Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ab initio study of quantized circular photogalvanic effect in chiral multifold semimetals

MPG-Autoren
/persons/resource/persons247116

Le,  Congcong
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons179670

Sun,  Yan
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Le, C., Zhang, Y., Felser, C., & Sun, Y. (2020). Ab initio study of quantized circular photogalvanic effect in chiral multifold semimetals. Physical Review B, 102(12): 121111, pp. 1-6. doi:10.1103/PhysRevB.102.121111.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-402D-F
Zusammenfassung
So far, the circular photogalvanic effect (CPGE) is the only possible quantized signal in Weyl semimetals. With inversion and mirror symmetries broken, Weyl and multifold fermions in band structures with opposite chiralities can stay at different energies and generate a net topological charge. Such a kind of net topological charge can present as a quantized signal in the circular polarized light-induced injection current. According to current theoretical understanding, RhSi and its counterparts are believed to be the most promising candidates for the experimental observation of the quantized CPGE. However, a real quantized signal has yet to be experimentally observed. Since previous theoretical studies for the quantized CPGE were based on an effective model but not realistic band structures, it should lose some crucial details that influence the quantized signal. The current status motivates us to perform a realistic ab initio study for the CPGE. Our result shows that RhSi and PtAl in chiral multifold semimetals are alternative materials for obtaining the quantized CPGE which is very easy to be interfered with by trivial band-related optic transitions, and a fine tuning of the chemical potential by doping is essential for the observation of the quantized CPGE. We perform an ab initio analysis for the quantized CPGE based on a realistic electronic band structure and provide an effective way to solve the current problem for the given materials.