Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Manganese K-Edge X-Ray Absorption Spectroscopy as a Probe of the Metal–Ligand Interactions in Coordination Compounds

MPG-Autoren
/persons/resource/persons138451

Roemelt,  Michael
Research Department Neese, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons237535

Beckwith,  Martha. A.
Research Department Neese, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;
Department of Chemistry and Chemical Biology, Cornell University;

/persons/resource/persons216825

Neese,  Frank
Research Department Neese, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;

/persons/resource/persons237560

DeBeer,  Serena
Research Department Neese, Max Planck Institute for Bioinorganic Chemistry, Max Planck Society;
Department of Chemistry and Chemical Biology, Cornell University;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Roemelt, M., Beckwith, M. A., Duboc, C., Collomb, M.-N., Neese, F., & DeBeer, S. (2012). Manganese K-Edge X-Ray Absorption Spectroscopy as a Probe of the Metal–Ligand Interactions in Coordination Compounds. Inorganic Chemistry, 51(1), 680-687. doi:10.1021/ic202229b.


Zitierlink: https://hdl.handle.net/21.11116/0000-0007-E31D-9
Zusammenfassung
A series of manganese coordination compounds has been investigated by X-ray absorption spectroscopy (XAS). The K-pre-edge spectra are interpreted with the aid of time-dependent density functional theory (TD-DFT). This method was calibrated for the prediction of manganese K-pre-edges with different functionals. Moreover the nature of all observed features could be identified and classified according to the corresponding set of acceptor orbitals, either 1s to 3d transitions or metal-to-ligand charge transfer (MLCT) bands. The observable MLCT bands are further divided into features that correspond to transitions into empty π* orbitals of π-donor ligands and those of π-acceptor ligands. The ability to computationally reproduce the observed features at the correct relative transition energy is strongly dependent on the nature of the transition. A detailed analysis of the electronic structure of a series of Mn coordination compounds reveals that the different classes of observable transitions provide added insight into metal–ligand bonding interactions.