Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Direct analysis of sulfate reducing bacterial communities in gas hydrate-impacted marine sediments by PCR-DGGE

MPG-Autoren
/persons/resource/persons210380

Formolo,  M.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bagwell, C., Formolo, M., Ye, Q., Yeager, C., Lyons, T., & Zhang, C. (2009). Direct analysis of sulfate reducing bacterial communities in gas hydrate-impacted marine sediments by PCR-DGGE. Journal of Basic Microbiology, 49, S87-S92.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-CCB1-1
Zusammenfassung
Molecular investigations of the sulfate reducing bacteria that target the dissimilatory sulfite-
reductase subunit A gene (dsrA) are plagued by the nonspecific performance of conventional
PCR primers. Here we describe the incorporation of the FailSafe™ PCR System to optimize en-
vironmental analysis of dsrA by PCR amplification and denaturing gradient gel electrophoresis.
PCR–DGGE analysis of dsrA composition revealed that SRB diversity was greater and more
variable throughout the vertical profile of a marine sediment core obtained from a gas hydrate
site (GC234) in the Gulf of Mexico than in a sediment core collected from a nearby site devoid
of gas hydrates (NBP). Depth profiled dsrB abundance corresponded with sulfate reduction rates
at both sites, though measurements were higher at GC234. This study exemplifies the numeri-
cal and functional importance of sulfate reducing bacteria in deep-sea sedimentary environ-
ments, and incremental methodological advancements, as described herein, will continue to
streamline the analysis of sulfate reducer communities in situ.