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Nonequilibrium dynamics induced by rapid changes of external parameters is relevant for a wide range of
scenarios across many domains of physics. For waves in spatially periodic systems, quenches will alter the band
structure and generate new excitations. In the case of topological band structures, defect modes at boundaries
can be generated or destroyed when quenching through a topological phase transition. Here, we show that
optomechanical arrays are a promising platform for studying such dynamics, as their band structure can be
tuned temporally by a control laser. We study the creation of nonequilibrium optical and mechanical excitations
in one-dimensional arrays, including a bosonic version of the Su-Schrieffer-Heeger model. These ideas can be
transferred to other systems such as driven nonlinear cavity arrays.
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I. INTRODUCTION

Cavity optomechanics [1] exploits the radiation pressure
interaction to couple optical and mechanical degrees of free-
dom. A centerpiece of the physics encountered in this setting
is the parametric nature of the optomechanical interaction:
the radiation force is quadratic in the light amplitude. Upon
driving such a system by a control laser field, this results in an
effective laser-enhanced linear coupling between optics and
mechanics. Importantly, that coupling is tunable by the control
laser amplitude. This tunability sets optomechanical systems
apart from resonantly coupled light-matter systems, and it
offers time-dependent optical control, which is beneficial in
a large range of scenarios, including (as we will show) the
study of quench physics.

Leaving behind the standard system of one optical mode
coupled to one mechanical mode, we arrive at optomechan-
ical arrays (see, e.g., [2–13]). These are composed of a
set of coupled vibrational and optical modes. They can be
realized using a variety of building blocks, like photonic
crystal defect cavities or microdisk resonators (in the optical
domain), or microwave-optomechanical circuits. Although
experimentally still in their infancy [10,14–17], a variety of
promising future directions and applications have been iden-
tified theoretically, covering phenomena like band structure
engineering [3,18], topological transport [8,9,11], coupling
enhancement [5,19,20], Anderson localization [21], synchro-
nization [4,22], and quantum information processing [23].

The propagation of photons and phonons in an optome-
chanical array is described by a band structure of hybrid
photon-phonon excitations. This band structure depends on
the geometry and the underlying intrinsic coupling of neigh-
boring optical and mechanical modes. However, on top of that,
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it is also determined by the external control laser illuminating
the array.

In the present work, we show how time-dependent opti-
cal control of an optomechanical array can induce nonequi-
librium dynamics triggered by nonadiabatic changes in the
band structure. There are several actively tunable degrees of
freedom in optomechanical arrays that can change the band
structure, e.g., power and phase of the external laser, which
means that they offer great promise for studying nonadiabatic
dynamics [23–26].

In general, nonequilibrium physics produced upon changes
of a Hamiltonian’s parameters is encountered in many differ-
ent physical scenarios, ranging from the evolution of fields
in the expanding early universe to quenches through phase
transitions upon rapid cooling of a substance [27–29]. When
the parameters of a band structure are changed, existing equi-
librium excitations will be redistributed. If the quench takes
the band structure through a topological phase transition, in
a finite system topological states can be created or destroyed
at the boundaries. We will show that this kind of physics can
be explored in optomechanical arrays. Among our examples
of one-dimensional (1D) arrays, we will present a design for
an optomechanical Su-Schrieffer-Heeger (SSH) model [30],
where 0D edge states exist [31,32]. This model is considered
to be the simplest example of a band structure with topological
properties [33].

Quenches through topological phase transitions have re-
cently attracted a lot of attention [34–37]. It is interesting to
understand how different properties of many-body systems,
such as integrability [38–40] or topological order [34,41–43],
interplay with nonequilibrium dynamics of these systems and
how topological properties such as the Chern number or Berry
phase would evolve through a quench [44–46]. For instance,
Ciao et al. investigated some of these questions in the Haldane
model [47]. Similar investigations has been done for the SSH
model in cold atoms [32].
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FIG. 1. Schematic picture of a 1D optomechanical array. The
blue and yellow circles represent the optical and mechanical modes,
respectively. Note that although schematically we separated them
spatially, they may occupy the same physical space. Blue and yellow
links represent the optical and mechanical coupling between different
sites of the lattice, and their strength is indicated with J and K ,
respectively. The red links show the optomechanical coupling on
each site, the strength of which is given by g.

Although optical lattice experiments (like [31,32]) are
naturally suited for studying quench physics and topological
phases, we believe our work shows it is worthwhile to extend
such studies to optomechanical systems. Not only do they
offer different forms of access (e.g. via the light emitted from
the array), but they also involve physics that cannot easily be
investigated in cold-atom systems. This includes the effects of
a thermal environment on the quench dynamics, or the pos-
sibility of adding superconducting qubits (in microwave op-
tomechanics realizations of optomechanical arrays [48–51]).

The structure of this paper is as follows. We start by
describing a 1D optomechanical array and investigate the
quench dynamics in this array. This not only helps us under-
stand the dynamical properties of this particular system, but
can also be used for other scenarios in which optomechanical
arrays are driven out of equilibrium. Afterward, we turn to
the SSH model. After explaining the basics of the model, we
provide a design for an optomechanical simulator that mimics
the Hamiltonian of the SSH model and can also be tuned
dynamically. Finally, we describe an example of a simple
quench experiment that can be carried out using this simulator
and describe the expected outcomes of the experiment.

II. QUENCHES IN OPTOMECHANICAL ARRAYS

A. Model

1. Hamiltonian

An optomechanical array is an array of optomechanical
cells that are connected through optical and vibrational cou-
plings. Figure 1 gives a schematic picture of a simple optome-
chanical array. Blue circles represent the optical cavities with
the frequency detuning � from the external laser and decay
rate κ . Yellow circles represent the mechanical resonators with
the frequency � and dissipation rate �. The (laser-enhanced)
optomechanical coupling between the mechanics and optics
is given by g. Furthermore, optical cavities and mechanical
resonators on different sites are coupled to each other and
the strength of the coupling is given by K and J for the

mechanical and optical modes between different sites. The full
Hamiltonian of this system can be written as

HOMA =
∑

i

(−h̄�â†
i âi + h̄�b̂†

i b̂i ) − h̄
∑

i

g(â†
i b̂i + âib̂

†
i )

+ h̄J
∑

i

(â†
i âi+1 + âiâ

†
i+1)

+ h̄K
∑

i

(b̂†
i b̂i+1 + b̂ib̂

†
i+1). (1)

Here âi and b̂i are the annihilation operators corresponding to
the optical and mechanical modes on site i, respectively. Note
that this is the linearized Hamiltonian and the Hamiltonian
is quadratic. The array can take any geometrical form. The
Hamiltonian in Eq. (1) describes the lattice given in Fig. 1.
This system can be experimentally realized, for instance using
optomechanical crystals [52].

For most of this paper, we consider an ideal system with
κ � g, which represents the strong-coupling regime. We also
assume that we are working in the red-detuned regime where
the amplification terms in the Hamiltonian average out. To-
ward the end of this section, we will revisit these assumptions
and consider the effects of large cavity dissipation and address
how detuning would affect our results.

For simplicity, we Fourier-transform the Hamiltonian and
rewrite it in terms of pseudomomentum creation and annihila-
tion operators, which gives

HOMA = h̄
∑

k

[−�(k)â†
k âk]

+ h̄
∑

k

[�(k)b̂†
kb̂k + g(â†

k b̂k + âk b̂†
k )]. (2)

Here �(k) = � − 2J cos (k) and �(k) = � + 2K cos (k).
The Hamiltonian in Eq. (2) is a good approximation for

large enough lattices, periodic boundary conditions, or the
bulk of the lattice, where there is translational invariance and
k is a good quantum number.

The Hamiltonian in Eq. (2) is similar to a single optome-
chanical cell and therefore our results can be extended to
optomechanical systems as well.

To study the normal modes of this system, we rewrite the
Hamiltonian in terms of the Bloch Hamiltonian hk , i.e.,

HOMA =
∑

k

h̄(â†
k b̂†

k )hk

(
âk

b̂k

)
, (3)

with

hk =
(−�(k) g

g �(k)

)
. (4)

This can be rewritten as

hk = �(k) − �(k)

2
I − �(k) + �(k)

2
σz + gσx, (5)

with I the identity matrix and σx and σz the Pauli matrices for
X and Z , respectively.

Diagonalization of the hk gives the normal modes of the
Hamiltonian and the corresponding frequencies. For any value
of k, there are two eigenstates which give the normal modes,
and we refer to them as {Âk, B̂k}. These normal modes can
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be expressed as linear superpositions of the original modes
{âk, b̂k}, via a unitary transformation that diagonalizes the
Bloch Hamiltonian, i.e.,(

Âk

B̂k

)
= Rk

(
âk

b̂k

)
. (6)

See Appendix A for more details.
For the simulations in this work, we use � = −�, g =

0.02�, κ = 0.01�,� = 0.001�, which are compatible with
some of the state-of-the-art experiments. See [16] for instance.

Note that as an approximation, we only consider dissipa-
tion for obtaining the initial state, while neglecting it during
the (fast) quench evolution. This approximation is valid as
long as κτQ � 1, where τQ is the time duration of the quench
evolution. We will later return to the question of what changes
are generated by taking into account a finite dissipation rate.
However, considering recent advances in optomechanics and
electromechanics [53,54], this regime should be feasible ex-
perimentally.

Figure 2 illustrates the resulting band structures of the
optomechanical array for � = −�. The first term in Eq. (5)
is proportional to identity and only shifts the band structure.
If we ignore the first term, for the regime of � = −�, the
Hamiltonian of the system is

hk = (J − K ) cos(k)σz + gσx. (7)

Figure 2 shows how the spectrum and also the energy gap
between the two modes depend on the value of k. For k = 0,
this gap is the largest and the gap is minimal at k = π

2 . In
the absence of optomechanical coupling, when g = 0, the
phononic band is almost flat and there are two crossings
where the gap fully closes. In the presence of optomechanical
coupling, |g| > 0, the two bands do not cross. Far from
the crossing points and in the middle, mode Âk is mostly
phononic, and outside, it is mostly photonic. Similarly, mode
B̂k is dominated by the photonic mode for −π/2 � k � π/2
and by phononic modes outside this range.

From Eq. (7), the gap between the two bands can be
calculated as

�g = 2
√

g2 + cos(k)2(J − K )2. (8)

Here we are interested in the dynamical behavior of the
modes and their population as the Hamiltonian evolves. We
focus on changing the optomechanical coupling. This is done
via changing the driving power of the laser and, at each
given value of k, takes the Hamiltonian through an avoided
crossing (crossing if k = π

2 ) and could drive the system out of
equilibrium.

We investigate the excitations from the mode Âk to the
mode B̂k as the Hamiltonian evolves through the avoided
crossing.

2. Quench

We change the coupling g according to

g(t ) = g(0)

(
1 − 2t

τQ

)
, (9)

where τQ represents the quench time and describes how fast
the change is applied to the Hamiltonian. This can be set for

FIG. 2. Band structure of the optomechanical array for detun-
ing � = −�. Panel (a) shows the energy of the modes versus k,
with different colors denoting different values of the laser-tunable
optomechanical coupling, g. Panel (b) shows a close-up view of the
crossing point at k = π/2. For g = 0 it is a full crossing whereas
in the presence of optomechanical coupling, it turns to an avoided
crossing. Panel (c) shows the gap as a function of the coupling g for
different values of k. For k = π/2 the gap fully closes at g = 0.

instance by the rate at which the external laser changes in
an experimental setting. The quench dynamics proceeds from
t = 0 to t = τQ, switching the sign of the coupling from +g(0)
to −g(0). Large τQ describes a slow change and adiabatic
evolution and low τQ describes a more abrupt evolution. We
set the time t to start from zero and to go to τQ. This makes
the Hamiltonian time dependent.

The range of the time τQ should be set by the band gap
in the system in Eq. (8); i.e., for τQ >

g
�2

(g=0)
the evolution

would be adiabatic. This limit depends on the value of k,
which means that a specific rate, 1/τQ, could be adiabatic for
some values of k and nonadiabatic for the rest of the range.
For instance, for k = π

2 , the gap fully closes and no matter
how large the τQ is, the evolution cannot be adiabatic.

With the time evolution of the optomechanical coupling,
the normal modes would also become time dependent. To
avoid confusion with the time evolution of the modes, we
refer to the normal modes with respect to their corresponding
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value of g, namely {Âk,g, B̂k,g}, which are calculated from the
eigenvectors of hk (g) and(

Âk,g

B̂k,g

)
= Rk (g)

(
âk

b̂k

)
. (10)

3. Time evolution

We use the equation of motions for {âk (t ), b̂k (t )} to find
the time propagator of the evolution. We break down the
evolution to small enough time steps. The Hamiltonian should
stay constant over the time step (compared to ‖hk (t )‖). Then
the time propagator is specified with

dSk (t )

dt
= −ihk (t )Sk (t ) (11)

with the initial condition Sk (0) = I; hk is the Hamilto-
nian in Eq. (4), and δt is the time step. Note that δt �
1/

√‖[hk (t ), hk (t + δt )]‖.
The operator Sk (t ) gives the evolution of the original modes

{âk, b̂k} as (
âk (t )
b̂k (t )

)
= Sk (t )

(
âk

b̂k

)
. (12)

Now we can calculate the evolution of the normal modes too,
which is given by(

Âk,g(t )(t )
B̂k,g(t )(t )

)
= Rk (g(t ))Sk (t )

(
âk

b̂k

)
. (13)

See Appendix B for more details.
Next we need to specify the initial state. Each mode could

be populated with multiple excitations and therefore just
knowing the evolution of the modes is not enough to track
the excitations.

4. Initial state

One simple choice is to start with a single excitation in
one of the normal modes. It however would be challenging
to create a single excitation with a specific momentum ex-
perimentally. Probably the more realistic state to start with is
the thermal state. This is the stationary state of the optome-
chanical array. More specifically, we assume that before we
start changing the Hamiltonian, the system has enough time to
reach its equilibrium with its environment. The normal-mode
populations of the stationary state are given by

nm
th(Âk ) = (1 − pk )�nM

th

pkκ + (1 − pk )�
, (14)

nm
th(B̂k ) = pk�nM

th

(1 − pk )κ + pk�
, (15)

where pk is given by the projection of the normal mode Âk on
the original mode âk .

Note that for the initial occupation, we included the cavity
decay rate. But for most of the simulations, the decay rate is
not considered. We also assume that the optical bath is at zero
temperature or equivalently, kBT � h̄ωoptical. In this regime,
we can scale the population of the two modes to 1/nM

th as in
Fig. 3. For more details, see Appendix C.

FIG. 3. Quench dynamics for a quench from positive to nega-
tive coupling [g(0) to −g(0)]. Panel (a) shows how the population
changes through the quench for k ≈ 0.2π and some medium speed
quench. Panels (b) and (c) show the final population scaled to the
thermal population of the bath, Nf /nM

th , of mode A (upper branch)
and likewise mode B (lower branch) after a slow, medium-speed,
and fast quench. For the slow, medium, and fast quench, τQ

g(0)/�2
g=0

≈
0.0001, 0.01, 1, respectively. The initial population Ni is also in-
cluded for comparison. The initial population Ni is calculated based
on the thermal equilibrium state with a bath and the final population
is derived evolving the initial state while changing the Hamiltonian.
Depending on the rate at which the Hamiltonian changes, the overall
evolution can be nonadiabatic or adiabatic. For the slow quench, the
final population, Nf , is close to the initial one; however, for the fast
and midspeed quenches, the evolution generates some excitations.
The band structure and the gap between the two bands depend on k,
so the final populations Nf would also depend on k. For instance the
gap closes for k = π/2 and both modes would have the same energy,
so no matter how slow we quench the Hamiltonian, in the vicinity of
this point, the evolution would always be nonadiabatic and the value
of Nf would increase.

5. Method

We initiate the system in the thermal state and let it
evolve under the time-dependent Hamiltonian. We probe the
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occupation number of the normal modes through the evolu-
tion; namely, we look at

〈ψ (t )|Â†
k,g(t )Âk,g(t )|ψ (t )〉, 〈ψ (t )|B̂†

k,g(t )B̂k,g(t )|ψ (t )〉.
See Appendix D for more details on how we calculate these
quantities in our simulations.

B. Results

We start by comparing a fast and a slow quench. Figure 3
shows the simulation results for the final excitations for a
slow, a midspeed, and a fast quench. The top plot shows the
results for excitations in mode A and the bottom one shows
the excitations in mode B. For comparison, we included the
initial population given by Eq. (14). It is critical to take these
initial excitations into account when we study the excitations
generated by the quench. Figure 3 also shows that for a slow
quench, the number of excitations stays almost unchanged,
whereas for the fast quench, new excitations are generated
through the quench process.

Provided we assume � = −� (as we will do for these
simulation), the gap between the two bands, �g, vanishes for
k = π/2 [see Eq. (8) and Fig. 2], and as a result, the dynamics
is always nonadiabatic at this point. This explains why there
are excitations generated in the vicinity of k = ±π/2, even
for the slow quench.

Here we focus on the net excitation, NQ, which is

NQ = Nf − Ni, (16)

where Nf and Ni represent the final and initial population of
the bands.

Figure 4 shows the net excitations in mode A for different
quench times, τQ. This figure indicates that there is a regime
for which the dynamics is nonadiabatic. We introduce kc to
indicate the range of the nonadiabatic regime. We define kc

as the maximum distance from k = π
2 where the excitation

generated by the quench, NQ, is above some threshold ε. Note
that there are two nonadiabatic regions, one around k = π

2
and one for k = −π

2 . We only consider the region around
k = π

2 for simplicity and restrict our discussion to positive val-
ues of k. Mathematically, that is kc = min{p|∀k|k − π/2| >

p, NQ(k) < ε}, where ε is some threshold. The parameter kc

is mostly affected by the quench time τQ.
Figure 5 shows kc as a function of the quench time, τQ.

This plot shows the power-law dependence of the size of the
nonadiabatic regime, kc, on the quench time.

For these simulations, we take the following values for the
quench time:

τQ ∈ 50

�
× {2−1, 20, 21, . . . , 210}.

These values are set such that the smallest value would give a
nonadiabatic evolution for all values of k and the largest value
would give an adiabatic evolution for essentially all the values
of k that we consider in our simulations.

The net excitations NQ(k) also presents a measurable quan-
tity for the experimental realization of the quench dynamics
investigated here. More specifically, one could try quenches
at different quench rates and measure the net excitations
generated during the quench. However, resolving the net

FIG. 4. Net excitation in mode A for different quench times,
τQ. Different plots represent different quench times. From the top
to the bottom, τQ increases. For the slow, medium, fast, and very
fast quench, τQ

g(0)/�2
g=0

≈ 0.03, 0.01, 0.001, 0.0001, respectively. This

indicates that the slower the quench, the less excitation would be
generated and the smaller the nonadiabatic regime would be. Panel
(b) shows a close-up view of the plot in (a) around k = π/2, where
the gap closes. This indicates that even for slower quenches, there are
some excitations around the level-crossing point. For the simulations
here we used � = −�, g = 0.02�, κ = 0.01�, � = 0.001�, J =
0.01�, K = 0.0003�. See the text for more details.

excitations with different k is potentially challenging, so the
overall net excitations (summed over all momentums) may be
a more suitable quantity to measure. This is further discussed
in Sec. II D.

Next we will assess the dynamics analytically and show
that these results are compatible with analytical expectations.

C. Analytical assessment

The simulation results here can be approximated with
the Landau-Zener (LZ) formula for excitations in a time-
dependent two-level system. For a two-level system with
(hk )12 = g(t ) as the off-diagonal and ±(J − K ) cos(k) as
the diagonal elements of the Hamiltonian, the Landau-Zener
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FIG. 5. The extent of the nonadiabatic regime, kc, as a function of
quench time, τQ. This plot illustrates a power-law dependence on the
quench time. We included the two analytical estimates along the best
linear fit for the simulation results which are in good agreement. The
first analytic estimate comes from the Landau-Zener formula. The
second one is adopted based on the Kibble-Zurek mechanism. See
Sec. II C. The fit and its corresponding equation are included in the
log-log plot in the inset in the middle. Note that the fit is expected
to give kc ≈

√
2g(0)

(J−K )√πτQ
, which is mostly affected by the values of

g(0) and J and for the parameters here gives kc ≈ 10√
τQ

. The top-right

inset shows the nonadiabatic regime in the net excitation plot from
Fig. 4(b).

formula [55,56] gives the probability of excitation as

PLZ = e
π (J−K )2

2g(0) cos(k)2τQ . (17)

Note that we used the Hamiltonian in Eq. (7) to calculate the
probability. This shows that the border between the adiabatic
and nonadiabatic regime is approximately given by τQ ≈
2g(0)/π (K − J )2 cos (k)2; i.e., if the quench happens on a
faster timescale, then the evolution would be nonadiabatic
and generates excitations, and similarly, if it is slow, then the
evolution would be adiabatic and gives no extra excitations.

If we expand this in terms of small δk from π/2, we have
cos (π/2 + δk) = sin (δk) ≈ δk and we get kc ≈

√
2g(0)

(J−K )
√

πτQ
,

which indicates that the size of the nonadiabatic region in k
space, kc, has a power-law dependence on the quench time,
τQ. The Landau-Zener fit is included in Fig. 5 for comparison
and confirms the simulation results.

A more intuitive approach is to break down the evolution
into two phases, the adiabatic and freeze-out zone. This is
similar to the Kibble-Zurek mechanism (KZ) [57–60].

We assume that the dynamics in the adiabatic zone is fully
adiabatic. Similarly, we assume that the state does not change
in the freeze-out zone. Clearly, this is an approximation and
the transition from adiabatic to nonadiabatic dynamics is
usually gradual and the state does not fully freeze. However,
this gives a good fit to our numerical simulations.

Assume that the evolution starts in ti = −∞ with the cou-
pling g(ti = −∞) = −gm and goes to t f = ∞ with coupling
g(t f = ∞) = gm, and that we start with the ground state. We
use the {|G(t )〉, |E (t )〉} to represent the ground and excited
states of the Hamiltonian at time t . This is not to be con-

fused with the optomechanical coupling g(t ). Note that, for
simplicity, we are taking time to symmetrically evolve from
−∞ to ∞ which is slightly different from our convention in
Eq. (9), but it does not change the result and it can be easily
transformed to the convention in Eq. (9).

More importantly, we assume that at some time, −t̂ , the
evolution transits from adiabatic to the freeze-out zone and
then becomes adiabatic again at t̂ . Under these assumptions,
the state evolves as follows:

|ψi〉 = |G(−∞)〉 → |ψ (−t̂ )〉 ≈ |G(−t̂ )〉 →
|ψ (t̂ )〉 ≈ |G(−t̂ )〉 = α|G(t̂ )〉 + β|E (t̂ )〉

→ |ψ f (t̂ )〉 ≈ α|G(∞)〉 + β|E (∞)〉.
First, we start with the state at t = −∞. Up to t = −t̂ the
evolution is adiabatic which keeps the state in the ground state.
From this point, up to t = t̂ the state freezes and stays un-
changed. So at time t = t̂ , we still have the |G(−t̂ )〉, which no
longer represents the ground state, but some superposition of
both the ground and excited states. Beyond this, the evolution
is adiabatic again which preserves the superposition.

Therefore, the amount of excitations are given by |β|2. In
order to calculate β, we only need to know the projection of
eigenstates at −t̂ to the eigenstates at t̂ .

The eigenvectors of the optomechanical array can be cal-
culated from Eq. (7) and would give

|β|2 =
(
gm

t̂
τq

)2

(
gm

t̂
τq

)2 + δ2
. (18)

Next we need to find t̂ . If we follow the same idea as in the
Kibble-Zurek mechanism, this is the time at which it takes the
same amount of time for the system to relax as it has to get to
the crossing point, i.e., t̂ = τrelx = 1√

δ2+(gm
t̂
τq

)
2
, with τrelx the

relaxation time. Note that this is not an actual relaxation time,
but the timescale given by the 1

gap .
If we plug this into Eq. (18), we get

β = 1 − 2δ2τq
2

δ2τq
2 +

√
δ4τq

4 + 32g2τ 2
q

. (19)

The KZ analytical fit is also included in Fig. 5, which
shows that both analytical assessments are in good agreement
with the simulation results.

This concludes the results in this section. We studied the
excitations generated through the quench and showed that
they are compatible with KZ and LZ predictions.

D. Experimental imperfections

Now we investigate the experimental challenges of imple-
menting and testing our results.

As we stated before, we assume that we are working in
the strong-coupling regime, i.e., g � κ . This has already been
achieved experimentally in [53,54].

We also ignored the dissipation for the most part, but we
can also extend our simulation to the situation where the
dissipation is not ignored. Figure 6 shows how the typical be-
havior of this system changes as we add dissipation. Without
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FIG. 6. The influence of dissipation on the evolution and final
population of the modes. Panel (a) shows how the final population
of the two modes would be affected in the presence of dissipation.
To give a reference for comparison, the results in the absence of
dissipation are also included. Dissipation reduces the final popula-
tion. Note that since for different amounts of dissipation the initial
population changes, the results are normalized to the initial values
for each point. Plots in (b) illustrate how the dissipation affects the
dynamics of the populations. Line colors and styles are the same as
the ones in (a). The decay rate is set to κ = .04� and κ = .0004�

for the strong and weak dissipation, respectively. In each plot, the
populations of the two modes A and B, in both the presence and
absence of dissipation, are shown versus time, as the system evolves
through the avoided crossing. For the plot on the right, the quench
is still fast enough for the two populations to cross; however, for
stronger dissipation, the population of both bands could decay before
they can cross. Panel (c) shows the net excitation generated through
the evolution in the presence of dissipation. The general trend is
similar to the one in Fig. 4; however, due to the dissipation, the
net excitation has dropped. Different plots correspond to different
quench times. For the very slow, slow, medium, fast, and very fast
quench, τQ

g(0)/�2
g=0

≈ 0.030.015, 0.007, 0.0005, 0.0001, respectively.

For the rest of the parameters, we used � = −�, g = 0.02�, κ =
0.01�, � = 0.001�.

dissipation, the gray plots show how evolving the Hamiltonian
through the avoided crossing would swap the populations of
the two modes. However, when dissipation is included, both
populations start to decline to a point that if the quench is
not fast enough, they would not cross. Figure 6 shows how

FIG. 7. This plot shows the sum of all excitations with different
momenta as a function of the quench time. The circles show the sum
of the absolute values of the net excitations and the squares show the
sum, i.e., the integral under the plots in Fig. 4 for different quench
times. The red curves give the best linear fit to the data points. The
equations of the fits are included next to the plots. The inset shows
the net population after the quench around k = π

2 . See Fig. 4(b) for
more details.

dissipation would affect the net excitation generated through
the dynamics. Although the general trend is preserved, the
net excitation is decreased compared to the one in Fig. 4.
Note that here we assume that the photonic bath is at zero
temperature which is consistent, considering that typically
h̄ωoptical � kbT , with ωoptical the optical frequency. We also
assume that � � κ, g for this plot which can be fulfilled in
most experiments.

In all the illustrations so far, we assumed � = −� (red
detuned regime) and all the mode dynamics to be described
by the beam-splitter Hamiltonian (which relies on J, K � �).
In principle, one can consider arbitrary detunings, including
those where excitations may be generated by the amplification
terms in the Hamiltonian.

One of the main challenges in analyzing a regime including
photon-phonon pair generation would be that it is not possible
to distinguish the excitations that are generated directly by
the parametric terms from the ones generated by the quench.
This explains why we focus on the regime where number-
nonpreserving terms in the Hamiltonian are suppressed and
all the excitations can be associated with the quench.

Another challenge is that for the results in Fig. 4, exci-
tations with different pseudomomentum should be resolved.
While this is in principle possible [61], a simpler solution is to
look at the sum of the net excitations, i.e.,

∫
NQ(k)dk. This is

the area under the plot of NQ(k). Figure 7 shows this quantity
for different quench times. Although the net excitations still
follow a power law, the values are too small and probably
challenging to detect experimentally. Alternatively, we can
investigate the absolute value of the net excitation, which
still gives a power law, but this would require k-resolved
measurements of the excitations too.

The last assumption that needs clarification is the periodic
boundary conditions on the lattice, which makes it possible to
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FIG. 8. Schematic picture of the SSH model. The two figures
illustrate the two phases of the model; the top one is when K is
the dominant coupling, and bottom one is reversed. For the latter,
in contrast to the top one, not all the sites can pair up and two sites
are left at the two ends of the lattice, which produces the zero-energy
edge states.

work in Fourier space. It is possible to do this calculations
for a finite-size system and work out the excitations for
different sites on the lattice, but it is computationally more
challenging. A related assumption is that we take all the
optomechanical cells to be identical and all the parameters
(including g,�,�, κ, J, K) to be the same throughout the
lattice. Clearly, this is not possible in a realistic implementa-
tion. These defects would break the translation symmetry. To
account for the inhomogeneity in the lattice, we would need
to do the finite-size simulation, but, besides the computational
complexity, it would not be comparable to the simulation we
got here in the k space. Note that the inhomogeneity of the
parameters makes the Hamiltonian in the k space nonlocal;
i.e., terms like a†

kak+q would show up in the Hamiltonian
of Eq. (2) and it is no longer possible to write the Bloch
Hamiltonian in Eq. (3). Naively one could argue that, for small
inhomogeneity, e.g., �i = � + δi with δi � �, the nonlocal
terms in the Hamiltonian can be treated as a perturbation to
the original local terms to first order. Since the perturbation
is nondiagonal, the changes to the band structure can be
neglected to first order and the quench dynamics is expected
to be in good agreement with the results here. But a more
thorough investigation is required to understand the role and
effect of inhomogeneity in the quench dynamics of the op-
tomechanical arrays.

III. APPLICATION: QUENCHES IN THE
OPTOMECHANICAL SU-SCHRIEFFER-HEEGER MODEL

So far, the main focus has been to understand how changes
in the Hamiltonian would affect the dynamics of optome-
chanical arrays. In this section we will give an example
to illustrate how optomechanical arrays can be designed to
mimic the evolution of the SSH model. This model exhibits a
topological phase transition, which makes it a nice candidate
for exploiting the dynamical properties of the optomechanical
array for simulation purposes.

The SSH model describes a 1D topological insulator [33]
where fermions can hop from one site to the other; however,
hopping rates are staggered and the hopping rate to the left
and right are different for each site. See Fig. 8 for a schematic
picture of the SSH model. The SSH model has two phases
that are separated by a topological phase transition. For the
finite-size model, one phase exhibits zero-energy edge states.

This model presents a simple yet sophisticated and nontriv-
ial instance of how the tunability of optomechanical arrays can

FIG. 9. The spectrum of the finite-size SSH model with 20 sites
and 10 unit cells as a function of the ratio of the hopping rates
{K, Kp}. For |Kp| > |K| two energy levels start to converge and form
the two zero-energy edge states.

be exploited to explore many-body physics in optomechanical
arrays. We show how the geometry of the optomechanical
array can be engineered to mimic the static Hamiltonian of
the SSH model and then use the tunable coupling that we
investigated in Sec. II to propose a simulator that can emulate
quench dynamics of the SSH model. Also, as will be clear,
the process here is not specific to the SSH model and could be
extended to more complicated models.

Here we first present a brief introduction to the SSH
model and then propose an optomechanical array design that
emulates the SSH model and show how the effective dynamics
is compatible with SSH.

A. SSH model

For the purposes of this work, it suffices to understand
the Hamiltonian and the phase diagram of the SSH model.
This model comprises a chain that can be separated into two
distinct sublattices. We refer to these sublattices as sublattices
A and B. Fermions on each sublattice have similar right and
left hopping rates. This means

HSSH = K
N∑

i=1

(ĉ†
i d̂i + ĉid̂

†
i ) + Kp

N−1∑
i=1

(ĉ†
i+1d̂i + ĉi+1d̂†

i ),

(20)
where ĉi and d̂i are the annihilation operators on odd and even
sites, corresponding to the two sublattices. Note that to avoid
confusion with the creation operators for the photonic and
phononic modes in the first part of the paper, we use ĉi and
d̂i here.

Here we assume a finite-size lattice with 2N sites. The
spectrum of the SSH model with 20 sites (10 unit cells) is
shown in Fig. 9. Each line represents one energy level and
the plot shows how energy levels change with the ratio of
the hopping rates. This model has two phases which are
distinguished by the order parameter λ = Kp/K . For λ < 1,
all the sites pair up and form dimers. In the opposite regime,
i.e., λ > 1, all the particles in the middle pair up; however,
there are two sites left out at the two ends. These two make
the two zero-energy edge states of the SSH model. These are
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FIG. 10. Schematic of the simulator. Blue and yellow circles
indicate optical and mechanical modes. The mechanical modes in
each cell are indirectly coupled through their coupling to the coupled
optical modes. This coupling can be tuned using an external laser that
tunes the optomechanical coupling, g.

the two energy levels at zero energy in Fig. 9 which form
beyond λ = 1. These dimers are shown schematically with
dashed rectangles for the two phases in Fig. 8. For a detailed
introduction of this model see [30,33].

Here we first show how an optomechanical array can be
tuned to mimic the SSH model. Then we use the dynamical
tunability of the optomechanical system to change the order
parameter and emulate the topological phase transition in the
SSH model and drive the system out of equilibrium.

It is important to note that here a modified SSH model is
being simulated, namely a bosonic SSH model instead of the
fermionic one. However, the phase transition in question only
relates to the properties of the single-particle wave functions,
and hence does not depend on whether we are dealing with
fermions or bosons.

Next we give the design for the simulator and explain the
intuition behind it. We then present a detailed calculation of
the effective Hamiltonian and show that the Hamiltonian of
the simulator is compatible with the SSH model.

B. Proposal for simulator

A schematic picture of our design for the optomechanical
simulator is given in Fig. 10. Such a design can potentially be
implemented in optomechanical crystals [52] and electrome-
chanical arrays [62].

We use the mechanical modes as the main modes of the
SSH model. There are two kinds of coupling between the
mechanical modes: there is the direct coupling, K , through
the vibrations on the substrate and the indirect one through the
coupling to the optical modes. The indirect coupling depends
on the direct optical coupling rate, J , and the optomechanical
coupling rate, g.

Next, we calculate the effective Hamiltonian of the array
in Fig. 10 and find the indirect coupling with second-order
perturbation theory.

C. Effective Hamiltonian

To find the effective Hamiltonian, we focus on one unit cell
which includes two connected optomechanical nodes (first

FIG. 11. Effective model after applying second-order perturba-
tion theory to the optomechanical array of Fig. 10.

half of Fig. 10). The Hamiltonian of the unit cell is given by

Ĥ =
∑

i

(−h̄�â†
i âi + h̄�b̂†

i b̂i ) − h̄g
∑

i

(â†
i b̂i + âib̂

†
i )

+ h̄J
∑
odd i

(â†
i âi+1 + âiâ

†
i+1) + h̄K

∑
even i

(b̂†
i b̂i+1 + b̂ib̂

†
i+1).

We block-diagonalize the subspace corresponding to the
photonic bands and transform the Hamiltonian into a basis
that instead of the original optical modes is expressed in
terms of the normal modes of the coupled optical cavities.
These normal modes are the symmetric and antisymmetric
superposition of the original photonic modes, i.e.,

Â± = â1 ± â2√
2

. (21)

For a unit cell, this gives

Ĥ = −h̄�(Â†
+Â+ + Â†

−Â−) + h̄�(b̂†
1b̂1 + b̂†

2b̂2)

− h̄g√
2

[Â†
+(b̂1 + b̂2) + Â†

−(b̂1 − b̂2) + H.c.]

+ h̄J (Â†
+Â+ − Â†

−Â−).

Note that there are couplings between the mechanical modes
in the unit cell and the neighboring cells which are not
included in the Hamiltonian of the unit cell. We will later
include them as interaction terms between different cells.

The symmetric and antisymmetric photonic modes couple
to both mechanical modes. We use the Bloch matrix of the
Hamiltonian above to calculate the indirect coupling between
the two mechanical modes with second-order perturbation
theory (Fig. 11), which gives

Ĥ = h̄�̂
∑

i

(b̂†
i b̂i ) + h̄Kp

∑
odd i

(b̂†
i b̂i+1 + b̂ib̂

†
i+1)

+ h̄K
∑
even i

(b†
i bi+1 + bib

†
i+1),

where Kp is the effective coupling in the SSH model and is

Kp = 2g2J (−�2+ J2− �2)

(−�+ J− �)(�+ J− �)(−�+ J+ �)(�+ J+ �)
.

Note that this can be tuned with g. Using the parameters that
we used for the first part, the couplings in the SSH model can
be estimated as K = 3 MHz, Kp = 10 MHz.

The coupling Kp depends on the optomechanical coupling
g. The above numerical estimate for Kp is the maximum that
can be achieved using the parameters that we considered here.
Reducing the laser power, it can be tuned to Kp < K , which
changes the phase to the nontopological phase.

This can be used to explore a wide range of properties
in this system. For instance, we can start in the topological
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FIG. 12. Time evolution of an excitation in the SSH model,
initiated on the left side of the lattice, while abruptly quenching
the Hamiltonian to the nontopological phase. Panel (a) shows the
propagation of the left edge state in time and space (lattice site).
Panel (b) shows the probability of getting the right edge state in time,
i.e., PR(t ) = |〈�(t = 0)|�(t = t )〉|2. At time t = 0, the excitation is
on the leftmost site of the lattice and it starts traveling to the right. For
this simulation, we started with the Hamiltonian in the topological
phase and the left edge state for the |�(t = 0)〉. After the quench
to the nontopological phase, it takes some time for the excitation to
reach the right side of the lattice. Panel (b) corresponds to the last
site of the lattice of (a), indicated in the red box.

phase with λ > 1, with the system initialized in one of the
edge states and then abruptly change the Hamiltonian to the
nontopological phase with λ < 1 and probe the evolution of
the edge states.

Figure 12 shows the dynamics of the excitations in this
system as it evolves through time and space. The excitation
on the left side of the chain starts to propagate to the right
after the quench. Figure 12(b) shows one slice of Fig. 12(a)
which represents the probability of observing the excitation
on the right side of the lattice after time t . This probability is
negligible at first, and it increases after the initially produced
excitations have traveled through the whole lattice.

IV. CONCLUSION

We have studied nonequilibrium effects in optomechan-
ical arrays which can be caused by abrupt changes in the

parameters of the system, induced via the driving laser. We
have analyzed the resulting excitations and we have shown
that the number of such excitations follows a power law with
respect to the quench speed.

We have also provided a proposal for exploiting the dynam-
ical aspects of optomechanical arrays for simulating nonequi-
librium dynamics in the SSH model, as a simple example of
an array with a band structure that has topological properties.

We have commented on the experimental outlook. Still,
to adopt the first results presented here for concrete experi-
mental platforms, some further, more detailed analysis will be
needed. For example, the effects of disorder [21] may need
careful additional consideration.

More generally, the present work paves the way toward
investigating other aspects of nonequilibrium dynamics in
optomechanical arrays with time-dependent band structures.
Further studies may reveal which other kinds of phenomena
should be expected and tested in these settings. We em-
phasize that the optomechanical system we have considered
here is in the linear regime, with a quadratic Hamiltonian,
and is not capable of capturing the complexity of quan-
tum simulation of nontrivial quantum many-body systems.
Yet, as we have shown, even the linear dynamics displays
a rich set of features. In the near future, one might also
study the nonlinear classical dynamics in nonequilibrium
optomechanical arrays, which is perfectly within experimental
reach.
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APPENDIX A: NORMAL MODES

Here we give an expression for the normal modes of the
Hamiltonian.

The normal modes are given by the eigenvectors of the hk .
To find the eigenvectors, it helps to rewrite it as

hk = �(k) − �(k)

2
1 − �(k) + �(k)

2
σz + gσx. (A1)

Here σi are the Pauli operators. The first term does not affect
the eigenvectors. So the eigenvectors are the eigenvectors of a
rotated Pauli operator in the x-z plane. With a simple rotation,
we can transform the eigenvectors of σz to the eigenvectors of
the rotated Pauli operator. For simplicity, we define 2δ(k) =
�(k) + �(k). With some simple algebra we get to


λ±(k) = 1

z±

(−g ±
√

g2 + δ(k)2

δ(k)

)
, (A2)
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with z± the normalization factors. Now if we apply the trans-
formation that diagonalizes the hk , we get

ĤOMA =
∑

k

h̄(â†
k b̂†

k )

(−�(k) g
g �(k)

)(
âk

b̂k

)

=
∑

k

h̄(â†
k b̂†

k )R†
k

(
ωA(k) 0

o ωB(k)

)
Rk

(
âk

b̂k

)

=
∑

k

h̄(Â†
k B̂†

k )

(
ωA(k) 0

o ωB(k)

)(
Âk

B̂k

)

=
∑

k

h̄[ωA(k)Â†
kÂk + ωB(k)B̂†

k B̂k].

Here {ωA(k), ωB(k)} are the eigenvalues of the hk and Rk is
the matrix that diagonalizes it. One can see that it gives the
transformation in Eq. (4) in the main text.

APPENDIX B: INITIAL-STATE POPULATION

We need to find the equilibrium population of the normal
modes. For g = 0 or too far off resonance, the normal modes
are the same as the original modes; however, as we approach
the avoided crossing points, the modes hybridize.

Before we get to the calculation of the equilibrium popula-
tion of the normal modes, it helps to review the same calcula-
tion for the simple case of an isolated mechanical mode. The
equation of motion for a single mechanical resonator is

˙̂b(t ) = (−i� − �/2)b̂(t ) +
√

�b̂in(t ),

where b̂in represents the annihilation operator of the mechan-
ical bath modes. This is a simple differential equation which
gives

b̂(t ) = e−i�t−�t/2

[
b̂0(t ) +

√
�

∫ t

0
dt ′ei�t ′+�t ′/2b̂in(t )

]
.

We are interested in nm = 〈b̂†(t )b̂(t )〉 which is

nm = 〈b̂†(t )b̂(t )〉 = e−�t

[
〈b̂†

0(t )b̂0(t )〉 + �

∫ t

0

∫ t

0
dt ′dt ′′e�(t ′+t ′′ )/2e�(t ′−t ′′ )〈b̂†

in(t ′)b̂in(t ′′)〉
]
.

We make the Markov approximation for the bath which implies that 〈b̂†
in(t ′)b̂in(t ′′)〉 = δ(t ′ − t ′′)nm

th. This approximation
simplifies the calculation and gives

nm = e−�t

(
nm

0 + nm
th�

∫ t

0
dt ′e�t ′

)
= e−�t

(
nm

0 + nm
th�

(e�t − 1)

�

)
= e−�t

(
nm

0 − nm
th

) + nm
th.

For the stationary state, t → ∞, we get nm → nm
th.

Despite the simplicity, this calculation is the main tool we need to find the population of the normal modes in the stationary
state.

Consider the equations of motion

˙̂X = M · X̂ + ξ̂ (t ), (B1)

where X̂ = (â(t )
b̂(t )), ξ = (

√
κ âin(t )√
�b̂in(t )), and

M =
(

i� − k
2 ig

ig −i� − �
2

)
. (B2)

Here we are ignoring the amplification terms in the Hamiltonian.
For the normal modes, we diagonalize M without the dissipation terms. This transforms Eq. (B1) to

d

(
Â(t )
B̂(t )

)
/dt =

(−iωA + κA
2 0

0 −iωB + κB
2

)(
Â(t )
B̂(t )

)
+

(
Âin(t )
B̂in(t )

)
.

{ωA, ωB} are the frequencies of the normal modes and {κA, κB} are the dissipation corresponding to these modes. Also
{Âin(t ), B̂in(t )} are linear superpositions of âin(t ), b̂in(t ). Note that {κA, κB} can be calculated as the first-order perturbation
to the M without dissipation. More specifically we can take

M =
(

i� ig
ig −i�

)
+

(− κ
2 0

0 −�
2

)
. (B3)

Now if we focus on the population of the normal modes Â and B̂, it would be the same calculation that we did for an isolated
mode, except for the fact that Âin and B̂in are now affected by both the optical and mechanical baths. Repeating the calculations
above, we get

〈Â†(t )Â(t )〉 = e−κAt

[
〈Â†

g(0)(t )Âg(0)(t )〉 +
∫ t

0

∫ t

0
dt ′dt ′′eκA(t ′+t ′′ )/2eωA(t ′−t ′′ )〈Â†

in(t ′)Âin(t ′′)〉
]
. (B4)
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Now this requires the calculation of Âin(t ) and B̂in(t ) which are given by the transformation R. In general,

R =
(

ε γ

μ ν

)
, where ε2 + γ 2 = 1, |ε| = |ν|, and |γ | = |μ|.

This transforms the modes as Âin(t ) = ε
√

κ0âin(t ) + γ
√

�b̂in(t ) and B̂in(t ) = μ
√

κ0âin(t ) + ν
√

�b̂in(t ), but more importantly,

〈Â†
in(t )Âin(t ′)〉 = ε2κ0〈â†

in(t )âin(t ′)〉 + γ 2�〈b̂†
in(t )b̂in(t ′)〉, 〈B̂†

in(t )B̂in(t ′)〉 = μ2κ0〈â†
in(t )âin(t ′)〉 + ν2�〈b̂†

in(t )b̂in(t ′)〉.
Now recall that we are using the Markov approximation and since the optical bath is at zero temperature, we get

〈Â†(t )Â(t )〉 = e−κAt

[
〈Â†

g(0)(t )Âg(0)(t )〉 +
∫ t

0

∫ t

0
dt ′dt ′′eκA(t ′+t ′′ )/2eωA(t ′−t ′′ )|γ |2�δ(t ′ − t ′′)nm

th

]

= e−κAt

[
〈Â†

g(0)(t )Âg(0)(t )〉 + |γ |2�nm
th

∫ t

g0
dt ′eκAt ′

]

= e−κAt

[
〈Â†

g(0)(t )Âg(0)(t )〉 + |γ |2�nm
th

(
eκAt − 1

κa

)]
, ( lim

t→∞) = |γ |2�nm
th

κA
.

With calculation of κA and κB, we get

nm
th(Â) = p�nM

th

(1 − p)κ + p�
,

nm
th(B̂) = (1 − p)�nM

th

pκ + (1 − p)�
,

where pk is given by the projection of the normal mode Âk on
the original mode âk .

APPENDIX C: OCCUPATION OF THE MODES AND THEIR
EVOLUTION

We are interested in

〈ψ (t )|Â†
g(t )Âg(t )|ψ (t )〉

= 〈ψ (0)|U (t )†Â†
g(t )Âg(t )U (t )|ψ (0)〉

= 〈ψ (0)|U (t )†Â†
g(t )U (t )︸ ︷︷ ︸

Ã†(t )

U (t )†Âg(t )U (t )︸ ︷︷ ︸
Ã(t )

|ψ (0)〉.

Similarly, we can define B̃(t ). Note that we drop the subscript
k for simplicity. Our goal is to express {Ã(t ), B̃(t )} in terms
of the {Âg(0), B̂g(0)}. This is because we already calculated the
occupation number of the initial normal modes, i.e., for g(0).
Also, for the initial mode, the cross expectation values like
〈Â†

g(0)B̂g(0)〉 vanish.
To this end, we use Eq. (13) in the main text. Just note

that we first express {Ã(t ), B̃(t )} in terms of {â, b̂} and then
we inverse the equation to express it in terms of {Âg(0), B̂g(0)}.
This gives(

Ã(t )
B̃(t )

)
= R(g(t ))S(t )R−1(g(0))

(
Âg(0)

B̂g(0)

)
.

This gives Ã = c1Â + c2B̂, where c1 and c2 are two coeffi-
cient extracted from the equation above and for simplicity we
dropped the time and the subscripts. Now the population of
these new modes would be

〈ψ (0)|Ã†(t )Ã(t )|ψ (0)〉 = |c1|2n(Â(g(0))) + |c2|2n(B̂(g(0))),

where n(Âg(0) ) and n(B̂g(0) ) can be calculated from the previ-
ous section.

APPENDIX D: DISORDER IN THE SSH MODEL

One of the main experimental challenges is to keep the
parameters of the model homogeneous. For the SSH model,
this translates to generating a lattice with couplings that are
either K or Kp exactly.

FIG. 13. These plots show the probability of starting with an
initial excitation on the left edge state and getting the right edge
state after time t after the quench. In each plot a different amount
of disorder is included in the simulation. The disorder indicates
the width of the Gaussian distribution in terms of a fraction of the
original couplings K and Kp. It indicates that beyond 1% disorder,
the probability starts to decline.
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Here we examine how inhomogeneity would affect the
dynamics we investigated in this work. We consider an in-
homogeneous lattice where each coupling is given a random
disorder. The disorder is sampled from a Gaussian probability
distribution where the width of the distribution is set by
a fraction of the coupling strength, e.g., 1%K . Figure 13

presents analysis similar to the one in Fig. 12 with disorder.
It illustrates that up to a certain amount of disorder (1%) the
analysis holds and the state would transfer to the other site
after some time. However, as we increase the disorder, the
probability of transferring the excitation to the other side of
the lattice decreases.
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