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Acceleration of steady-state lattice Boltzmann simulations for exterior flows
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The simulation of a stationary fluid flow past an obstacle by the lattice Boltzmann method (LBM) in two
dimensions is discussed. The combination of second-order expressions for far-field boundary conditions and a
suitable treatment of the no-slip boundary condition at the obstacle surface with the nested grid-refinement
technique can be applied to the LBM, resulting in a highly efficient method for the treatment of exterior flows.
Furthermore, via replacing the nested time stepping by local time stepping, the resolution process can be
substantially accelerated. A highly accurate drag coefficient was used to make an error assessment for various
no-slip boundary conditions imposed on the obstacle surface. The analysis showed that the equilibrium method
for treating the no-slip conditions is superior to halfway bounce-back and full-way bounce-back no-slip con-
ditions when the relaxation time 7=1. Also a 7-dependence test was made to evaluate the performance of
different methods in the treatment of the no-slip boundary conditions.
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I. INTRODUCTION

The lattice-Boltzmann method (LBM) has been proved to
be a promising method in simulating multiphase flows, sus-
pension flows, and fluid flow in porous media [1]. Compared
with other methods, the LBM has several advantages, such
as its suitability for parallel algorithms, simple structure,
simplicity in coding, and the straightforward incorporation of
microscopic interactions, which are well demonstrated in the
literature [2]. However, a low convergence rate in reaching
the steady-state solution is a widely accepted defect of the
standard LBM (see Ref. [3] and references therein). Some
general methods for achieving higher computational effi-
ciency with the LBM used grid refinement [4-10], local
time-stepping methods [11], and code optimization [12-16].
In spite of all these suggestions, the efficiency of the LBM is
still a severe issue when applied to low-Reynolds-number
exterior flows, which play an increasingly important role in
applications, such as marine aggregates [17-20] and sedi-
mentation of small particles in the context of climate predic-
tion [21,22]. A major difficulty in this problem stems from
the large extent of the computational domain required. In
these cases, the fluid velocity far from the obstacle is as-
sumed to be asymptotically constant, and the forces exerted
on the body need to be computed accurately. An accurate and
efficient treatment of such flows depends significantly on
how the boundary conditions at the far-field as well as at the
obstacle surface are implemented. Far field boundary condi-
tions can be approximated by an artificial boundary condi-
tion at the truncated boundary. A straightforward approach
consists of using the asymptotic velocity condition u=u., on
the numerical domain boundaries. Although this method is
easy to implement, it was found to be inappropriate for the
needs of numerical modeling, as it requires the use of exces-
sively large domains [23,24]. Other approaches to this prob-
lem use extrapolation schemes on the boundaries so as to
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ensure a vanishing gradient perpendicular to the boundaries
for the velocities [25] or fix the velocity in the upstream
boundary and pressure in the downstream boundary. The
main drawback of these approaches is that they are insuffi-
cient for imposing the asymptotic velocity u.. on the fluid
and, therefore, cannot be used on all boundaries. Further-
more, it is difficult to ensure conservation of mass and mo-
mentum across domain boundaries. Bonisch et al. [23] intro-
duced first-order expressions for the far-field boundary
conditions in an explicit form, which depends on the total
drag exerted on the obstacle. Using the finite-element
method for the calculation of drag at a rectangular obstacle,
they demonstrated that the extent of the computational do-
main, and with this the computational time, can be drasti-
cally reduced. While studying the same problem, Latt et al.
[24] have demonstrated the applicability of first-order ex-
pressions for the treatment of the far-field boundary condi-
tions in the LBM. Recently, Bonisch er al. [26] extended
their previous formulation to a second-order expression and
concluded that the extent of the computational domain can
be reduced by one order of magnitude, when compared with
the first-order expression.

On the other hand, the appropriate treatment of the no-slip
boundary conditions on the obstacle surfaces can lead to a
significant reduction of the mesh points required for numeri-
cal discretization of the obstacle in question. For the treat-
ment of the no-slip boundary condition at the solid surfaces
of obstacles, many suggestions have been made in the litera-
ture. First, one of the most basic algorithms is the bounce-
back rule, which has undergone many modifications such as
Bouzidi’s rule [27], boundary-fitting method [4] and its im-
provement [28], link-averaged one-point approach [29], etc.
All these schemes reduce to the half-way bounce-back con-
dition (HBBC) once the solid wall is located in the middle of
two subsequent grid points [30]. In contrast to this, the mul-
tireflection (MR) method [31,32] utilizes a more general clo-
sure relation, which is accurate up to third order in the
Chapman-Enskog expression. It should be mentioned that
the MR method does not reduce to bounce-back, even for
rectangular boundaries and their midway locations [30,33].

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.78.056701

BO LIU AND ARZHANG KHALILI

Due to its nonlocal properties, it is not considered in this
study. The second approach in treating the no-slip boundary
condition at solid surfaces consists of setting equilibrium dis-
tribution functions [equilibrium method (EM)] at the bound-
ary and its modification with a suitably modified nonequilib-
rium part of distribution, such as that of the Inamuro method
[34], Zou-He method [35], Halliday method [36], Hollis
method [37], and Latt’s regularized method [38,39]. All these
schemes reduce to the equilibrium method, when the relax-
ation time 7 in Bhatnagar-Gross-Krook (BGK) model
[40,41] is equal to unity.

Due to the existence of a rectangular geometry in the
present study, however, the location of the solid boundary
points are aligned either with the lattice middle points or
with the lattice points themselves. Therefore, among the
methods mentioned in both categories, it would have been
sufficient to consider the HBBC and EM when 7=1. How-
ever, for the sake of comparison, a 7 dependence test has
been performed, for which all the methods listed under the
second category have been included. Furthermore, for the
sake of a consistent comparison, also the full-way bounce-
back condition (FBBC) rule has been considered, as in both
the FBBC and EM the solid boundary is located at lattice
points.

A further important issue in accelerating the LBM for
steady-state flows is the kind of time stepping-technique ap-
plied. In contrast to the traditionally used nested time step-
ping, in which two time steps on finer grids have to be per-
formed during one time step on coarser meshes [4-7,24,42],
we use in the present study a local time stepping (same time
steps on all refinement levels). The reason is that the accu-
racy of the time interpolation is not crucial in stationary
flows, considered here. This itself accelerates the conver-
gence rate of the LBM, drastically.

Many solution methods for the lattice Boltzmann equa-
tions have been suggested, such as the single-relaxation-time
lattice Boltzmann model (SRT, also known as BGK), two- or
multiple-relaxation time (TRT, MRT) models [32,43,44], en-
tropic lattice Boltzmann model (ELB) [45,46], and cascaded
lattice Boltzmann model (CLBM) [47]. As the objective of
this study is to emphasize the advantage of asymptotic far-
field boundaries compared to their conventional treatments,
the most simple and popular model, the BGK model, has
been considered. A comparative study of different LBM
models will be performed in a future study.

In the present study, we demonstrate that the second-order
asymptotic expressions for the treatment of the far-field
boundary conditions provide a highly efficient method for
studying exterior flows.

The paper is organized as follows. Section II briefly de-
scribes the LBM model. Section III presents the asymptotic
expressions of the boundary conditions. The numerical
implementation including the refinement technique, bound-
ary condition treatment, and force evaluation are brought for-
ward in Sec. IV. Following this, in Sec. V, the computational
results are discussed. Finally some concluding remarks are
made in Sec. VL
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II. LATTICE-BOLTZMANN MODEL FOR THE
GENERALIZED NAVIER-STOKES EQUATION

Frequently, the nine-velocity D2Q9 BGK model is used
for two-dimensional calculations, leading to flow equations
given by [40,41]

Jios+ e+ 8) = ) = [ D en], (1)

where f;(x,t) is the single-particle distribution function at
position x and time ¢ along the direction represented by the
subscript i. Furthermore, & is the time increment, 7 is the
nondimensional relaxation time, and ﬁeq) is the equilibrium
distribution function, defined as

2)

e = ol 14 e-u, uu:(ee; — c?l)]

' P cf 26? '
in which w; is the weight, ¢, is the speed of sound (set as
cf= 1/3), and I, stands for unit tensor. In the D2Q9 model,
the discrete velocities are given by ey=0 and e;
=\i(cos 6;,sin 6)c, with N\;=1, 6;=(i—1)7/2 for i=1-4 and
N=v2, 6,;=(i—=5)m/2+ /4 for i=5-8. Here, c=5,/ 5, and 5,
is the lattice spacing. The weights are given by wy=4/9,
w;=1/9 for i=1-4, and w;=1/36 for i=5-8.

Accordingly, the fluid density and velocity are given by

pZEfi’ (3)

P“=Eeifi’ (4)

l

respectively.
Through the Chapman-Enskog procedure [48], the fol-
lowing macroscopic equations can be derived from Eq. (1):

Ip
—+V. =0, 5
P (pu) (5)
o
%+V-(puu):—Vp+ vV - [p(Vua+uV)], (6)
where p=cfp is the pressure and the effective viscosity is
defined as
1 1
V=§<T— 5)5, (7)

In the incompressible limit—i.e., p= py=const—Egs. (5)
and (6) reduce to the generalized Navier-Stokes equation.

III. ASYMPTOTIC EXPRESSIONS FOR THE BOUNDARY
CONDITION AT THE TRUNCATED DOMAIN

The solution to the incompressible Navier-Stokes equa-
tion can be expanded in a finite series as a function of formal
parameters depending on the drag and lift coefficients of the
obstacle [23]. Tt is recognized that at a certain distance from
the center, the structure of the flow does not depend on the
specific details of the obstacle geometry, but only on the drag

056701-2



ACCELERATION OF STEADY-STATE LATTICE...

PHYSICAL REVIEW E 78, 056701 (2008)

N

(a)

(b)

FIG. 1. (a) Structure of the numerical grid close to a rectangular obstacle (black vertical box). The flow goes from left to right. (b)
Schematic representation of the interface between two adjacent grids. The values in the hanging node P are obtained from the cubic

interpolation of nodes P;—P,.

and lift coefficients, resulting in the prescription of an ex-
plicit vector field that can be used as a boundary condition on
the numerical domain boundaries. The asymptotic expansion
(of order N) for the velocity u can be given as [26]

n

N
uy(x,y) = (1,0) + 2 2 w,,,,(x,). (8)

n=1 m=1

The conventional constant velocity boundary condition can
be regarded as the zeroth-order term of the expansion on the
velocity field u=(u,v) at r=(x,y)—i.e., u=(u,,,0). The first-
order term reads [23]

d b d 1
u(x,y)=ux<_ 2x 2t 2y 2_0(x)?76_y2/4x),
TX +Yy TX +Yy N Vx
9)
d 'y b x d y _»
V)=t — 55 =m0 = e,
v(x,y)=u (77x2+y2 TP+ (X)ZV,,WX3/26 )
(10)

with 6 as the Heaviside function [i.e., 8(x)=1 for x>0 and
6(x)=0 for x<0] and d=F, /(2plu®) as the drag and b
=F y/(2plui) the lift coefficients. The parameters F, and F,
are the drag and lift force acting on the obstacle, and [/
=v/u, is the viscous length, depending on the kinematic
viscosity v.

The second-order term of the expansion is rather compli-
cated and is taken from Bénisch er al. [26]. For the sake of
completeness, it is also given in the Appendix.

IV. NUMERICAL IMPLEMENTATION

A. Geometrical configuration and the refinement technique

The geometrical configuration studied is the flow past a
rectangular obstacle as shown in Fig. 1(a). The LBM uses a
grid with high resolution close to the center. Under this con-
dition, the fluid is subject to sharp pressure and velocity
variations. A grid refinement technique is applied with a hi-
erarchy of nested grids that have a successively finer reso-
lution as they approach the system center. This hierarchy of
the nested grids is schematically represented in Fig. 1(a),
while the interface between coarse and fine grids is shown in
Fig. 1(b). In the finest grid (the immediate vicinity of the
obstacle), the spatial and temporal step sizes (5, and &,) have
been set to unity, while they are multiplied by 2 as we move
from finer to coarser grids. This choice causes the velocity u
to be the same from one refinement level to another. The
geometry and the input parameters taken here are the same as
in previous benchmark studies [23,24,26]: the rectangular
obstacle is located in the center with an obstacle height (A)
to a width ratio of 5:1, and the Reynolds number is given by
Re=Au./v=1. All simulations were run on quadratic do-
mains of varying refinement levels. In each refinement level,
the system sizes were 33 X33, 65X 65, 129X 129, and 257
X257 corresponding to obstacle heights of A=20, 40, 80,
and 160, respectively. An exception is given when we used
the HBBC scheme, for which the obstacle height were A
=25, 45, 85, and 165. The relaxation time 7 was set to unity,
except when the effect of the 7 dependence was studied. It
should be mentioned that the parameters u, A, and v are
expressed in lattice units. The real physical units or dimen-
sionless units can be obtained by redefining the time and
length scales.

B. Treatment of the boundary conditions in the LBM

Two different types of boundary conditions have to be
implemented in the LBM, simultaneously. These are

056701-3



BO LIU AND ARZHANG KHALILI

asymptotic boundary conditions in the far-field and no-slip
boundary conditions at the obstacle surfaces.

Asymptotic boundary conditions, as traditionally imple-
mented [34,35], are subject to numerical instabilities for too
coarse grids. Latt er al. [38,39] proposed to treat them by
local and nonlocal regularized schemes. The former is com-
puted from the first-order stress tensor I1', whereas the latter
can be obtained from the strain rate S. Latt et al. [38,39] also
pointed out that the accuracy of the simulation is improved
when using the nonlocal scheme. In addition to this, we
found an improved stability behavior of the nonlocal regu-
larized method compared to the local one. Therefore, in all
simulations of the present study the nonlocal regularized
scheme has been chosen.

Due to the existence of a rectangular geometry in the
present study, the HBBC, FBBC, and EM were applied when
7=1. When conducting the 7-dependence test, in addition to
these, five other methods—namely, those of Inamuro et al.
[34], Zou and He [35], Halliday et al. [36], Hollis et al. [37],
and Latt’s regularized method [38,39]—were considered. Al-
though these methods were already discussed in the literature
and recently reviewed by Latt er al. [39], yet two issues
remained open. The first issue concerns the implementation
of the corner nodes. To ensure an equal treatment of the
corner points in all methods, the regularized method of Latt
[38] has been employed here. The second point is the calcu-
lation of the strain rate S, which is needed when using the
methods of Halliday et al. and Hollis et al.. For doing this,
both authors make use of finite differences. However, our
simulations reveal (data not shown here) that numerical in-
stabilities are encountered for 7>2. In order to bypass this
problem, here we calculate the stress tensor, S, from the
first-order stress tensor I1' [48].

C. Force evaluation

Two different approaches for the force evaluation exist in
the LBM. The first one is the momentum-exchange method,
while the second one is the stress-integration method [49].
Usually, the momentum-exchange method is superior to the
stress-integration method. The reason is that the former is
based directly on the distribution functions, while the latter is
derived from further processing of the distribution functions.
In addition, the momentum-exchange method uses interpola-
tions, whereas the stress-integration method is based on ex-
trapolations [49]. For this reason, we employed the
momentum-exchange method in the present study.

V. RESULTS AND DISCUSSION
A. Grid refinement

As the far-field boundaries depend on the unknown drag
and lift coefficients (d and b), it is necessary that they be
updated. After their updating, from the far-field boundaries
toward the obstacle, spurious pressure waves will propagate
through the entire flow field, which partially oscillate back
and forth. Due to the very slow decay of these pressure
waves, the convergence rate of the LBM is drastically re-
duced. This has been the reason for different grid-refinement
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FIG. 2. Convergence histories of drag coefficients d using linear
and cubic spline interpolations (see text). The height of the obstacle
was A=45. A first-order asymptotic boundary condition far away
from the center and the HBBC on the surface of the obstacle were
used. To explore the effect of interpolation, a total number of 65
X 65, 129X 129, and 257 X 257 square nodes were taken in each
refinement level. For these arrangements almost equal system sizes
to obstacle height ratios were generated by using eight, seven, and
six refinement levels, respectively. The figure shows clearly that the
cubic spline interpolations are much more accurate than the linear
ones.

schemes used to accelerate the LBM performance.

In grid refinements, there exists an interface between the
coarse and the fine grids [see Fig. 1(b)]. The overlap of the
interface is due to the fact that missing distributions on one
refinement level have to be computed from the adjacent re-
finement level. Hence, to ensure the continuity of pressure,
velocity, and also of their derivatives, the nonequilibrium
part of the distribution function, ¢4 (with f**4=f—f%9), has
to be rescaled [4-7,42]. We used the method described by
Dupuis and Chopard [7], which allows 7=1. When imple-
menting a linear interpolation, the “hanging” node P can be
obtained from P, and P; [see Fig. 1(b)]. In contrast to this,
when the linear interpolation is replaced by a cubic spline,
the hanging node P can be formulated as a function of Py,
P,, P;, and P,. Without further illustrations, this issue was
emphasized in previous studies [4-6,42]. However, the
quantification of the differences and the resulting advantages
are highlighted here. As a direct comparison of the differ-
ences between these two interpolation methods is not pos-
sible in exterior flows (lack of analytical solutions), the fol-
lowing, rather nontrivial technique is suggested. By fixing
the obstacle height (A) and the total system size (L), the grid
refinement levels can be changed, resulting in an automatic
alteration of the number of the square nodes in each refine-
ment level. For example, as shown in Fig. 2, we fix the
height of the obstacle (A) to 45 and the total system size (L)
to 8193 X 8193, corresponding to an equidistant dx=1 when
no grid refinements take place. From here, we begin to

056701-4



ACCELERATION OF STEADY-STATE LATTICE...

coarsen the spatial spaces in different (2, 3, ..., 7, 8) levels,
resulting in 4097 X 4097, 2049 X2049,...,129 X129, 65
X 65 square nodes, respectively. The interpolation errors, of
course, increase when more levels are implemented.

Figure 2 demonstrates clearly that cubic spline interpola-
tions are superior to the linear ones. The reason is that the
drag coefficient obtained from linear interpolation depends
strongly on the refinement level, whereas it is not the case
for cubic splines because spatial asymmetries are drastically
reduced. For example, when 65 X 65 square nodes are taken,
the difference between the drag coefficient d obtained from
these two interpolation methods is approximately 6%. There-
fore, an increased accuracy of the interpolations can be
achieved by cubic splines, which are highly recommended in
connection with the LBM.

Another important issue in the concept of LBM accelera-
tion is the choice of the time-stepping scheme, which decides
the sequences by which the grid levels are updated. From
time-stepping scheme and the convergence histories of the
drag coefficient, the total iteration number for the calculation
can be obtained. The acceleration rate can be easily esti-
mated since CPU time is proportional to the iteration num-
ber. In the traditionally used nested time stepping, one time
step on the coarser grids is run during two time steps on the
finer ones [4-7,24,42], leading to 2V—1 total time steps for
one loop, from which many are, in fact, not necessary. To
bypass this problem, a suitable choice of time-stepping
scheme can be made by making use of the fact that time
interpolation does not matter in stationary flows considered
here.

This, namely, allows us to introduce a “local time-
stepping scheme,” in which a single time step in all refine-
ment levels is applied. By doing so, only a total number of N
time steps are required in one loop. In other words, com-
pared to the nested time stepping, in the local time stepping,
the computational time is reduced by (2¥—1)/N. When using
8 coarsening levels, the local time stepping requires 30 times
fewer iterations compared to the nested time stepping (see
Fig. 3). It should be mentioned that this observation is inde-
pendent of the choice of A. The real benefit of the local time
stepping becomes pronounced when an increase of N is nec-
essary in the problem of interest. Although the refinement
level number is limited to 8 in the BGK model for 7=1, it
can be extended up to 12 when the MRT model is employed

[9].

B. Treatment of far-field boundary conditions

Due to the symmetry of the obstacle, the lift coefficient b
was equal to zero in all simulations. Figure 4(a) shows the
results of a drag coefficient calculation as a function of the
system size (L) for an obstacle height of A=160 when using
an EM scheme. As shown in Fig. 4(a), the drag coefficient
obtained by the first-order boundary condition approaches
the reference solution from the top, whereas that from the
second-order boundary condition approaches the reference
solution from the bottom. Such asymptotic behaviors were
also found when using finite-volume methods for drag cal-
culation of the same geometry [26]. It should be mentioned
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FIG. 3. Convergence histories of the drag coefficients d using
local and nested time stepping. The refinement level was fixed to 8.
In each refinement level, a total number of 65X 65, 129 X129, and
257 X 257 square nodes were used for obstacle heights of A=45,
A=85, and A=165, respectively, resulting in almost equal system
sizes to obstacle height ratios. A first-order asymptotic boundary
condition far away from the center and the HBBC on the surface of
the obstacle were used. Due to the extremely large iteration number
necessary for the convergence of the drag coefficient for the nested
time-stepping method with A=165, the computations were termi-
nated. The figure shows clearly that much fewer iteration numbers
are required by local time stepping compared with the nested time

stepping.

that, for a more precise comparison between the results of
the drag factor obtained from the BGK model and the refer-
ence value of Bonisch er al. [26], comparatively large system
sizes were necessary. The latter is, however, known to lead to
numerical instabilities in the BGK model [9]. Hence, to do
away the need for large system sizes, one may extrapolate
the system size to infinity. With this technique, we obtained a
drag factor of d=2.5147. It should be emphasized that this
value can be further improved by taking larger obstacle
heights A, which lead to a reduction of the discretization
error. The relative errors of the drag coefficients with respect
to this value are plotted in Fig. 4(b). As depicted in the
figure, compared with the zeroth- and first-order asymptotic
boundary conditions, the second-order one substantially re-
duced the computational cost for determining the drag to a
given precision. It should be mentioned that the additional
computational time needed for the evaluation of the second-
order boundary terms is negligible. The drag coefficient d
and its relative error obtained from the traditional boundary
condition (fixed constant velocity in the upstream boundary
and a constant pressure in the downstream boundary) are
also plotted in Fig. 4. Obviously, this kind of boundary con-
dition produces only a slight improvement over the zeroth-
order boundary condition and cannot compete with the
second-order boundary conditions.
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FIG. 4. (a) Drag coefficient d as a function of the system size with asymptotic far-field boundary conditions of the zeroth, first, and
second order, as well as traditional boundary condition implementation (fixed constant upstream velocity and constant downstream pressure).
The EM scheme is applied on the surface of the obstacles. The height of the obstacle was A=160, and a total number of 257 X 257 square
nodes were used in each refinement level. The dashed line in the figure is the reference solution of Bonisch ef al. [26] with d=2.5145. (b)
Relative error of the drag coefficient according to the reference solution d=2.5147 obtained from the extrapolation of the system size to
infinity. Both figures show clearly that second-order asymptotic boundary conditions lead to more accurate results.

C. Treatment of no-slip boundary conditions with =1

The effect of no-slip boundary conditions on d is shown
in Fig. 5. As can be seen, the drag is overestimated by the

2.56
= 254
g crrsef G HBBC, 1st-order
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o
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Ratio of system size to the obstacle height

FIG. 5. Drag coefficient d as a function of the system size with
first- and second-order asymptotic boundary conditions far away
from the center. The FBBC, HBBC, and EM schemes were applied
at the obstacle surfaces. The height of the obstacle is A=160 (for
the HBBC, A=165), and 257 X 257 square nodes were used in each
refinement level. The dashed line is the reference solution of Bo-
nisch et al. [26] with d=2.5145. The figure shows that first-order
asymptotic boundary conditions require larger system sizes than the
second-order one.

FBBC scheme and underestimated by the HBBC, while the
drag coefficient d from the EM lies in between and closer to
the reference solution d=2.5145. Furthermore, since the dis-
cretization error from a no-slip boundary condition depends
on the obstacle height (A), it is important to study its effect
on the drag coefficient d. As can be seen in Fig. 6 the drag
obtained from the FBBC scheme strongly depends on A. The
dependence of the drag on A obtained for the EM scheme
was weaker than that of the other two no-slip boundary con-
ditions. As the trend shows the drag coefficients display an
asymptotic behavior for large system sizes and can be deter-
mined by extrapolation (extrapolation to infinity). To reduce
the truncation error of the far-field asymptotic boundary con-
dition and the discretization error at the obstacle surface,
both the system size (L) and obstacle height A had to be
extrapolated to the infinity, respectively. This is done in the
following manner: Each drag coefficient for a given A in Fig.
7(a) corresponds to a value that was obtained using the ex-
trapolation procedure discussed above. In Fig. 7(a) one can
also see that the drag coefficients obtained from implemen-
tation of different no-slip conditions tend toward the refer-
ence value, but with different speed. The quantification of the
relative errors made by all three no-slip boundary conditions
with respect to d is made in Fig. 7(b). As expected, the low-
est relative errors are associated with the EM scheme. For
simplicity, the dotted lines are added to the figure represent-
ing the —1 and -2 exponents of the power-law functions of
the relative errors. As can be seen, the scaling behavior of
relative errors follows a first-order trend for both bounce-
back conditions. Within the obstacle height (A) ranges stud-
ied here, however, the EM scheme behaved partially linear
and partially quadratic. The cause of this might be due to the
combined effect of first-order accurate pressure and second-
order accurate velocity [30].
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D. Effect of the variable 7 on the drag coefficient

As mentioned already in the literature [33,50], the BGK
model is sensitive with respect to the choice of relaxation
time 7. Hence, in order to evaluate the use of different meth-
ods, a 7-sensitivity analysis has been performed for calcula-
tion of the drag coefficient. To do this, various no-slip
boundary condition treatment techniques, such as those sug-
gested by Inamuro ef al. [34], Zou and He et al. [35], Halli-
day et al. [36], Hollis et al. [37], and Latt [38], along with
the HBBC, FBBC, and EM schemes, were applied. As illus-
trated in Fig. 8, the drag coefficients obtained from these
methods reduce monotonically with larger 7. When 7 in-
creased, the error in the drag coefficient produced by the
FBBC method decreased first and increased after 7=4.2.
Note that this value will change when the obstacle height is
varied. In contrast to this, the drag coefficient calculated us-
ing the HBBC led to a continuous decrease and, within the 7
range studied, could not reach the reference value at all. Fur-
thermore, all equilibrium-based methods turned out to match
with the reference value around 7= 1.

As shown by the dot-diamond line in Fig. 8, compared to
other methods of this category, the coefficient is ill behaved
in the entire 7 range, except for 7=1. The reason is that the
EM takes into account only the zeroth-order contribution to
the hydrodynamics, while other EM-based methods (solid
lines in the figure) do consider the first-order term too.
Among these methods, the Zou-He method shows a better
accuracy in the larger-7 region, while others differ little.

VI. CONCLUSIONS

Enhancement of the accuracy and the convergence rate of
the lattice Boltzmann method is a severe issue when it is

102

—_
o
[
L |

Relative error of the drag

- | ——=—— FBBC
—<—— HBBC
—s— EM

-4 1 R
10 50 100
(b) A

150

FIG. 7. (a) Drag coefficient d as a function of the obstacle height A with the HBBC, FBBC, and EM schemes. The drag coefficients were
obtained from extrapolation of the system size to infinity. The dashed line is the reference value of d=2.5145 [26]. (b) Relative errors of the
drag coefficient computed from different schemes. The two dotted lines represent a power-law function with the slopes of —1 and —-2. As
shown, the drag coefficients obtained from all three no-slip boundary condition types are likely to converge toward the reference value.
However, as demonstrated, the convergence speed of the EM scheme is superior to the full-way bounce-back and halfway bounce-back

conditions.
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FIG. 8. Drag coefficient d as a function of relaxation time 7. The
FBBC, HBBC, EM, Halliday, Hollis, Inamuro, Latt, and Zou-He
schemes were implemented at the obstacle surface. The obstacle
height A was 160 (in all cases, except in the HBBC with 165). All
computations have adopted 257 X 257 square nodes in each refine-
ment level. Second-order asymptotic far-field boundary conditions
have been applied. The drag coefficients were obtained from ex-
trapolation of the system size to infinity. The dashed horizontal line
represents the reference solution of Bonisch er al. [26] with d
=2.5145. As can be seen in the figure, the drag coefficients d ob-
tained from various no-slip boundary conditions are 7 dependent in
the BGK model.

applied to exterior flows. Here, we demonstrate that the com-
bination of second-order expressions for far-field boundary
conditions and a suitable treatment of the no-slip boundary
condition at rectangular obstacle surfaces results in a highly
efficient and accurate method when coupled with nested grid
refinement. Compared with the zeroth- and first-order
asymptotic boundary conditions, the second-order one sub-
stantially reduced the computational cost for determining the
drag to a given precision. For the treatment of the no-slip
boundary conditions, the equilibrium method was found to
be superior to bounce-back boundary conditions for a rect-
angular obstacle when 7=1. From the mdependence test, the
Zou-He method was found to be more accurate in large-7
regions. In addition, a further acceleration of the LBM in
steady-state flows may be obtained by a local time-stepping
technique.
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APPENDIX: ASYMPTOTIC EXPANSION FOR u OF
ORDER N

We define the dimensionless coordinates X=x//, dimen-
sionless vector field u, and a dimensionless pressure p given
by

PHYSICAL REVIEW E 78, 056701 (2008)

(%) = u(x)/u., (A1)

PR = p(x)/(pul). (A2)

After dropping the tilde, we have the following
asymptotic expansion (of order N) for the velocity u, which
can be given by

N n
llN(X,y) =€+ E 2 un,m(x’y)’

(A3)
n=1 m=1
where e,=(1,0). To first order we have
2
up (6y) =uy g(xy) = 0(x)—=—rFe™ - (A4)

T \NX

d y _»
vl,l(x7y) =vl,l,E(x’y) - e(x) — 3/26 . /4x’ (AS)
2NTX

with 6 the Heaviside function [i.e., 8(x)=1 for x>0 and
0(x)=0 for x<<0], and

d x b vy
+

) =— - , A6
”1,1,E(X y) sz+y2 7mz_’_yz (A6)
d vy b «x
y)=— -— . A7
Ul,l,E(x y) J +y2 J +y2 (A7)
To second order we have
bd Inx y _),z/4x’ (A8)

)= 0 a
u2,1(x Y) (x)27_r’;/2 x \s"xe

bd 1 1y? »
Uz’l(x,y) = H(X)WW[IH x(— 1+ 5;) + Z]e Y /4x,

(A9)

and

Up o (X,y) =ty 5 g(X,y) + B(X)dz)l_cfl ( %> + )\G(x)fmd%)%{ (l

Vx
1 2
Vx 2 x Vx

da* 1 y
V22(X,y) = U2 £(x,y) + 0(x) =5 {f(@) —fa sgn(y)}

2 x
y Y )3 1 (
+=f'| = | +NOx)fd =<5 | 1
\e’;f \E) f 4x5/2|:
1y?\ 1y?
+ M)%(l - _y_) -4 sgn(y) e
Vx/ Vx 8 x 4 x

(A11)

where
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&’ |y| 1 r
u2,2,E(xvy)=fw > _—72 >

— Al2
2 P &) ( )

d* 1
Em(— - X, x—'}) (A13)

ry ryr r

UZ,2,E(x’.V) =fu

with r= v"x2+y2, ry=\2r+2x, N\=1, fw=—1/\«"%, and
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1 z 1 z 2
(z =——erf<—> +—erf<—>e—z " (Al4
N N AT b )

where “erf” is the error function—i.e., erf(z)=2/ N Jiexp
- 2de.

The material mentioned here has been taken from the
work of Bonisch et al. [26].
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