English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Efficacy of augmented visual environments for reducing sickness in autonomous vehicles

MPS-Authors
/persons/resource/persons83881

de Winkel,  K
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84148

Pretto,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84957

Nooij,  SAE
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons251776

Cohen,  I
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

de Winkel, K., Pretto, P., Nooij, S., Cohen, I., & Bülthoff, H. (2021). Efficacy of augmented visual environments for reducing sickness in autonomous vehicles. Applied Ergonomics, 90: 103282, pp. 1-7. doi:10.1016/j.apergo.2020.103282.


Cite as: https://hdl.handle.net/21.11116/0000-0007-36D5-C
Abstract
The risk of motion sickness is considerably higher in autonomous vehicles than it is in human-operated vehicles. Their introduction will therefore require systems that mitigate motion sickness. We investigated whether this can be achieved by augmenting the vehicle interior with additional visualizations. Participants were immersed in motion simulations on a moving-base driving simulator, where they were backward-facing passengers of an autonomous vehicle. Using a Head-Mounted Display, they were presented either with a regular view from inside the vehicle, or with augmented views that offered additional cues on the vehicle’s present motion or motion 500ms into the future, displayed on the vehicle’s interior panels. In contrast to the hypotheses and other recent studies, no difference was found between conditions. The absence of differences between conditions suggests a ceiling effect: providing a regular view may limit motion sickness, but presentation of additional visual information beyond this does not further reduce sickness.