biophysical interactions); that is, what is really contribut-
ing to the Earth system model climate. This latter has been
mapped into 4 feedbacks: climate-carbon cycle feedbacks
(F1), biogenic aerosol-cloud feedbacks (F2), non-CO2 bio-
geochemical cycle feedbacks (F3) and phytoplankton-light
feedbacks (F4).

The influence of ocean dimethylsulfide (DMS) emissions
on cloud albedo is an example of the biogenic aerosol-cloud
feedback (F2). DMS is a breakdown product of
dimethylsulfoniopropionate (DMSP), a metabolite in many
phytoplankton with a role as a cellular osmolyte/antioxidant
[123, 124]. It is exchanged with the atmosphere and is in-
volved in the formation of sulfur aerosols once it is oxidized
there. As the other sulfate aerosols, DMS may be involved in
the formation of cloud condensation nuclei (CCN). The po-
tential importance of ocean DMS emissions for the climate
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system is still largely debated [125] because modern observa-
tions do not support its prominent role in the formation of
CCN [126–128]. However, long-term measurement [129]
and mesocosm experiments (e.g. [17]) suggest that global
changes may impact the rate of ocean DMS emissions.
Recent modelling studies argue for a potential role of ocean
DMS in future climate change (e.g. [130, 131]). Ocean NHx

emissions are also involved in biogenic aerosol-cloud feed-
backs (F2). Kirkby et al. [132] suggest that NHx can also play
an important role in the formation of secondary nitrate aero-
sols in the atmosphere. Similarly to DMS, these aerosols can
serve as CCN and contribute to changes in cloud albedo. Non-
CO2 biogeochemical cycle feedbacks (F3) involve ocean
emissions of non-CO2 greenhouse gases (e.g. N2O or meth-
ane) or any chemical compounds contributing to the genera-
tion of greenhouses gases (e.g. methane, carbon monoxide).
The phytoplankton-light feedbacks (F4) represent the suite of
biophysical mechanisms that involve the influence of the ma-
rine biota on the upper ocean physics through the vertical
redistribution of heat.

Table 2 confirms that all ocean biogeochemical models
account for the climate-carbon cycle feedback since CMIP5
(Earth system feedback F1 in Fig. 1). In addition, Table 1
shows that the current generation of ocean biogeochemical
models includes an air-sea gas exchange for a larger number
of radiatively active biogeochemical compounds such as
DMS, nitrous oxide (N2O) and ammonia (NHx). The inclu-
sion of climate active gases or greenhouse gases other than
CO2 in the current generation of ocean biogeochemical
models is a result of the increased recognition of the impor-
tance of these compounds in Earth system interactions with
aerosols, atmospheric chemistry and, potentially, with clouds.

In particular, the inclusion of ocean NHx or N2O emissions
in ocean biogeochemical models has been driven by a better
understanding of the global nitrogen cycle and its role in cli-
mate change. In particular, the development of databases such
as MEMENTO (https://memento.geomar.de/) has enabled
better validation and calibration of N2O modules in global
ocean biogeochemical models [133–138].

However, the inclusion of Earth system feedbacks as illus-
trated in Fig. 1 has not in all cases progressed between CMIP5
and CMIP6. For example, biophysical interactions with the
ocean radiative transfer (F4 in Fig. 1) are overlooked by more
than half of the marine biogeochemical models examined,
although this feedback is well documented and relatively well
understood [139, 140].

Our review of available ESMs suggests that the current
generation of marine biogeochemical models has not much
evolved toward comprehensive couplings between Earth sys-
tem components and ocean biogeochemistry or toward im-
proved treatment of biophysical and biogeochemical feedback
with respect to their predecessors (F1 and F4 in Fig. 1). The
full impact of ocean biogeochemistry on climate and its role in

Earth system feedback remains far from being entirely repre-
sented in the current generation of Earth system models, as it
involves different spatial and temporal scales that models are
not currently able to reach and also processes still poorly
understood.

Finally, our review suggests that the modelling approaches
have evolved between CMIP5 and CMIP6. These latter have
been monitored with two key indicators: (1) the length of the
spin-up simulation and (2) the use of calibration/tuning for
marine biogeochemical parameters. These two key indicators
were discussed in published literature (e.g. Séférian et al. [76]
or Hourdin et al. [141]), reflecting, in general, an improved
knowledge in model characteristics (strength and deficiency).

Table 3 and Table S1 highlight that most of the modelling
groups have expanded the duration of the spin-up for CMIP6.
This represents an important effort of the scientific community
to converge toward recommended standards (e.g. [142]).
Only GFDL and IPSL have reduced the duration of their
spin-up protocol for computing reasons: they manage to fulfil
CMIP6 standard in a few hundreds of years. On the other
hand, it is noticeable that several modelling groups have in-
cluded a step of model calibration or tuning in CMIP6. Our
review suggests that this step has been motivated by various
reasons: bias reduction for key biogeochemical fields in
CNRM, GFDL or NorESM or bias compensation to reduce
the impact of known biases in simulated surface chlorophyll
for ocean DMS and organic aerosols emissions in UKESM.
There is no consensus between modelling groups on how
model calibration or tuning takes place in the model prepara-
tion. Depending on modelling group, the calibration or tuning
is either included in the model development or during the
spin-up procedure (Table S1).

Tracking Model Performance Across Two
Generations of Models

Figures 2, 3, 4 and 5 illustrate the performance of the current
generation of ESMs taking part in CMIP6, together with their
predecessor CMIP5 models, for a range of climatological bio-
geochemical properties that are central to the carbon cycle and
ecosystem applications: the sea-to-air flux of CO2, ocean chlo-
rophyll, nitrate, silicate, oxygen and iron (see Methods in
Supplementary materials). For Figs. 2, 3 and 4, observation-
based estimates of each property are shown at the top of the
figure, followed by the biases found across the current and last
generation models. We note that, in several cases,
observation-based estimates are derived from significant pro-
cessing of sparse observations or from algorithms relating the
quantity of interest to directly observed quantities (e.g. sea-to-
air CO2 flux, satellite chlorophyll). As such, the observations
themselves are also subject to uncertainty which will be
discussed in the context of each comparison.

102 Curr Clim Change Rep (2020) 6:95–119



In Fig. 2a, the sea-to-air flux of the critical greenhouse gas,
CO2, is shown, with a data product based on the mapping of
observational pCO2 data drawn from the Landschützer et al.
[143] product (1995–2014). The key geographical features of
this are strong outgassing (i.e. a net sea-to-air flux) in upwell-
ing regions, most clearly in the tropics and along the equato-
rial region of the Pacific Ocean, and ingassing (i.e. a net air-to-
sea flux) at temperate and subpolar latitudes. These features
reflect processes that are governed by temperature, patterns of
deep water formation, surface biological production and the
thermohaline circulation.

In general, both CMIP5 and CMIP6 generations of models
show a mixture of positive and negative biases across the
globe with disagreement in the sign of the carbon fluxes over
some regions. Common patterns are slightly negative biases
both in the equatorial Pacific (i.e. weak outgassing) and in the
North Atlantic (i.e. excessive ingassing). Both generations of
models show a mix of relatively small positive and negative
biases, except for the CMIP5 CanESM2 which shows the
largest model-data error across the model ensemble.
However, the comparison with observations has been

substantially improved in CanESM5. More generally,
Fig. 2a highlights that the improvement in simulated sea-to-
air carbon flux is clearer when looking at the direction of the
carbon flux. This improvement seems to be linked to an im-
proved representation of ocean vertical mixing (see skill
scores of the ocean mixed-layer depth below). Indeed, all
CMIP6 models exhibit smaller domains where the direction
of the sea-to-air carbon flux disagrees with observations, ex-
cept for MPI-ESM1-2-LR, which used the same ocean model
and displays the same pattern of model-data disagreement for
CMIP5 and CMIP6.

Figure 2 b shows surface chlorophyll, compared with
satellite-based estimates derived from ESA-CCI-OC ocean
colour data [144]. The key geographical features are relatively
high concentrations in productive temperate, subpolar and up-
welling regions, and extremely low concentrations in the un-
productive subtropical gyres. The latter are dominated by pe-
rennially low-nutrient conditions, while the former experience
frequent, or seasonal, introduction of nutrients by upwelling
or deep mixing. While these general biome scale patterns are
robust across satellite algorithms, we note that estimates

Fig. 1 Schematic representation of Earth system interactions and
feedbacks between the ocean biogeochemistry and climate. F1
represents the well-established climate-carbon cycle feedbacks; F2 and

F3 sketch the dominant pathways for the biogenic aerosol-cloud feed-
backs and the non-CO2 biogeochemical cycle feedbacks; F4 depicts the
phytoplankton-light feedbacks (that is a biophysical interactions)
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Fig. 2 Model-data
intercomparison of a open ocean-
sea-air carbon fluxes (fgco2,
g C m−2 year−1) and b open ocean
surface chlorophyll (chl,
mg Chl m−3) as simulated by
ocean biogeochemical models
embedded within CMIP6 Earth
system models (the right column)
and their former version as used
for CMIP5 (the left column). a
The first top panel shows
observation-based estimates from
Landschützer et al. [143] aver-
aged for the period 1995–2014
(see Methods in Supplementary
materials). The other panels show
model-data biases averaged for
the same period. Coloured areas
are indicative of the model-data
absolute difference in magnitude
of sea-air fluxes. Red regions in-
dicate areas in models where the
magnitude of the sea-air flux is
greater than that observed,
whereas blue regions indicate the
reverse. b The first top panel
shows satellite-based ocean chlo-
rophyll estimates from ESA-CCI-
OC [144] averaged over 1998–
2014. The other panels show
model-data departure averaged
over the period 1998–2014
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Fig. 3 Model-data
intercomparison of a surface
nitrate concentrations (no3,
μmol L−1) and b surface silicic
acid concentrations (si, μmol L−1)
as simulated by ocean
biogeochemical models
embedded within CMIP6 Earth
system models (right columns)
and their former version as used
for CMIP5 (left columns). a and b
The first top panel shows the
optimal interpolation of nitrate
(no3) and silicate (si) measure-
ments as provided in the World
Ocean Atlas Database 2013
(Garcia et al. [145]). The other
panels show model-data depar-
ture averaged over the period
1995–2014 (see Methods in
Supplementary materials)
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Fig. 4 Model-data
intercomparison of oxygen
concentrations at 150 m (o2,
μmol L−1) as a proxy for oxygen
minimum zones (OMZs) and as
simulated by ocean biogeochem-
ical models embedded within
CMIP6 Earth system models (on
the right column) and within their
former version used for CMIP5
(on the left column). The first top
panels in a and b show the ob-
served oxygen concentrations at
150 m from the World Ocean
Atlas 2013 (Garcia et al. [145]).
The other panels in a show oxy-
gen concentrations at 150 m as
simulated by CMIP5 and CMIP6
models averaged over the period
1995–2014, while panels in b
show model-data departure aver-
aged over the period 1995–2014
(see Methods in Supplementary
materials)
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diverge in the Southern Ocean [146], where global satellite-
based chlorophyll algorithms have been found to significantly
underestimate observations [147].

Several CMIP6 models compare more favourably with ob-
servations than their CMIP5 predecessors. All models
displaying a pattern of generally negative bias in CMIP5
now exhibit large areas of both small positive and small neg-
ative biases. Models overestimating surface chlorophyll con-
centrations in CMIP5 now display reduced biases (<
0.4 mg Chl m−3). This improvement is small for MPI-

ESM1-2-LR, which still overestimates surface concentrations
of chlorophyll. Some CMIP6 models, such as CESM2, GISS-
E2-1-G-CC and NorESM2-LM, display on the contrary larger
model-data errors than their predecessors. Given the large di-
versity across the models, it is difficult to determine whether
changes in physical ocean models or changes in ocean bio-
geochemical models are behind these changes.

However, it is interesting to note that three CMIP6 models
(CNRM-ESM 2-1, IPSL-CM6A-LR and UKESM1-0-LL),
which share a common ocean physics model, overlap in their
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Fig. 5 Model-data scatterplots for surface dissolved iron concentrations
(log-log scale). Observational data are derived from the average of the 0–
10 m of the measurement compilation used in Tagliabue et al. [117].
Model concentrations are taken from the first ocean layer. Red dots and
blue triangles indicate CMIP6 and CMIP5 models respectively. The red
dashed line shows the 1:1 line; the red and blue solid lines highlight the

model-data mismatch in terms of global mean concentrations for CMIP5
and CMIP6models (seeMethods in Supplementary materials). The glob-
al mean for observations and models are given in brackets. Model-data fit
(squared correlation, R2) is given in parenthesis with squared correlation
coefficients for CMIP5 and CMIP6 models
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patterns of positive and negative biases in spite of differences
in marine biogeochemistry submodels (spatial correlation of
model-data errors R2 = ~0.5).

It is notable that most of the models reviewed here overes-
timate surface chlorophyll estimates in the Southern Ocean.
This bias, however, is likely due in part to the underestimation
of Southern Ocean chlorophyll by the global satellite chloro-
phyll algorithms [147]. The substantial positive Southern
Ocean bias in GFDL-ESM 4, for example, is significantly
diminished when compared against Johnson’s Southern
Ocean-specific satellite-based chlorophyll algorithms (e.g.
[148]).

Figure 3 a and b show the distribution of surface nitrate
(NO3) and silicic acid (H4SiO4), which are represented in both
CMIP5 and CMIP6 models. Figure 3 a shows that only
GFDL, IPSL andMIROCmodels have consistently improved
their mean states between CMIP5 and CMIP6 for nitrate con-
centrations. In some cases, model generations show the same
spatial patterns of biases, while others, most noticeably
UKESM1-0-LL (where entirely new marine biogeochemistry
has been incorporated), show a large overestimation of surface
nitrate concentration over the tropics.

A comparison of simulated surface concentrations of silicic
acid with modern observations shows that all models except
GISS and CESM models have improved their representation
of the surface distribution of silicic acid (Fig. 3b). The most
striking improvement is seen between HadGEM2-ES and
UKESM1-0-LL. Such an improvement is explained by the
switch in the biogeochemical model component between
CMIP5 and CMIP6, from Diat-HadOCC to MEDUSA-2.0
(see [96], for further details). Figure 3 b sheds light upon
another systematic bias in the Southern Ocean where all the
models display large model-data errors independent of their
generation. It suggests that processes other than ocean resolu-
tion or the complexity of the marine biogeochemical model
may be at the origin of this systematic model deficiency. The
pattern of error differs among models. UKESM1-0-LL, MPI-
ESM 1-2-LR and GISS-E2-1-G-CC display a uniform bias in
simulated silicic acid concentrations, whereas all the other
models show a mixture of positive and negative biases in
simulated concentrations.

Figure 4 a presents the pattern of oxygen concentrations at
a depth of 150 m where the signature of the oxygen minimum
zone (OMZ) is expected to be visible. Note that 9 of 12
models simulated O2 in CMIP5, and one further model added
O2 for CMIP6.

In general, CMIP6 models improve upon their CMIP5 pre-
decessors in their representation of oxygen at 150 m (Fig. 4b).
Model errors in the Southern Ocean have been reduced in
CMIP6 with respect to CMIP5, highlighting a better represen-
tation of the deep ocean ventilation in the Southern Ocean or
more accurate biogeochemical characteristics of outcropping
water masses. Model-data errors have also been reduced in

CMIP6 in large domains of the Indian Ocean where large
OMZs occur although all models display a systematic overes-
timation of oxygen at 150 m in the Arabian Sea. The same
feature is also observed in the tropical Pacific where a model-
data error has been reduced in CMIP6 with respect to CMIP5.
Contrasting with the other ocean domains, models’ perfor-
mance has not improved in the Atlantic Ocean. For example,
in the tropical Atlantic, some models have shifted in the sign
of the model-data errors: from a negative bias in CMIP5
(stronger-than-observed OMZ) to a positive bias in CMIP6
(weaker-than-observed OMZ) or the opposite. In both cases,
the absolute magnitude of the model-data errors in this region
remains similar between model generations. This implies a
systematic bias in ocean biogeochemical models which seems
independent from ocean resolution or complexity of marine
biogeochemistry models. Besides, our review of model per-
formance highlights that open ocean hypoxia remains poorly
represented in ocean biogeochemical models; the CMIP6
models still tend to overestimate this marine biogeochemical
feature with respect to their CMIP5 predecessors. This is es-
pecially clear in the southern tropical Pacific, where all models
except CESM2 and GFDL-ESM 4 overestimated the level of
hypoxia of the OMZ (Fig. 4).

Improvement in GFDL-ESM 4 is explained by a suite of
updates and changes in model physics (i.e. mixing and
Southern Hemisphere climate) and biogeochemical parame-
terizations (i.e. the use of a revised remineralization scheme
for organic matter depending on oxygen and temperature of
Laufkötter et al. [148]). In addition, COBALTv2 has lower net
primary productivity than TOPAZv2 which allows the high-
nutrient low-chlorophyll region to spread further meridionally
in the tropical Pacific and reduce the eastern equatorial nutri-
ent trapping and associated oxygen decline.

The surface distribution of dissolved iron is also an impor-
tant feature of marine biogeochemistry. Its availability con-
trols marine biological production in several ocean regions
[149]. As for oxygen, Table 1 highlights that marine iron
cycling is not represented in all biogeochemical models.
Nonetheless, this number has increased in CMIP6 (Table 1).
It translates the current scientific consensus which recognizes
the need to resolve the iron cycling in biogeochemical model
in order to better simulate the marine biogeochemical dynam-
ics, e.g. for glacial-interglacial climate change [150] or for
variability and response to climate change [151].

Figure 5 illustrates, however, that the performance of the
current generation of models with respect to iron does not
improve much with respect to that of the previous generation.
Indeed, the model-data fit estimated with squared correlation
coefficients remains < 0.25. This fit has not progressed much
from CMIP5 to CMIP6, except possibly for IPSL and CNRM
models which both employed PISCESv1 [40, 41] for CMIP5
and PISCESv2 [91] for CMIP6. As highlighted in Aumont
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et al. [91], PISCESv2 includes a more detailed representation
of the ocean iron cycle compared with PISCESv1.

The poor agreement between the observed and simulated
distribution of dissolved iron relative to macronutrients
(Fig. 3) partly reflects differences in the nature of the datasets.
The relatively large number of nitrate measurements globally,
for example, has allowed construction of robust climatological
patterns [145] that model climatologies can be compared
against. The relative paucity of dissolved iron measurements,
in contrast, requires a comparison of modelled climatologies
against patchy individual measurements. Despite this, Fig. 5
shows that some CMIP6 models better simulate the global
average concentration of dissolved iron than their predeces-
sors. This is particularly clear for UKESM1-0-LL, MPI-ESM
1-2-LR and GFDL-ESM 4. It is interesting to see the various
modelling approaches for representing marine iron cycling.
UKESM1-0-LL and MIROC-ES2L, for instance, use respec-
tively Dutkiewicz et al. [152] and Moore and Braucher [153]
parameterization for marine iron cycling that removes dis-
solved iron concentrations above an ad hoc threshold. Other
ocean biogeochemical models use mechanistic iron cycling
schemes that avoid the needs of ad hoc thresholds (e.g.
PISCES-v2 and PISCES-v2-gas employs Völker and
Tagliabue [154] formulation and TOPAZv2 applies an empir-
ical relationship to dissolved organic carbon (DOC) to derive
ligand concentrations).

Table 4 provides a large-scale picture of the model’s ability
to simulate key downward biogeochemical fluxes involved in
global carbon and nutrients cycling. Most of the CMIP6 ma-
rine biogeochemical models better simulate the magnitude of
the surface and 100 m biogeochemical fluxes than their
CMIP5 predecessors. Indeed, CESM2, CNRM-ESM2-1,
GISS-E2-1-G-CC, IPSL-CM6A-LR, MPI-ESM 1-2-LR and
NorESM2-LR have improved the representation of at least
one biogeochemical fluxes with respect to their CMIP5 pre-
decessors; BCC-CSM2-MR, CanESM5, GFDL-ESM 4 and
MIROC-ES2L display comparable performance; only
CanESM5-CanOE, MRI-ESM 2-0 and NorESM2-LM have
respectively degraded the representation of either the vertical-
ly integrated net primary productivity or the carbon export at
100 m compared with their CMIP5 predecessors.

Despite the general improvement, Table 4 highlights that
several CMIP6 models fall outside the range of remote-
sensing estimates of primary production ([157, 158, 161]). It
suggests that the current generation of marine biogeochemical
models still has difficulties to model underlying processes
involved in the carbon fixation by phytoplankton (such as
nutrient colimitation, nitrogen fixation, remineralization), re-
quired to accurately simulate the magnitude of the vertically
integrated net primary productivity. At the same time, it is also
important to acknowledge that there are still large uncer-
tainties in remote-sensing-based estimates of primary produc-
tion, e.g. 38.8–42.1 Pg C year−1 in the most recent estimates of

Kulk et al. [158] and 47.5–52.1 Pg C year−1 according to
Behrenfeld et al. [157].

Figures 6 and 7 track changes in performance between
CMIP5 and CMIP6 marine biogeochemical models.
Figure 6 highlights how far the CMIP6models have improved
their capability to simulate observed spatial patterns with re-
spect to their CMIP5 predecessors; Fig. 7 summarizes the
overall model performance including information on model
performance to reproduce observed distribution (pattern and
magnitude).

Both Figs. 6 and 7 show that CMIP6 models have im-
proved the representation of the ocean physics (here the ocean
mixed-layer depth). The cross-generation picture of the model
performance for marine biogeochemistry is more contrasted.
Globally, Figs. 6 and 7 show that most of the CMIP6 models
outcompete their CMIP5 predecessors. However, this im-
provement remains modest. Except for some models
displaying a noticeable improvement for one or two biogeo-
chemical fields (surface nitrate for CESM2, surface chloro-
phyll for CNRM-ESM2-1, surface silicic acid for GFDL-
ESM 4), most of the CMIP6 model display a slight increase
in model-data spatial correlation (up to + 0.2, Fig. 6) or an
overall reduction in model-data RMSE of about 20%
(Fig. 7). Besides, this improvement does not concern all
models. For instance, GISS-E2-1-G-CC shows a noticeable
degradation in performance for all of the biogeochemical
fields analyzed here.

Conclusions

Summary of 5 Years of Ocean Biogeochemical Model
Development

Our review of available Earth system models highlights that
the current generation of marine biogeochemical models used
for CMIP6 displays a greater diversity than the previous one
used for CMIP5. Several marine biogeochemical models have
evolved toward a more comprehensive representation of ma-
rine biogeochemistry (i.e. CESM, CNRM, GFDL, IPSL,
MIROC, UKESM), typically including an expanded array of
biological taxa (e.g. diazotrophs) or elemental cycling (e.g.
oxygen and iron cycles), variable stoichiometry, sediments
(e.g. sediment box module) and the representation of (non-
CO2) trace gases relevant to atmospheric chemistry. On the
opposite, some groups have limited the increase in model
complexity between CMIP5 and CMIP6 (i.e. BCC, GISS,
MPI, MRI, NorESM). Finally, it is interesting to note that
some groups have started to investigate the use of reduced
complexity marine biogeochemical model (i.e. GFDL) or to
intercompare in a traceable framework the impact of rising
complexity on the simulated marine biogeochemistry
(CanESM).
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When assessed against observations, most of the CMIP6
models generally outperform their CMIP5 predecessors in
many regions and for most of the marine biogeochemical
fields reviewed here (Figs. 6 and 7 and Table 4). However,
this model review has also highlighted several systematic
model-data errors that are persistent even in CMIP6 models

(e.g. oxygen concentrations at 150 m in tropical Atlantic, nu-
trient trapping in the Southern Ocean).

Our review also shows that the modelling approaches
have evolved between CMIP5 and CMIP6. Indeed, most
modelling groups have spun-up their model over a lon-
ger period for CMIP6 with respect to CMIP5 in order

Table 4 Comparison between observational and model estimates of biogeochemical fluxes over the modern period. For both CMIP5 and CMIP6
models, biogeochemical fluxes are calculated over the 1995–2014 period (see Methods in Supplementary materials)

Observational estimates are derived from the following database: a Landschützer et al. [143] product average over 1995–2014 and adjusted for the pre-
industrial ocean source of CO2 from river input to the ocean consistently with the methodology employed in [155] that used a river flux adjustment of
0.78 Pg C year−1 [156]; bmaximal range of remote-sensing estimates from Behrenfeld et al. [157] and Kulk et al. [158]; c Dunne et al. [159] and
d Tréguer and De La Rocha [160]. When required, the modelled net ocean carbon uptake is corrected with the net riverine-induced outgassing diagnosed
from the piControl simulation. Coloured cells indicate the relative deviation in model global estimates with respect to the observation median best
estimates; hatched coloured cells indicate where model global estimates fall within the observational uncertainty range. Grey cells indicate missing or
unrepresented biogeochemical fluxes
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to fulfil the drift criterion as proposed by Jones et al.
[142]. In contrast, the use of tuning and calibration for
marine biogeochemical models for CMIP remains a less
common feature at the time of CMIP6.

Finally, our review of model mean state performance
against their model properties (resolution, complexity) sug-
gests that neither increasing resolution nor increasing com-
plexity leads automatically to model improvement. Instead,
improvement is a mixture of improved ocean physical pro-
cesses and better representation of biogeochemical processes.

In the context of improving confidence in future climate
projections, it is important to stress that the model mean state

performance is not the only mean to understand multi-model
uncertainty, comparisons against seasonal to multi-annual var-
iations in observed quantities may ultimately prove most crit-
ical to building confidence in future climate projections (e.g.
[13, 163]).

What’s Next?

In this final section, we identify some directions where marine
biogeochemical models could continue to improve or to
progress.
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Fig. 6 Scatter plot confronting the performance of CMIP6 models to
replicate the geographical structure of observed fields with respect to
that of their CMIP5 predecessors. The performance metrics are the
model-data spatial correlation computed from yearly averaged data and
model outputs. The variables of interest are mixed-layer depth (oml), air-
sea CO2 flux (fgco2), surface chlorophyll (chl), oxygen concentration at
150 m (o2) and surface concentrations of nitrate (no3) and silicic acid (si).

The green (red) shading flags an improvement (degradation) of the model
performance to replicate the observed geographical structure for a given
field. The ocean mixed-layer depth is computed similarly in all models; it
is based on a density criterion of 0.03 kg m−3. The ocean mixed-layer
depth simulated by the various Earth system models is evaluated against
the observational dataset of de Boyer Montégut et al. [162]
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The first step change to expect in the next generation of
models is the emergence of high-resolution ocean biogeochem-
ical models fit to investigate centennial-scale simulation. This
step change may be supported in a number of ways: (1) the
availability of greater computational resources; (2) the use of
hybrid-resolution numerical schemes to decrease the cost of bio-
geochemicalmodels (e.g. [164]); (3) actually reduced complexity
of marine biogeochemical models (e.g. such as miniBLING;
[105]); (4) the use ofmachine learning to either acceleratemarine
biogeochemicalmodels or to reduce the numerical cost necessary
to improve their performance (i.e. via tuning). These (and poten-
tially other) step changes will help to understand the extent to
which mesoscale or sub-mesoscale ocean physics might change
the response of marine biogeochemistry to rising CO2 and

climate change—a missing factor in such models already
highlighted from CMIP5 and IPCC AR5 [2].

A second important step change is related to the phyto-
plankton physiology and evolution. This change may have
two benefits. First, several recent studies show that the inclu-
sion of a more comprehensive treatment of plankton physiol-
ogy may improve model performance, in particular some sys-
tematic biases in the Southern Ocean (e.g. [108, 165]). Then,
this improvement is arguably a first step toward the represen-
tation of adaptation and fitness in ocean biogeochemical
models [166, 167]. This omission remains an important caveat
for multi-stressors studies (e.g. [9]) or time-of-emergence
studies [168] as current models effectively assume no change
in the underlying properties of modelled plankton.
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Fig. 7 Portrait diagram highlighting the performance of CMIP6 models
(one representative per modelling groups) with respect to their CMIP5
predecessors. The variables of interest are mixed-layer depth (oml), air-
sea CO2 flux (fgco2), surface chlorophyll (chl), oxygen concentration at
150 m (o2) and surface concentrations of nitrate (no3) and silicic acid (si).
The skill score metric, Z-score, is computed for a given model and for a

given field as follows: Z-score¼ RMSECMIP6 Mð Þ−RMSECMIP5 Pð Þ
RMSECMIP5 Pð Þ � 100, where

RMSECMIP6(M) is the global area-weighted average model-data root-
mean-squared error (RMSE) of the model of the current generation con-
tributing to CMIP6 and RMSECMIP5(P) is the RMSE of its predecessor

that has contributed to CMIP5. Greenish (reddish) colours and negative
(positive) Z-scores indicate improved (degraded) field representations in
CMIP6 model versions; darker colours indicate a greater change from
CMIP5 to CMIP6. Grey indicates missing data for one or both genera-
tions of models. Air-sea CO2 flux (fgco2) was adjusted for riverine-
induced outgassing as in Table 4. The ocean mixed-layer depth is com-
puted similarly in all models; it is based on a density criterion of
0.03 kg m−3. The ocean mixed-layer depth simulated by the various
Earth system models is evaluated against the observational dataset of de
Boyer Montégut et al. [162]
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Future developments should be pursued in the context of
the internal cycling of micronutrients involved in phytoplank-
ton physiology and metabolism such as iron, zinc or copper.
Our review confirms that the current generation of marine
biogeochemical models are still struggling to reproduce the
major features of the oceanic iron distribution although the
observations of dissolved iron in the ocean are growing rap-
idly [149] and are made widely available by GEOTRACES
[169]. A key challenge for iron is that the dissolved iron com-
monly measured only appears to represent a trace residual of
the underlying fluxes [170], pointing to the need for more
process studies and observations of fluxes. It is possible that
iron isotopes may yield further insight into the role of external
inputs and internal cycling in shaping iron distributions in the
observations and models. Finally, the development of addi-
tional model components dealing with other trace metals, such
as cobalt [171], zinc [172], manganese [173] and copper
[174], may also prove beneficial in constraining the magni-
tude and dynamics of external inputs in particular.

An expanded array of biological taxa may also be expected
in the next generation of ocean biogeochemical models. A
potentially important change in the ocean ecosystem model-
ling paradigm is the inclusion and integration of mixotrophs
which are an important grazer of bacterioplankton, and which
also feed on phytoplankton, microzooplankton and
(sometimes) mesozooplankton. Mixotrophic bacterivory
among the phytoplankton may be important for alleviating
nutrient stress and may increase primary production in oligo-
trophic waters. Some modelling studies indicate that
mixotrophy has a profound impact on marine planktonic eco-
systems and may enhance primary production, biomass trans-
fer to higher trophic levels and the functioning of the biolog-
ical carbon pump [175].

This expanded array of biological taxa may take the con-
cept of the marine biogeochemical model up to the marine
ecosystem model, which will enable the representation of
feedbacks of the marine trophic food web on marine biogeo-
chemical cycles. The work of Lefort et al. [57] provides an
example of this type of marine ecosystem model realizing a

comprehensive coupling between a marine biogeochemical
model (PISCES) with a marine trophic food web model
(APECOSM).

A third important step change is related to the couplings
between Earth system components and ocean biogeochemis-
try. Our review highlights that models have evolved toward a
more comprehensive treatment of biological boundary condi-
tions (e.g. atmospheric deposition, riverine inputs, sediments,
ice sheets, geothermal sources) but that these latter are cur-
rently largely represented using climatological data rather than
dynamic connections. Progress toward more complete cou-
plings between Earth system components such as rivers, ice
sheet/iceberg calving and ice shelves or atmospheric aerosols
can help to better simulate interactions between marine bio-
geochemistry, biogeochemical cycles and climate.

In the same manner, a more comprehensive treatment
of biophysical and biogeochemical feedback could be
realized in the next generation of marine biogeochemi-
cal models. The latter involves, for instance, ocean
emissions of greenhouse gases or biogenic volatile or-
ganic compounds (BVOCs) that are already simulated
by a small number of models (see Table 5). However,
our understanding of the global cycles of DMS, N2O
and CH4 (including, specifically, the processes that pro-
duce them) is much less developed compared with CO2.
Therefore, better treatment of biophysical and biogeo-
chemical feedback requires a larger array of observa-
tional data sets in order to improve our understanding
of the processes underlying these ocean emissions.

From the perspective of tracking future model im-
provement, it is important to stress that our capacity
to assess model performance resulting from any of the
potential advances discussed above is contingent upon
continued improvement in observational constraints.
Existing constraints were adequate for detecting large
skill differences between CMIP5 and CMIP6 models,
but the overall improvement in models necessitates
more precise comparisons to detect skill differences.
Such comparisons are challenged by data sparsity and

Table 5 Ocean natural emissions of non-CO2 trace gases simulated by CMIP6 models

DMS (Tg S year−1) N2O (Tg N year−1) NHx [Tg N year−1)

Observational estimates 17.6–34.4a 1.9–9.4b 2–5c

CNRM-ESM 2-1 24.38 3.97 -

GFDL-ESM 4 - - 3.10

UKESM1-0-LL 16.19 - -

MIROC-ES2L 18.46 4.31 -

MPI-ESM 1-2-LR - 8.89 -

NorESM2-LM 20.0 - -

a Lana et al. [176]; b Buitenhuis et al. [177]; c Paulot et al. [178]
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uncertainties in algorithms designed to derive global
fields from sparse data or infer properties of interest
from remotely sensed variables. Continued improvement
in the quality and quantity of data-based constraints is
critical.

That being said, our review of the available pairs of
CMIP5-CMIP6 marine biogeochemical models strongly sug-
gests that careful consideration is needed when selecting mod-
el complexity with regard to the fitness-for-purpose of models
(i.e. carbon cycle feedbacks, multiple Earth system feedbacks,
multi-stressors, adaptation and biodiversity). Indeed, when
confronting model complexity against model mean state per-
formance, our work suggests that complex models do not
necessarily outperform simple models. This is consistent with
the earlier study of Kwiatkowski et al. [179], which directly
led to the choice of marine biogeochemistry model in
UKESM1-0-LL, where across many Earth system relevant
metrics, the simplest model performed best. In this sense,
our review shows that simple models (e.g. OCMIP nutrient
restoring or NPZD type) remain viable when investigating
carbon cycle feedbacks, although more complex models do
still permit a better linkage with the marine biodiversity or a
broader array of feedbacks and potentially more realistic Earth
system behaviour.
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