Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domain‐Based Local Pair Natural Orbital Coupled Cluster Study

MPG-Autoren
/persons/resource/persons216804

Bistoni,  Giovanni
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons125031

Auer,  Alexander A.
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Chemical Energy Conversion, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bistoni, G., Auer, A. A., & Neese, F. (2017). Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domain‐Based Local Pair Natural Orbital Coupled Cluster Study. Chemistry – A European Journal, 23(4), 865-873. doi:10.1002/chem.201604127.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-82B8-6
Zusammenfassung
The interaction of Lewis acids and bases in both classical Lewis adducts and frustrated Lewis pairs (FLPs) is investigated to elucidate the role that London dispersion plays in different situations. The analysis comprises 14 different adducts between tris(pentafluorophenyl)borane and a series of phosphines, carbenes, and amines with various substituents, differing in both steric and electronic properties. The domain‐based local pair natural orbital coupled‐cluster (DLPNO‐CCSD(T)) method is used in conjunction with the recently introduced local energy decomposition (LED) analysis to obtain state‐of‐the‐art dissociation energies and, at the same time, a clear‐cut definition of the London dispersion component of the interaction, with the ultimate goal of aiding in the development of designing principles for acid/base pairs with well‐defined bonding features and reactivity. In agreement with previous DFT investigations, it is found that the London dispersion dominates the interaction energy in FLPs, and is also remarkably strong in Lewis adducts. In these latter systems, its magnitude can be easily modulated by modifying the polarizability of the substituents on the basic center, which is consistent with the recently introduced concept of dispersion energy donors. By counteracting the destabilizing energy contribution associated with the deformation of the monomers, the London dispersion drives the stability of many Lewis adducts.