
Sequence comparison in computational

historical linguistics

Johann-Mattis List,1,* Mary Walworth,1 Simon J. Greenhill,1,2

Tiago Tresoldi,1 and Robert Forkel1

1Department of Linguistic and Cultural Evolution, MPI-SHH, Jena and and 2ARC Centre of Excellence for

the Dynamics of Language, Australian National University, Canberra

*Corresponding author: mattis.list@shh.mpg.de

Abstract

With increasing amounts of digitally available data from all over the world, manual annotation of cog-

nates in multi-lingual word lists becomes more and more time-consuming in historical linguistics.

Using available software packages to pre-process the data prior to manual analysis can drastically

speed-up the process of cognate detection. Furthermore, it allows us to get a quick overview on data

which have not yet been intensively studied by experts. LingPy is a Python library which provides a

large arsenal of routines for sequence comparison in historical linguistics. With LingPy, linguists can

not only automatically search for cognates in lexical data, but they can also align the automatically

identified words, and output them in various forms, which aim at facilitating manual inspection.

In this tutorial, we will briefly introduce the basic concepts behind the algorithms employed by LingPy

and then illustrate in concrete workflows how automatic sequence comparison can be applied to

multi-lingual word lists. The goal is to provide the readers with all information they need to (1) carry

out cognate detection and alignment analyses in LingPy, (2) select the appropriate algorithms for the

appropriate task, (3) evaluate how well automatic cognate detection algorithms perform compared to

experts, and (4) export their data into various formats useful for additional analyses or data sharing.

While basic knowledge of the Python language is useful for all analyses, our tutorial is structured in

such a way that scholars with basic knowledge of computing can follow through all steps as well.

Key words: historical linguistics; computer-assisted language comparison; Polynesian languages; cognate detection;

phonetic alignment

1. Introduction

Sequence comparison is one of the key tasks in historical

linguistics. By comparing words or morphemes across

languages, linguists can identify which words have

sprung from a common source in genetically related lan-

guages, or which words have been borrowed from one

language to another. By comparing words within a lan-

guage, linguists can identify grammatical and lexical

morphemes, cluster words into families, and shed light

on the internal history of languages. So far the majority

of this work has been carried out manually. Linguists

sift through dictionaries and fieldwork notes, trying to

identify those words which reflect a shared history

across languages. All etymological dictionaries available

today have been based on manual word comparison and

their results fill thousands of pages. Even the largest

databases which offer cognate judgments, such as

the Austronesian Basic Vocabulary Database (ABVD,

VC The Author(s) 2018. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Language Evolution, 2018, 130–144

doi: 10.1093/jole/lzy006

Advance Access Publication Date: 6 July 2018

Research article

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

https://academic.oup.com/

Greenhill et al., 2008) or the Indo-European Lexical

Cognacy Database (Dunn, 2012) are based on manual

assessments of cognacy.

With the increasing amounts of digitally available data

it becomes harder for linguists to keep up. For example,

the Sino-Tibetan Etymological and Thesaurus database

(Matisoff, 2015), contains more than 500,000 words, but

only a small amount of words have been compared etymo-

logically (see Hill and List, 2017: 64f). We need to take

advantage of increasing amounts of data, refining work on

well-established languages, and fostering work on the

world’s understudied languages. To do this, however, we

will have to rethink the way we compare languages.

Historical linguists are skeptical about automating

the methods for cognate identification (see Holman

et al. (2011) and commentaries, as well as List et al.

(2017b)). First, the accuracy of automated methods is

often low, failing to reproduce the analyses of linguistic

experts. Especially, the use of the edit distance

(Levenshtein, 1965) has been criticized for being linguis-

tically too nave, conflating sound correspondences and

lexical replacement, to be useful for subgrouping or cog-

nate detection (Campbell, 2011; Greenhill, 2011).

Second, it is hard to verify many algorithms as they are

seen as black-boxes which hide the crucial decisions

leading to cognate judgments and subgroupings, making

it difficult for scholars to determine whether similarities

are due to inheritance or contact (Jäger, 2015; List et al.,

2017b). The nontransparency of automatic methods is

highly problematic for computational historical linguis-

tics: if we do not know what evidence decisions are

based on, we cannot criticize and improve them.

However, methods for automatic sequence compari-

son in historical linguistics have dramatically improved

during the last two decades. Starting with the pioneering

work on pairwise and multiple phonetic alignment

(Kondrak, 2000; Proki�c et al., 2009), new methods for

phonetic alignment and automatic cognate detection

solve both the problems of verification and accuracy

(List et al., 2017b; Jäger et al., 2017). First, these algo-

rithms are based on phonetically informed metrics on

sound similarities. Importantly, any algorithmically

identified correspondences are logged and can be

inspected by researchers. Second, in a wide-ranging test

of these methods, they have been found to be highly ac-

curate and able to correctly identify cognates in almost

90% of the cases (List et al., 2017b).

LingPy (List et al., 2017a) provides these algorithms

as part of a stable open-source software package that

works on all major platforms. Given the complexity

of the problems involving sequence comparison in his-

torical linguistics, computers will not be able to replace

human judgments any time soon, but with the recent

advancements, the methods are definitely good enough

to provide substantial help for classical historical lin-

guists to pre-analyze the data to be later corrected by

experts, or to check the consistency of human cognate

judgments. Over the long run, computational methods

can also contribute to the bigger questions of language

evolution, be it indirectly, by increasing the amount of

digitally available high-quality annotated data, or direct-

ly, by providing scholars’ access to data too large to be

processed by humans alone.

In the following, we will give a concise overview on

how automatic sequence comparison can be carried out.

After discussing general aspects of sequence comparison

(Section 2), we will introduce basic ideas on the data

needed (Section 3). We will then turn to the core tasks of

automatic sequence comparison, namely automatic

phonetic alignment (Section 4) and automatic cognate

detection (Section 5). We conclude by showing how

automatic approaches for cognate detection can be eval-

uated (Section 6), and how results can be exported to

various formats (Section 7).

This article is supplemented by a detailed interactive

tutorial in form of an IPython Notebook (Pérez and

Granger, 2007) which illustrates how all methods dis-

cussed here can be practically applied (see the

Supplementary material for more information). Having

installed the necessary software (Tutorial: 1), readers

can follow the tutorial step by step and investigate how

the algorithms work in practise. Our data is based on a

small sample of Polynesian languages taken from the

ABVD, which we substantially revised, both with re-

spect to the phonetic transcriptions and the expert cog-

nate judgments. All data needed to replicate the analyses

discussed here are supplemented. We give more informa-

tion in the interactive tutorial (Tutorial: 2.1).

2. Basic aspects of sequence comparison

The words and morphemes which constitute a language

are best modeled as sequences of sounds. Sequences

have information content not only from their elements

(segments, whether these are phonemes, graphemes, or

morphemes) but also via the order of the elements, a

consistent comparison of sequences should account for

both order and content. Alignments are a very general

way to model differences between sequences. The major

idea is to arrange two or more sequences in a matrix in

such a way that similar or identical segments which

occur in similar positions are placed in the same column

of the matrix. If segments are missing in one sequence

where no counterpart for a segment can be found, this is

Journal of Language Evolution, 2018, Vol. 3, No. 2 131

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text:
Deleted Text: ,
Deleted Text: (
Deleted Text: criticized
Deleted Text: -
Deleted Text: -
Deleted Text: open
https://academic.oup.com/jole/article-lookup/doi/10.1093/jole/lzy006#supplementary-data
Deleted Text: c

represented by a gap character, usually the dash-symbol

(List, 2014b).

Sequence alignments are crucial in biology, where

they are used to compare protein and DNA sequences

(Durbin et al., 2002). In historical linguistics, however,

they are usually only implicitly employed, and initial

attempts to arrange cognate words in a matrix go back

to the early 20th century, as one can see from an early

example based on Dixon and Kroeber (1919: 61) given

in Fig. 1. The authors themselves describe this way of

representing sequence similarities as a ‘columnar form’

with the goal to ‘bring out parallelisms that otherwise

might fail to impress without detailed analysis and dis-

cussion’ (Dixon and Kroeber, 1919: 55). The figure fur-

ther shows how the data would look if they were

rendered in contemporary alignment editors for historic-

al linguistics (List, 2017). Dixon and Kroeber’s wording

nicely expresses one of the major advantages of align-

ments: the transparency of homology assessments.

Scholars often list long lists of cognate sets in the litera-

ture, claiming that all words are somehow related to

each other, but if they do not list the alignments, it is

often impossible, even for experts in the same language

family, to understand where exactly the authors think

that certain segments are similar.

Given that the inference of historically related words

is not based on superficial word similarities but on re-

current systematic similarities, known as regular sound

correspondences (Lass, 1997: 130), all judgments

regarding the relatedness of words across languages dir-

ectly rely on previously established sequence alignments

(Fox, 1995: 67f). Alignment analyses not only increase

the transparency of cognate judgments, but they also

play a crucial role in substantiating these judgments in a

first place. As can be seen from Table 1, similarities in

cognate words in Sikaiana and Tahitian (data taken

from Greenhill et al., 2008) are not based on the identity

of sounds, but rather in the regularity of occurrence:

whenever Sikaiana has a [k] and a [l], Tahitian has a [?]

and a [r], respectively. Without alignments, we could

not identify this similarity. Alignments are also at the

core of all automatic sequence comparison approaches

in historical linguistics, as we will see throughout this

tutorial.

3. Data preparation

When searching for cognates across languages, we usu-

ally assume that our data are given in some kind of

wordlist, a list in which a number of concepts is trans-

lated into various languages. How many concepts we se-

lect depends on the research question, and various

concept lists and questionnaires, ranging from 40

(Brown et al., 2008) up to more than 1,000 concepts

(Haspelmath and Tadmor, 2009) have been proposed so

far (see the overview in List et al. (2016a)). Our data ex-

ample for this tutorial is based on the questionnaire of

the ABVD project (Greenhill et al., 2008), consisting of

210 concepts, which were translated into 31 different

Polynesian languages. For closely related languages,

such as those in the Polynesian family, this gives us

enough information to infer regular correspondences

automatically, although it is clear that for analyses of

Figure 1. Early alignment example for translational equivalents of ‘nail’ in aboriginal languages of California (based on Dixon and

Kroeber, 1919), contrasted with a ‘modern’ representation using the EDICTOR tool (List, 2017).

Table 1. Recurring similarities in Sikaiana and Tahitian.

Cognate list Alignment Correspondences

Sikaiana louse k u t u Sik. Tah. Freq.

Tahitian louse ? u t u k ? 3 x

Sikaiana dog k u 1 i+ u u 3 x

Tahitian dog ? u r i+ t t 1 x

Sikaiana skin k i 1 i r 1 2 x

Tahitian skin ? i r i i(+) i(+) 3 x

132 Journal of Language Evolution, 2018, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: (
Deleted Text: ,
Deleted Text:),
Deleted Text: ,
Deleted Text: ,

more distant language relationship the number of words

per language may not be enough.

The basic format used by LingPy is a tab-separated

input file in which the first row serves as a header and

defines the content of the rest of the rows. The very first

column is reserved for numerical identifiers (which all

need to be unique), while the order of the other columns

is arbitrary, with specific columns being required, and

others being optional. Essential columns which always

must be provided are the language name (DOCULECT),

the comparison concept (CONCEPT), the original tran-

scription (International Phonetic Alphabet (IPA),

FORM, or VALUE), and a space-segmented form of the

transcription (TOKENS). Multiple synonyms for the

same comparison concept in the same language should

be written in separate rows and given a separate ID

each. The data in the TOKENS-column should supply

the transcriptions in space-segmented form, that is, in-

stead of transcribing the Fila word for ‘all’ as [eutSi], the

software expects [e u tS i], which is internally interpreted

as a sequence of five segments, namely [e], [u], [tS] and

[i], with [tS] representing a voiceless post-alveolar affri-

cate. If the TOKENS are not supplied to the algorithm,

it will try to segment the data automatically, provided it

can find the column IPA, which is otherwise not neces-

sarily required to appear in the data. This however, may

lead to various problems and unexpected behavior. We

therefore urge all users of LingPy to make sure that they

supply segmented data to the algorithm, making further-

more sure that they adhere to the general standards of

transcription as they are represented in the IPA

(IPA, 1999).1 The format can be created manually by

using either a text editor, or a spreadsheet program that

allows to export to tab-separated format. To a large

degree, this input format is compatible with the one

advocated by the Cross-Linguistic Data Formats

(CLDF) initiative (Forkel et al., 2017), the main differ-

ence being that LingPy requires a flat single file with tab-

stop as separators, while CLDF supports multiple files.

CLDF furthermore encourages the use of reference cata-

logs, such as Glottolog (Hammarström et al., 2017) or

Concepticon (List et al., 2018), in order to increase the

comparability of linguistic data across datasets, while

LingPy is indifferent regarding the overall comparability

as long as the data is internally consistent. As of version

2.6, LingPy offers routines to convert to and from CLDF

(see Tutorial: 6.3). Figure 2 provides a basic summary

on LingPy’s input formats. More information on the for-

mat, and how it can be loaded into LingPy can be

found in the supplemented interactive tutorial (Tutorial:

2.2-3).

Data quality and consistency plays a crucial role in

the outcome of an automatic sequence comparison. As a

general rule of thumb, we recommend all linguists who

apply LingPy or other software to carry out automatic

sequence comparison, to pay careful attention to what

we call the SANE rules for data sanity: users should pay

close attention to providing a sensible segmentation of

their data, they should aim for high coverage, there

should be no mixing of data from different sources (as

this usually leads to inconsistent transcriptions and may

also increase the number of synonyms), and synonyms

should be evaded.2 These rules are summarized in

Table 2. If the original data does not provide reliable

phonetic transcriptions, as it was the case with the

Polynesian data we use in this tutorial, orthography pro-

files (Moran and Cysouw, 2017) provide an easy way to

refine transcriptions while at the same time segmenting

Figure 2. Input format required by the LingPy package. The last two entries show how synonyms can be handled by placing differ-

ent variants of one concept in one language variety into different rows with a separate ID each.

Journal of Language Evolution, 2018, Vol. 3, No. 2 133

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: ``
Deleted Text: ''
Deleted Text: International Phonetic Alphabet (
Deleted Text: ,
Deleted Text: -

the data, and the EDICTOR tool (List, 2017) offers con-

venient ways to check phonological inventories of all

varieties (Tutorial: 2.4). Various coverage statistics can

be computed in LingPy (see Tutorial: 2.5). Synonym sta-

tistics can also be easily computed (see Tutorial: 2.6).

Users should always keep in mind that the quality of

automatic sequence comparison crucially depends on

the quality of the data submitted to the algorithms.

4. Automatic phonetic alignment

Alignments are crucial for historical language compari-

son to search for regular sound correspondence patterns,

layers of borrowed words, or even use them as the start-

ing point for linguistic reconstruction (Fox, 1995).

A further important advantage is that they can be easily

quantified, as we will see in Section 5. Since phonetic

alignment is heavily influenced by bioinformatics, lin-

guists using phonetic alignments should have some basic

understanding of original algorithms and terminology.

In this context, it is not necessarily important to under-

stand how the algorithms work in detail. Instead, we

think it is more important to learn (also by testing the

algorithms with different data and parameters) how the

different options from which users can choose influence

the results. In the following, we will quickly introduce

basic algorithms and concepts involving alignments in

historical linguistics, and how they relate to alignments

in bioinformatics. We will follow the traditional division

into pairwise and multiple alignments (which result

from the differences in complexity of the algorithms),

and introduce the most important concepts and parame-

ters that users should know when applying the methods.

4.1 Pairwise alignment analyses

Pairwise alignment analyses in biology and computer

science date back to the 1970s when scholars like

Needleman and Wunsch (1970), and Wagner and

Fischer (1974) proposed algorithms based on the dy-

namic programming paradigm (Eddy, 2004b) which

drastically reduced the computation time for the task of

aligning two sequences with each other. The basic idea

of the algorithms by Needleman and Wunsch and

Wager and Fischer was to split the problem of finding

one optimal alignment between two sequences into sub-

parts and building the general solution from

optimal alignments of smaller subsequences (Durbin

et al., 2002: 19).3

The major parameters of pairwise alignment algo-

rithms are the scoring function, the gap function, and

the alignment mode. The scoring function (Fig. 3A,

Tutorial: 3.1.1) determines how the matching of seg-

ments is penalized (or favored). In biology, it is well

known that amino acid mutations follow certain transi-

tion preferences. The scoring function defines transition

probabilities for each segment pair, and biologists make

use of a large number of empirically derived scoring

functions (Eddy, 2004a). In linguistics, on the other

hand, we know well that certain sounds are more likely

to occur in correspondence relations with each other

(Dolgopolsky, 1964; Brown et al., 2013), and this

knowledge can be used as a proxy when designing a

scoring function in linguistics. While biology deals with

Table 2. SANE rules for data sanity.

Segmentation matters

Consistent phonetic transcription and segmentation are of crucial importance for

automatic sequence comparison. Computers cannot guess whether multiple graphemes

represent separate or single sound segments.

NOT: Fila [eutSi] ‘all’

BUT: Fila [e u tS i] ‘all’

Aim for high coverage

Each language should have about the same number of words recorded across the

wordlist. A high mutual coverage is important to allow algorithms to find enough

information to determine the major signal.

NOT: L1 150, L2 50

BUT: L1 200, L2 200

No mixing of data from different sources

Mixing data for the same language from various sources can lead to inconsistencies in the

phonetic representation of words, even if they are all given in plain phonetic transcrip-

tions. This will weaken the evidence for regular sound correspondences.

NOT: L1¼Source1þSource2

BUT: L1¼Source1, L2¼Source2

Evade synonyms

Languages often have multiple words for a given meaning. However, these can cause

problems for sequence comparison and further downstream analyses like phylogenetic

reconstruction. Having abundant synonyms in the data (e.g. 40 words for snow) will

necessarily blur this signal.

NOT: Tahitian [tai] ‘sea’,

[moana] ‘ocean’

BUT: Tahitian ‘sea’

134 Journal of Language Evolution, 2018, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: &
Deleted Text: &
Deleted Text: ,
Deleted Text: Figure
Deleted Text: -
Deleted Text: -

small alphabets, in linguistics, the numbers of possible

sounds in the languages of the world amounts to the

thousands (Moran et al., 2014). It is not practical to de-

sign a matrix containing and confronting all sounds

with each other, and most algorithms reduce the size of

the alphabet by lumping similar sounds into a set of

predefined sound classes (Fig. 3B, Tutorial: 3.1.2), for

which transition probabilities can be efficiently defined,

and which are then given as input for the alignment al-

gorithm (List, 2012a; Holman et al., 2008).

The introduction of gaps in an alignment (Fig. 3C,

Tutorial: 3.1.3) can be seen as a special case of a scoring

function. Instead of comparing two segments, the algo-

rithm checks whether the introduction of a gap might be

preferable. While gaps were originally given the same

penalty, independent of the element with which they

were compared, later studies showed that they could

even be individually adjusted for each position in a se-

quence (Thompson et al., 1994). In linguistics, we know

that sounds in certain positions (like initial consonants)

are less likely to be lost and that new sounds tend to ap-

pear in specific contexts as well. In LingPy, position-

specific gap penalties are derived from the prosodic pro-

files of sequences (List, 2012a). Prosodic profiles essen-

tially reflect for each segment of a word whether it

occurs in weak or strong prosodic positions, and the

user-defined gap penalty is modified accordingly.

The alignment mode (Fig. 3D, Tutorial: 3.1.4) basic-

ally determines which parts of individual sequences are

compared. It is often impossible to compare two words

Figure 3. Basic parameters and concepts in pairwise alignment analyses: (A) Scoring function, (B) Sound classes, (C) Gap function

and (D) Alignment mode.

Journal of Language Evolution, 2018, Vol. 3, No. 2 135

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: -
Deleted Text: Figure
Deleted Text: Figure

entirely. Instead, we compare only certain parts of

which we know that they are cognate, ignoring parts of

which we know they are not. Since the same problem

occurs when comparing the genes of diverse species in

bioinformatics, biologists have long since been working

on solutions, reflected in local alignment analyses

(Smith and Waterman, 1981) in which only the most

similar parts of sequences are compared (see Fig. 3),

while the rest is ignored, or semi-global alignments

(Durbin et al., 2002: 26f).

What should users keep in mind when carrying out

pairwise alignment analyses? As a rule of thumb, we rec-

ommend caution with local alignment analyses, since

these can show unexpected behavior. We also recom-

mend care with custom changes applied to the scoring

or the gap function. Users often naively think by just

‘telling’ the computers which sound changes, this would

automatically lead to excellent alignments and at times

complain that LingPy’s standard algorithms fail to

‘detect certain obvious changes’. However, alignments

are no way to determine sound changes, they are at best

a first step for linguistic reconstruction, and none of the

algorithms which have been proposed so far models any

kind of change. What is modeled instead are corre-

spondences of sounds. It is difficult, if not impossible, to

design an algorithm that aligns sequences of all kinds of

diversity without proposing certain analyses which look

awkward to a trained linguist. But remember, automatic

sequence comparison is not there to replace the experts,

but to help them.

4.2 Multiple alignment analyses in linguistics

Pairwise alignments are crucial for most automatic cog-

nate detection methods (List, 2014b; Jäger et al., 2017).

In order to visualize cognate judgments, or to recon-

struct proto-forms, however, pairwise alignments are

not of great help, as most linguistic research applies to

at least three if not more language varieties. It may

sound counterintuitive for readers not familiar with the

major workflows for automatic cognate detection that

pairwise alignments are mainly used to detect cognates

across multiple languages, while multiple alignments are

only later computed from existing cognate sets. Why not

compute multiple alignments right from the beginning,

as for example, proposed by Wheeler and Whiteley

(2015)? The reason for this workflow is that alignments

only make sense when representing cognate words—

aligning unrelated words just leads to chance

similarities.

For reasons of algorithmic complexity, pairwise align-

ment algorithms cannot simply be rewritten to account

for an arbitrary number of sequences. In order to address

this problem, early approaches used heuristics that ap-

proximate optimal multiple alignments (Feng and

Doolittle, 1987; Thompson et al., 1994). Most of these

algorithms compute pairwise alignments in a first step

and then combine the data in a pairwise fashion until all

alignments are merged into one multiple alignment. The

easiest way to do so is with help of a guide tree, a cluster-

ing of all sequences, which determines in which order

sequences are merged with each other. This procedure is

illustrated in Fig. 4 for the alignment of four words for

‘dog’ in four Polynesian languages (Tutorial: 3.2).

Many extensions of the classical guide-tree heuristics

have been proposed in the biological literature

(Notredame et al., 2000; Morgenstern et al., 1998) and

also adapted in linguistic applications (List, 2012a;

Jäger and List, 2015; Hruschka et al., 2015). While the

fine-tuning of the algorithms may have a solid impact on

multiple alignment analyses involving large sets of lan-

guage varieties, as we often encounter in dialectology

(compare the results of Proki�c et al., 2009 with

List, 2012a), the problem of erroneous alignments is

much less pronounced when using smaller datasets and

working in workflows which start from cognate detec-

tion and compute multiple alignments in a later stage.

For these reasons, we refrain from giving more detailed

descriptions of multiple sequence alignment here, but in-

stead refer the readers to the literature that we quoted in

this section and the examples in the interactive tutorial

(Tutorial: 3.2).

5. Automatic cognate detection

As mentioned in the previous section, we can only mean-

ingfully align words if we know they are historically

related. In order to identify which words are related,

however, we still need to compare them, and most auto-

matic approaches, including the core methods available

in LingPy, make use of pairwise sequence comparison

techniques in order to find historically related words in

linguistic datasets.

The basic workflow of most automatic cognate de-

tection methods can be divided into two major steps.

In the first step, pairwise alignment is used to align all

words to retrieve distance scores for each pair of words

in the data which occur in the same concept slot. If nor-

malized, distance scores typically rank between 0 and 1,

with 0 indicating the identity of the objects under com-

parison, and 1 indicating the maximal difference that

can be encountered for the objects. In a second step,

these distances are used to partition the words into

136 Journal of Language Evolution, 2018, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: ,
Deleted Text: u
Deleted Text: -
Deleted Text: :
Deleted Text: -
Deleted Text: –
Deleted Text: -
Deleted Text: Figure
Deleted Text: compared to

presumable cognate sets using tree- or network-based

partitioning algorithms. If we take five words for ‘neck’

from our Polynesian data, Ra‘ivavae [?agapo?a],

Hawaiian [?a:?i:], Mangareva [kaki], Maori [ua], and

Rapanui [˛ao], for example, we can use the normalized

edit distance (NED) to compare all four words with

each other and write the results into a matrix, as shown

in Table 5A.4

In Table 5B, we have carried out the same pairwise

comparison, but this time with a different sequence

comparison measure, following the sound-class-based

alignment method (SCA, List 2012a), in which the idea

of sound classes is combined with sequence alignment

methods. Table 5C shows the results retrieved from the

LexStat method (List, 2012b) which derives distances

from a previous search for regular sound correspond-

ences. As can be seen, when comparing only the matri-

ces, the methods generally differ in the way they handle

sequence similarities. While NED has rather high scores

which do not vary much from each other, SCA has con-

sistently smaller scores with more variation, and LexStat

has higher scores but more variation than NED.

In the second step, the matrix of word pair distances

is used to partition the words into cognate sets. For this,

partitioning algorithms are used which split the words

into cognate sets by trying to account as closely as pos-

sible for the pairwise distances of all words in a given

meaning slot. Early approaches were based on a flat ver-

sion of the well-known UPGMA algorithm (Sokal and

Michener, 1958), which is an agglomerative cluster al-

gorithm that returns the data in the form of a tree. The

flat variant of UPGMA stops merging words into bigger

subgroups once a user-defined threshold of average pair-

wise distances among the words in each cluster has been

reached (List, 2012b). In order to show how algorithms

arrive from pairwise distance scores in a matrix at cog-

nate set partitions, we provide a concrete example in

Fig. 5. First, we have marked all cells in which the dis-

tance is smaller than the recommended threshold for

each method (following List et al., 2017b).5 Second, we

added guide trees (reflecting the clustering proposed

when applying the UPGMA algorithm without stopping

it earlier) below each matrix, which show how the flat

clustering algorithm proceeds. If the algorithm stops

grouping words into a given cluster, because the average

threshold has been reached, this is indicated by a dashed

line, which indicates how the clustering would have pro-

ceeded if the algorithm had not stopped. Given that we

know that of these five words in the figure, only

Hawaiian [?a:?i:] and Mangareva [kaki] are cognate, we

can immediately see that the LexStat algorithm is pro-

posing the correct cognates in this example.

The performance of LexStat is not surprising, if we

take its more sophisticated working procedure into ac-

count. LexStat uses global and local pairwise alignments

to pre-analyze the data, computing language-specific

scoring functions (List, 2012b), in which the similarity

of the segments in a given language pair depends on the

overall number of matches that could be found in the

preprocessing stage.6 In these scoring functions, sound

segments for all languages in the data are represented as

sound-class strings in a certain prosodic environment.

This representation is useful to handle sound corre-

spondences in different contexts (word-initial, word-

final, etc.). For each language pair in the data, LexStat

creates an attested and an expected distribution of sound

correspondences. The attested distribution is computed

for words with the same meaning and whose SCA score

is beyond a user-defined threshold. The expected distri-

bution is computed by shuffling the word lists in such a

way that words with different meanings are aligned and

compared, with the users defining how often word lists

should be shuffled. This permutation test following sug-

gestions by Kessler (2001) makes sure that the sound

correspondences identified are unlikely to have arisen by

chance. The distributions resulting from this permuta-

tion test are then combined in log-odds scores (see Fig. 3

above) which can then in turn be used to realign all

words and determine their LexStat-distance.7 These

scores are then again used to create a matrix of pairwise

Figure 4. Combining words for ‘dog’ in Samoan, Hawaiian, North Marquesan, and Anuta into a multiple alignment with help of a

guide tree.

Journal of Language Evolution, 2018, Vol. 3, No. 2 137

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: ``
Deleted Text: ''
Deleted Text: class
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: Figure
Deleted Text: -

distances as shown in Fig. 5. Our interactive tutorial

shows how input data can be quickly checked before

carrying out the (at times time-consuming) computation

(Tutorial: 4.1) and provides additional information

regarding the differences between the cognate detection

methods available in LingPy (Tutorial: 4.2) and illus-

trates in detail how each of them can be applied

(Tutorial: 4.3).

More recent approaches for cognate set partitioning

use Infomap (Rosvall and Bergstrom, 2008), a commu-

nity detection algorithm which uses random walks in a

graph representation of the data to identify those clus-

ters in which significantly more edges can be found in-

side a group than outside (Newman, 2006). In order to

model the data as a graph, words are represented as

nodes and distances between words are represented as

edges which are drawn between all nodes whose pair-

wise distance is beyond a user-defined threshold

(List et al., 2017b). Recent studies have shown that the

graph-based partitioning approaches slightly outperform

the flat agglomerative clustering procedures (List et al.,

2016b, 2017b; Jäger et al., 2017).

The advantage of LexStat and similar algorithms is

that the algorithm infers a lot of information from the

data itself. Instead of assuming language-independent

distance scores which would be the same for all lan-

guages in the world, it essentially infers potential sound

correspondences for each language pair in separation

and uses this information to determine language-specific

distance scores. The disadvantages of LexStat are the

computation time and the dependency of data with high

mutual coverage. It was designed in such a way that it

refuses to cluster words into cognate sets if sufficient in-

formation is lacking. As a rule of thumb, derived from

earlier studies (List, 2014a), we recommend applying

LexStat only if the basic concept lists of a given dataset

consists of at least 200 words, and if the mutual cover-

age of the data exceeds 150 word pairs. If the data is too

sparse, such as, for example, in the ASJP database

(Wichmann et al., 2016) which gives maximally 40 con-

cepts per language, we recommend to use either the SCA

approach, or to turn to more sophisticated machine

learning approaches (Jäger et al., 2017), which have

been designed and trained in such a way that they yield

their best scores on smaller datasets. In all cases, users

should be aware that the algorithms may fail to detect

certain cognates. The reasons range from rare sound

correspondences which can trigger problematic align-

ments, via sparseness of data (especially when dealing

with divergent languages), up to problems of morpho-

logical change which may easily confuse the algorithms

as they may yield partial cognates and produce words

that cannot be fully aligned anymore (List et al., 2017b).

In Table 3, we summarize some basic differences be-

tween the four methods mentioned so far.

Once the words have been clustered into cognate

sets, it is advisable to align all cognate words with each

other, using a multiple alignment algorithm (Tutorial:

4.4). Alignments are useful in multiple ways. First, users

can easily inspect them with web-based tools (Tutorial:

4.5). Second, they can be used to statistically investigate

the identified sound correspondence patterns in the data

(see Tutorial: 4.6). Both the manual and the automatic

check of the results provided by automatic cognate de-

tection methods are essential for a successful application

of the methods. Only in this way can users either con-

vince themselves that the results come close to their

expectations or that something weird is going on. In the

latter situation, we recommend that users thoroughly

check to which degree they have conformed to

our SANE rules for dataset sanity outlined above in

Section 3. We also recommend that users do not change

Figure 5. Contrasting distances retrieved from three different alignment approaches for Polynesian words for ‘neck’. Cells high-

lighted indicate that distances are smaller than the default threshold for the algorithms. The first column of each table indicates the

cognate decisions resulting from the matrix and the threshold. How these cognate decisions are determined is further illustrated in

the trees below each matrix. They show how a flat cluster algorithm which stops once a certain threshold is reached can be used

to partition the words into cognate sets.

138 Journal of Language Evolution, 2018, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: users

the different parameters too much, especially when

applying LingPy the first time. Instead of trying to fix

minor errors (such as obvious cognates missed or look-

alikes marked as cognates) by changing parameters, it is

often more efficient to correct errors manually.

Although Rama et al. (2018) report promising results on

fully automated workflows, we do not recommend rely-

ing entirely on automatic cognate detection when it

comes to phylogenetic reconstruction, since the algo-

rithms tend to be too conservative, often missing valid

cognates (List et al., 2017b), but we are confident

enough to recommend it for initial data exploration,

and for the preparsing of data in order to increase the ef-

ficiency of cognate annotation.

6. Evaluation

We have claimed above that automatic cognate detec-

tion had made great progress of late. We make this claim

based on tests in which the performance of automatic

cognate detection algorithms was compared with expert

cognate judgments (List et al., 2017b). There are differ-

ent ways to compare expert cognate judgments with al-

gorithmic ones. A very simple but nevertheless

important one is to compare different cognate judg-

ments manually, by eyeballing the data. Even if one

lacks expert cognate judgments for a given dataset, this

may be useful, as it helps to get a quick impression on

potential weaknesses of the algorithm used for a given

analysis. Comparing cognate judgments in concrete,

however, can be quite tedious, especially if the data are

not presented in any ordered fashion. For this reason,

LingPy offers a specific format that helps to compare

different cognate judgments in a rather convenient way.

How this comparison can be carried out is illustrated in

Table 4, where we use the numeric annotation for cog-

nate clusters as described in Fig. 6 to compare expert

cognate judgments for ‘to turn’ in eight East Polynesian

languages with those produced by edit distance, the

SCA, and the LexStat method, respectively. As can be

seen from the table, NED lumps all words into one clus-

ter, obviously being confused by the similarity of the

vowels across all words. SCA comes close to the expert

annotation, but wrongly separates Hawaiian [wili] from

the first cluster, obviously being confused by the dissimi-

larity of the sound classes. LexStat correctly identifies all

cognates, obviously thanks to its initial search for

language-specific similarities between sound classes. In

the interactive tutorial, we show how users can compute

similar overviews on differences in cognate detection

analyses and conveniently compare them (Tutorial: 5.1).

While manual inspection is important, it is also cru-

cial to have an independent and objective score that tells

us how well algorithms perform on a given dataset.

Knowing the approximate performance may, for ex-

ample, be useful when working with large datasets

which would take too long to be analyzed manually. If

we annotate part of the data and see that the automatic

methods perform well enough, we could then use the

automatic approaches to carry out our analyses and re-

port the expected accuracy in the study. Our recom-

mended evaluation measures are B-Cubed scores (Bagga

and Baldwin, 1998; Amigó et al., 2009), which Hauer

and Kondrak (2011) first introduced as a measure to as-

sess the quality of cognate detection algorithms com-

pared to expert judgments.

The details of how B-Cubed scores are computed are

explained elsewhere in detail (List et al., 2017b), and it

would go beyond the scope of this tutorial to introduce

them here again. For users interested in automatic cog-

nate detection, but reluctant in learning in depth about

evaluation measures in computational linguistics, it is

sufficient to know how the B-Cubed scores should be

interpreted. Usually the scores are given in three forms,

which all rank between 0 and 1: precision, recall, and F-

Score. Precision comes closest to the notion of true posi-

tives in historical linguistics. Recall is close to the notion

of true negatives, accordingly, and the F-Score, the har-

monic mean of precision and recall, can be seen as a

general summary of the two, derived by the formula

Table 3. Comparing different algorithms for cognate detection implemented in LingPy with respect to some fundamental

parameters of sequence comparison.

Method Scoring function Sound classes Gap function Alignment mode Partitioning

NED identity – – global flat UPGMA

SCA language-independent SCA-model prosodic profiles global flat UPGMA

LexStat language-specific SCA-model prosodic profiles semi-global flat UPGMA

LexStat-Infomap language-specific SCA-model prosodic profiles semi-global Infomap

Journal of Language Evolution, 2018, Vol. 3, No. 2 139

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: first
Deleted Text: analysed
Deleted Text: to

2 P�R
PþR, where P is the precision and R is the recall. If the

scores are high, this means the algorithms come close to

the judgment of the experts, a score of 1.0 in precision

and recall (and therefore also the F-Score) means that

the results are 100% identical.

In Table 5, we report the results achieved by four

automatic cognate detection methods on a small subset

of ten East Polynesian languages which we retrieved

from our Polynesian dataset for illustrative purposes.8

In addition to the three methods reported already in

Table 4, we added a random cognate detector which

was sampled from 100 trials, and the Infomap version

of the LexStat algorithm (LS-Infomap), in which the

cognate set partitioning is carried out with the Infomap

algorithm instead of the flat version of UPGMA (see

Section 5 above).9 NED shows a rather low precision

compared to the other nonrandom approaches, indicat-

ing that it proposes many false positives (as we could see

above in Table 4). On the other hand, its recall is very

high, indicating that it does not miss many cognate sets.

SCA obviously has a lot of problems with the data, per-

forming worse than NED in general, with a rather low

precision and recall. Both LexStat approaches largely

outperform the other approaches in general, and espe-

cially the very high precision is very comforting, since it

indicates that the algorithms do not propose too many

false positives. That the Infomap version of LexStat

Table 4. Comparing automatic cognate detection methods

with expert cognate judgments for words for ‘to turn’ in

East Polynesian languages.

Doculect Form Expert NED SCA LexStat

Ra‘ivavae ta: viGi 4580 1 1 1 1

Hawaiian wili 5835 1 1 4 1

North-Marquesan kavi?i 3575 1 1 1 1

Rapanui taviri 1838 1 1 1 1

Hawaiian huli 5834 2 1 2 2

Maori huri 936 2 1 2 2

Sikaiana tahuli 3283 2 1 2 2

Mangareva ti: rori 2101 3 1 3 3

Highlighted cells indicate where the respective algorithms fail compared to

the expert judgment.

Table 5. B-Cubed scores for different cognate detection

algorithms compared against a test set of East Polynesian

languages.

RANDOM NED SCA LexStat LS-Infomap

Precision 0.47 0.81 0.88 0.95 0.94

Recall 0.73 0.96 0.84 0.92 0.93

F-score 0.57 0.88 0.86 0.93 0.94

Highlighted cells indicate the best scores for a given measure.

Figure 6. Some basic concepts important for automatic cognate detection.

140 Journal of Language Evolution, 2018, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: -

performs better than LexStat with UPGMA is also

shown in this comparison, although the differences are

much lower than reported in List et al. (2017b). It would

be very interesting to compare the scores we achieved

with general scores of levels of agreement among human

experts. Unfortunately, no systematic study has been

carried out so far.10 The interactive tutorial gives a

detailed introduction into the computation of B-Cubed

scores with LingPy (Tutorial: 5.2).

Given the differences in the results regarding precision,

recall, and generalized F-scores, it is obvious that the

choice of the algorithm to use depends on the task at

hand. If users plan to invest much time into manual data

correction, having an algorithm with high recall that iden-

tifies most of the cognates in the data while proposing a

couple of erroneous ones is probably the best choice.

Users can achieve this by choosing a high threshold or an

algorithm such as NED, which yields a rather high recall

in form of the B-Cubed scores, at least for the Polynesian

data in our sample. In other cases, however, when user-

correction is not feasible because of the size of the dataset,

it is useful to choose low thresholds or generally conserva-

tive algorithms with high B-Cubed precision in order to

minimize the amount of false positives.

7. Data export

LingPy provides direct export of the cognate judgments to

the Nexus format (Maddison et al., 1997), allowing users

to analyze automated cognate judgments with popular

packages for phylogenetic reconstruction, such as

SplitsTree (Huson, 1998), MrBayes (Ronquist et al.,

2009), or BEAST 2 (Bouckaert et al., 2014, see Tutorial:

6.1). If phylogenetic trees are computed from distance

matrices, both matrices and trees can be written to file

and further imported in software packages for tree ma-

nipulation and visualization (Tutorial: 6.2). In addition,

data can be exported (and also be imported) to the word-

list format proposed by the CLDF initiative (Forkel et al.,

2017), which is intended to serve as a generic format for

data sharing in cross-linguistic studies (Tutorial: 6.3).

8. Concluding remarks

In this tutorial we have tried to show how automatic se-

quence comparison in LingPy can be carried out. Given

the scope of this article, it is clear that we could not

cover all aspects of alignments and cognate detection in

all due detail. We hope, however, that we could help

readers understand what they should keep in mind if

they want to carry out sequence comparison analyses on

their own. Additional questions will be answered in an

interactive tutorial supplemented with this article, and

for deeper questions going beyond the pure application

of sequence comparison algorithms—such as additional

analyses (e.g. the minimal lateral network method for

borrowing detection, List et al., 2014, or an algorithm

for the detection of partial cognates, List et al., 2016b),

routines for plotting and data visualization, or custom-

ization routines for user-defined sound-class models—

we recommend the readers to turn to the extensive

online documentation of the LingPy package (http://

lingpy.org). We have emphasized multiple times

throughout this article that the algorithms cannot and

should not be used to replace trained linguists. Instead,

they should be seen as a useful complement to the large

arsenal of methods for historical language comparison

which can help experts to derive initial hypotheses on

cognacy, speed up tedious annotation of cognate sets,

and increase their efficiency and consistency.

Supplementary data

Supplementary data is available at Journal of Language

Evolution online. Stable updates of this material with the latest

version are also available at Zenodo (https://doi.org/10.5281/

zenodo.1252230).

Funding

This research was supported by the European Research Council

Starting Grant ‘Computer-Assisted Language Comparison’

(Grant CALC 715618, J.M.L., T.T.) and the Australian

Research Council’s Centre of Excellence for the Dynamics

of Language (Australian National University, Grant

CE140100041, S.J.G.). As part of the GlottoBank project

(http://glottobank.org), this work was further supported by

the Department of Linguistic and Cultural Evolution of the

Max Planck Institute for the Science of Human History (Jena)

and the Royal Society of New Zealand (Marsden Fund, Grant

13-UOA-121).

Notes
1. Linguists are often skeptical when they hear that

LingPy requires explicit phonetic transcriptions, and

often, they are even reluctant to interpret their data

along the lines of the IPA. But in order to give the

algorithms a fair chance to interpret the data in the

same way in which they would be interpreted by lin-

guists, a general practice for phonetic transcriptions

is indispensable, and the IPA is the most widely

employed transcription system.

2. We know well how difficult it is to conform to the lat-

ter point. What is clear is that tossing coins to select

one out of many synonyms, as originally suggested by

Journal of Language Evolution, 2018, Vol. 3, No. 2 141

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: analyse
Deleted Text: paper
Deleted Text: paper
Deleted Text: –
Deleted Text: ,
Deleted Text: . –
http://lingpy.org
http://lingpy.org
Deleted Text: paper
Deleted Text: the
https://academic.oup.com/jole/article-lookup/doi/10.1093/jole/lzy006#supplementary-data
https://doi.org/10.5281/zenodo.1252230
https://doi.org/10.5281/zenodo.1252230
http://glottobank.org

Gudschinsky (1956), will have a deleterious impact on

any analysis (List, 2018). In order to avoid synonyms in

qualitative work, we recommend to thoroughly review

the guidelines in Kassian et al. (2010).

3. It would go beyond the scope of this tutorial to ex-

plain these famous algorithms in all detail. Instead,

we refer the readers to Kondrak (2002: 20–65) as well

as to an interactive demo of the Wagner–Fischer al-

gorithm in List (2016).

4. In the normalized edit distance (NED), the edit distance

between two strings is further normalized by dividing it

by the length of the longer string. In this way, we can

control for the length of the compared sequences.

5. The threshold for the algorithms are: NED: 0.75, SCA:

0.45, LexStat: 0.6.

6. For an example, consider the matches between

Sikaiana and Tahitian shown in Table 1. Although

Sikaiana [k] is different from [?], they are similar from

a language-specific perspective, since they recur

across many aligned cognate sets between both lan-

guages. When comparing [k] in English with [?] in

German, however, they are not similar, as we will not

find a cognate set in which those two sounds

correspond.

7. As alignment algorithms yield similarity scores as a

default, the similarity scores are converted to dis-

tance scores with help of the formula proposed by

Downey et al. (2008).

8. We have not fully explored the practical limitations in

terms of number of languages or number of concepts

when comparing languages with LingPy. Jäger et al.

(2017) and Rama et al. (2017) report successful applica-

tions of LingPy’s cognate detection algorithms for as

many as 100 languages. Although we think that the

number might in fact be even higher, based on tests we

carried out ourselves on 150 and more languages, we

recommend to be careful when analyzing too many lan-

guages, as algorithmic performance may drastically

drop when investigation samples are too large

9. The threshold for LexStat-Infomap was set to 0.55, fol-

lowing List et al. (2017b). The random cognate annota-

tion algorithm was designed in such a way that it has

the tendency to lump cognates to larger clusters.

10. The only study known to us addressing these prob-

lems is Geisler and List (2010), but it has, unfortunate-

ly, not been sufficiently quantified.

Acknowledgements

We are grateful to three anonymous reviewers for challenging

and constructive advice. We thank Russell Gray for encourag-

ing and helpful advice during the preparation of this project,

and Christoph Rzymski for helpful comments on an earlier ver-

sion of this draft.

References

Amigó, E. et al. (2009) ‘A Comparison of Extrinsic Clustering

Evaluation Metrics Based on Formal Constraints’,

Information Retrieval, 12/4: 461–86.

Bagga, A. and Baldwin, B. (1998) ‘Entity-based cross-document

coreferencing using the vector space model’ in Proceedings of

the 36th Annual Meeting of the Association for

Computational Linguistics and 17th International Conference

on Computational Linguistics, pp. 79–85. Móntreal:

Association of Computational Linguistics.

Bouckaert, R. et al. (2014) ‘BEAST 2: A Software Platform for

Bayesian Evolutionary Analysis’, PLoS Computational

Biology, 10/4: e1003537.

Brown, C. H. et al. (2008) ‘Automated Classification of the

World’s Languages’, Sprachtypologie und

Universalienforschung, 61/4: 285–308.

, Holman, E. W., and Wichmann, S. (2013) ‘Sound

Correspondences in the World’s Languages’, Language, 89/1:

4–29.

Campbell, L. (2011) ‘Comment On: Automated Dating of the

World’s Language Families Based on Lexical Similarity’,

Current Anthropology, 52: 866–7.

Dixon, R. B. and Kroeber, A. L. (1919) Linguistic Families of

California. Berkeley: University of California Press.

Dolgopolsky, A. B. (1964) ‘Gipoteza drevnejego rodstva jazyko-

vych semej Severnoj Evrazii s verojatnostej toky zrenija’,

Voprosy Jazykoznanija, 2: 53–63.

Downey, S. S. et al. (2008) ‘Computational Feature-sensitive

Reconstruction of Language Relationships: Developing the ALINE

Distance for Comparative Historical Linguistic Reconstruction’,

Journal of Quantitative Linguistics, 15/4: 340–69.

Dunn, M. (2012) Indo-European lexical cognacy database

(IELex). Nijmegen: Max Planck Institute for Psycholinguistics

<http://ielex.mpi.nl>.

Durbin, R. et al. (2002) Biological Sequence Analysis.

Probabilistic Models of Proteins and Nucleic Acids, 7th edn.

Cambridge: Cambridge University Press.

Eddy, S. R. (2004a) ‘Where Did the BLOSUM62 Alignment Score

Matrix Come From?’ Nature Biotechnology, 22/8: 1035–6.

(2004b) ‘What is Dynamic Programming?’ Nature

Biotechnology, 22/7: 909–10.

Feng, D. F. and Doolittle, R. F. (1987) ‘Progressive Sequence

Alignment as a Prerequisite to Correct Phylogenetic Trees.

Journal of Molecular Evolution, 25/4: 351–60.

Forkel, R. et al. CLDF. Cross-Linguistic Data Formats. Version

1.0. Max Planck Institute for the Science of Human History,

Jena, 2017. doi: 10.5281/zenodo.1117644. <https://doi.org/

10.5281/zenodo.1117644>.

Fox, A. (1995) Linguistic Reconstruction. Oxford: Oxford

University Press. ISBN 0-19-870000-8.

Geisler, H. and List, J.-M. (2010) ‘Beautiful Trees on Unstable

Ground. Notes on the Data Problem in Lexicostatistics’, in

142 Journal of Language Evolution, 2018, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

Deleted Text: (
Deleted Text: -
Deleted Text: -
Deleted Text: won't
Deleted Text: analysing
Deleted Text: that
http://ielex.mpi.nl
https://doi.org/10.5281/zenodo.1117644
https://doi.org/10.5281/zenodo.1117644

Hettrich Heinrich (ed.) Die Ausbreitung des

Indogermanischen. Thesen aus Sprachwissenschaft,

Archologie und Genetik. Wiesbaden: Reichert. In press.

Greenhill, S. J. (2011) ‘Levenshtein Distances Fail to Identify

Language Relationships Accurately’, Computational

Linguistics, 37/4: 689–98.

, Blust, R., and Gray, R. D. (2008) ‘The Austronesian Basic

Vocabulary Database: From Bioinformatics to Lexomics’,

Evolutionary Bioinformatics, 4: 271–83.

Gudschinsky S. C. (1956) ‘The ABC’s of Lexicostatistics (glotto-

chronology)’, Word, 12/2:175–210.

Hammarström, H., Forkel, R., and Haspelmath, M. (2017)

Glottolog. Leipzig: Max Planck Institute for Evolutionary

Anthropology.<http://glottolog.org>.

Haspelmath, M. and Tadmor, U. (2009) ‘The Loanword Typology

Project and the World Loanword Database’, in Haspelmath

Martin and Tadmor Uri (eds) Loanwords in the World’s

Languages, pp. 1–34. Berlin and New York: de Gruyter.

Hauer, B. and Kondrak, G. (2011) ‘Clustering semantically

equivalent words into cognate sets in multilingual lists’. In

Proceedings of the 5th International Joint Conference on

Natural Language Processing, pp. 865–73. Chiang Mai:

AFNLP.

Hill, N. W. and List, J. -M. (2017) ‘Challenges of Annotation

and Analysis in Computer-assisted Language Comparison: A

Case Study on Burmish Languages’, Yearbook of the Pozna

Linguistic Meeting, 3/1: 4776.

Holman, E. W. et al. (2008) ‘Explorations in Automated

Lexicostatistics’, Folia Linguistica, 20/3: 116–21.

et al. (2011) ‘Automated Dating of the World’s Language

Families Based on Lexical Similarity’, Current Anthropology,

52/6: 841–75.

Hruschka, D. J. et al. (2015) ‘Detecting Regular Sound Changes

in Linguistics as Events of Concerted Evolution’, Current

Biology, 25/1: 1–9.

Huson, D. H. (1998) ‘SplitsTree: Analyzing and Visualizing

Evolutionary Data’, Bioinformatics, 14/1: 68–73.

International Phonetic Association (IPA) (1999) Handbook of

the International Phonetic Association. A Guide to the Use of

the International Phonetic Alphabet. Cambridge: Cambridge

University Press.

Jäger, G. (2015) ‘Support for Linguistic Macrofamilies

from Weighted Alignment’, Proceedings of the National

Academy of Sciences of the United States of America, 112/41:

12752–7.

and List, J. -M. (2015) ‘Factoring Lexical and Phonetic

Phylogenetic Characters from Word Lists’, in Baayen H. et al.

(eds) Proceedings of the 6th Conference on Quantitative

Investigations in Theoretical Linguistics. Eberhard-Karls

University: Tübingen.

, List, J.-M., and Sofroniev, P. (2017) ‘Using support vec-

tor machines and state-of-the-art algorithms for phonetic

alignment to identify cognates in multi-lingual wordlists’. In

Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics.

Long Papers, pp. 1204–15, Valencia: Association for

Computational Linguistics.

Kassian Alexei et al. (2010) ‘The Swadesh Wordlist. An Attempt

at Semantic Specification’, Journal of Language Relationships,

4: 46–89.

Kessler, B. (2001) The Significance of Word Lists. Stanford:

CSLI Publications.

Kondrak, G. (2000) ‘A new algorithm for the alignment of

phonetic sequences’. In Proceedings of the 1st North

American chapter of the Association for Computational

Linguistics conference, pp. 288–95. Seattle: Association of

Computational Linguistics.

(2002) ‘Algorithms for Language Reconstruction’,

Dissertation, University of Toronto, Toronto.

Lass, R. (1997) Historical Linguistics and Language Change.

Cambridge: Cambridge University Press.

Levenshtein V. I. (1965) ‘Dvoi�cnye kody s ispravleniem vypade-

nij, vstavok i zame�s�cenij simvolov’, Doklady Akademij Nauk

SSSR, 163/4: 845–8.

List, J. -M. (2012a) ‘SCA. Phonetic Alignment Based on Sound

Classes’, in Slavkovik Marija and Lassiter Dan(eds) New

Directions in Logic, Language, and Computation, pp. 32–51.

Berlin and Heidelberg: Springer.

(2012b). ‘LexStat. Automatic detection of cognates in

multilingual wordlists’. In Proceedings of the EACL 2012

Joint Workshop of Visualization of Linguistic Patterns and

Uncovering Language History from Multilingual Resources,

pp. 117–25, Stroudsburg.

(2014a). ‘Investigating the Impact of Sample Size on

Cognate Detection’, Journal of Language Relationship, 11:

91–101.

(2014b) Sequence Comparison in Historical Linguistics.

Düsseldorf: Düsseldorf University Press.

. Wagner-Fischer Demo. figshare, 2016. doi: http://dx.doi.

org/10.6084/m9.figshare.3158836.v1. <https://figshare.com/

articles/Wagner_Fischer_Demo/3158836>

(2017) ‘A web-based interactive tool for creating, inspect-

ing, editing, and publishing etymological datasets’. In

Proceedings of the 15th Conference of the European Chapter

of the Association for Computational Linguistics. System

Demonstrations, pp. 9–12, Valencia: Association for

Computational Linguistics.

(2018) ‘Tossing Coins: Linguistic Phylogenies and

Extensive Synonymy’, The Genealogical World of

Phylogenetic Networks, 7/2. <http://phylonetworks.blogspot.

de/2018/02/tossing-coins-linguistic-phylogenies.html>.

et al. (2014) ‘Networks of Lexical Borrowing and Lateral

Gene Transfer in Language and Genome Evolution’,

Bioessays, 36/2: 141–50.

, Cysouw, M., and Forkel, R. (2016a) ‘Concepticon. A re-

source for the linking of concept lists’. In N. Calzolari et al.

(eds) Proceedings of the Tenth International Conference on

Language Resources and Evaluation, pp. 2393–400.

Portoro�z: European Language Resources Association (ELRA).

, Lopez, P., and Bapteste, E. (2016b) ‘Using sequence similar-

ity networks to identify partial cognates in multilingual wordlists’.

In Proceedings of the Association of Computational Linguistics

2016 (Volume 2: Short Papers), pp. 599–605, Berlin: Association

of Computational Linguistics.

Journal of Language Evolution, 2018, Vol. 3, No. 2 143

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

http://glottolog.org
http://dx.doi.org/10.6084/m9.figshare.3158836.v1
http://dx.doi.org/10.6084/m9.figshare.3158836.v1
https://figshare.com/articles/Wagner_Fischer_Demo/3158836
https://figshare.com/articles/Wagner_Fischer_Demo/3158836
http://phylonetworks.blogspot.de/2018/02/tossing-coins-linguistic-phylogenies.html
http://phylonetworks.blogspot.de/2018/02/tossing-coins-linguistic-phylogenies.html

, Greenhill, S. J., and Forkel, R. (2017a) LingPy. A Python

Library for Historical Linguistics. Jena: Max Planck Institute

for the Science of Human History, doi: https://zenodo.org/

badge/latestdoi/5137/lingpy/lingpy.<http://lingpy.org>.

, , and Gray, R. D. (2017b). ‘The Potential of

Automatic Word Comparison for Historical Linguistics’,

PLOS One, 12/1: 1–18.

et al., eds. (2018) Concepticon. A Resource for the

Linking of Concept List. Jena: Max Planck Institute for the

Science of Human History.<http://concepticon.clld.org/>.

Maddison D. R., Swofford, D. L., and Maddison W. P. (1997)

‘NEXUS: An Extensible File Format for Systematic

Information’, Systematic Biology, 46/4: 590–621.

Matisoff, J. A. (2015) The Sino-Tibetan Etymological

Dictionary and Thesaurus Project. Berkeley: University of

California.

Moran, S. and Cysouw, M. (2017) The Unicode Cookbook for

Linguists: Managing Writing Systems Using Orthography

Profiles. Zürich: Zenodo. doi: 10.5281/zenodo.290662.

<https://doi.org/10.5281/zenodo.290662>.

, McCloy, D. and Wright, R., eds. (2014) PHOIBLE

Online. Leipzig: Max Planck Institute for Evolutionary

Anthropology.<http://phoible.org/>.

Morgenstern, B. et al. (1998) ‘Segment-based scores for pairwise

and multiple sequence alignments’. In J. Glasgow (eds),

Proceedings of the Sixth International Conference on

Intelligent Systems for Molecular Biology, pp. 115–21. AAAI

Press: Menlo Park.

Needleman, S. B. and Wunsch, C. D. (1970) ‘A Gene Method

Applicable to the Search for Similarities in the Amino Acid

Sequence of Two Proteins’, Journal of Molecular Biology, 48:

443–53.

Newman, M. E. J. (2006) ‘Finding Community Structure in

Networks using the Eigenvectors of Matrices’, Physical

Review E, 74/3: 1–19.

Notredame, C., Higgins, D. G., and Heringa, J. (2000)

‘T-Coffee’, Journal of Molecular Biology, 302: 205–17.

Pérez, F. and Granger, B. E. (2007) ‘IPython: A System for

Interactive Scientific Computing’, Computing in Science and

Engineering, 9/3: 21–9.

Proki�c, J., Wieling, M., and Nerbonne, J. (2009) ‘Multiple se-

quence alignments in linguistics’. In Proceedings of the EACL

2009 Workshop on Language Technology and Resources for

Cultural Heritage, Social Sciences, Humanities, and Education,

pp. 18–25. Athens: Association for Computational Linguistics.

Rama, T. et al. (2017) ‘Fast and unsupervised methods for multi-

lingual cognate clustering’. CoRR, abs/1702.04938. <http://

arxiv.org/abs/1702.04938>.

et al. (2018) ‘Are automatic methods for cognate detection

good enough for phylogenetic reconstruction in historical lin-

guistics?’ In Proceedings of the North American Chapter of

the Association of Computational Linguistics. New Orleans:

Association for Computational Linguistics.

Ronquist, F., van der Mark, P., and Huelsenbeck, J. P. (2009)

‘Bayesian Phylogenetic Analysis Using MrBayes’, in Lemey P.,

Salemi M., and Vandamme A. -M. (eds) The Phylogenetic

Handbook. A Practical Approach to Phylogenetic Analysis

and Hypothesis Testing, 2nd edn, pp. 210–66. Cambridge:

Cambridge University Press.

Rosvall, M. and Bergstrom, C. T. (2008) ‘Maps of Random

Walks on Complex Networks Reveal Community Structure’,

Proceedings of the National Academy of Sciences of the

United States of America, 105/4: 1118–23.

Smith T. F. and Waterman M. S. (1981) ‘Identification of

Common Molecular Subsequences’, Journal of Molecular

Biology, 1: 195–7.

Sokal, R. R. and Michener, C. D. (1958) ‘A Statistical Method

for Evaluating Systematic Relationships’, University of

Kansas Scientific Bulletin, 28: 1409–38.

Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994)

‘CLUSTAL W’, Nucleic Acids Research, 22/22: 4673–80.

Wagner, R. A. and Fischer, M. J. (1974) ‘The String-to-string

Correction Problem’, Journal of the Association for

Computing Machinery, 21/1: 168–73.

Wheeler, W. C. and Whiteley, P. M. (2015) ‘Historical

Linguistics as a Sequence Optimization Problem: The

Evolution and Biogeography of Uto-Aztecan Languages’,

Cladistics, 31/2: 113–25, 2015.

Wichmann, S., Holman, E. W., and Brown, C. H. (2016) The

ASJP Database. Jena: Max Planck Institute for the Science of

Human History.<http://asjp.clld.org>.

144 Journal of Language Evolution, 2018, Vol. 3, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/article/3/2/130/5050100 by guest on 27 N

ovem
ber 2020

https://zenodo.org/badge/latestdoi/5137/lingpy/lingpy
https://zenodo.org/badge/latestdoi/5137/lingpy/lingpy
http://lingpy.org
http://concepticon.clld.org/
https://doi.org/10.5281/zenodo.290662
http://phoible.org/
http://arxiv.org/abs/1702.04938
http://arxiv.org/abs/1702.04938
http://asjp.clld.org

	lzy006-TF4
	lzy006-TF5

