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Abstract

Maintained structural integrity of hippocampal and cortical gray matter may explain why some older adults show rather
preserved episodic memory. However, viable measurement models for estimating individual differences in gray matter
structural integrity are lacking; instead, findings rely on fallible single indicators of integrity. Here, we introduce
multitrait-multimethod methodology to capture individual differences in gray matter integrity, based on multimodal
structural imaging in a large sample of 1522 healthy adults aged 60-88 years from the Berlin Aging Study II, including 333
participants who underwent magnetic resonance imaging. Structural integrity factors expressed the common variance of
voxel-based morphometry, mean diffusivity, and magnetization transfer ratio for each of four regions of interest:
hippocampus, parahippocampal gyrus, prefrontal cortex, and precuneus. Except for precuneus, the integrity factors
correlated with episodic memory. Associations with hippocampal and parahippocampal integrity persisted after controlling
for age, sex, and education. Our results support the proposition that episodic memory ability in old age benefits from
maintained structural integrity of hippocampus and parahippocampal gyrus. Exploratory follow-up analyses on sex
differences showed that this effect is restricted to men. Multimodal factors of structural brain integrity might help to
improve our biological understanding of human memory aging.
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Introduction

Performance in episodic memory tasks typically declines after
the age of 60 years (Schaie et al. 1998; Ronnlund et al. 2005),
but there are pronounced age-related individual differences in
levels and changes of performance (de Frias et al. 2007; Josef-
sson et al. 2012), with some older individuals displaying little
or no performance decline. The “brain maintenance” hypoth-
esis suggests that an older person’s level of behavioral perfor-
mance reflects the degree to which this person’s brain has main-
tained its integrity across a variety of levels, including structure,
function, and neurochemistry (Nyberg et al. 2012; Lindenberger
2014; Cabeza et al. 2018; Nyberg and Pudas 2019; Nyberg and
Lindenberger 2020). Modern neuroimaging techniques allow us
to better describe and understand various characteristics of
brain tissue through the application of differentimaging modali-
ties such as structural and functional magnetic resonance imag-
ing (MRI), diffusion tensor imaging (DTI), or positron-emission
tomography (PET). Yet, it is unclear whether these measures
converge on constructs that reflect the “integrity” of a given
brain region.

Here, we combine multimodal imaging with multitrait-
multimethod (MTMM) modeling (Campbell and Fiske 1959; Eid
et al. 2008) to represent the gray matter structural integrity of
different regions of the human brain, and to investigate their
associations with episodic memory. We selected a number
of regions of interest (ROIs) that are part of the episodic
memory network (for a review, see Dickerson and Eichenbaum
2009; Benoit and Schacter 2015). Specifically, we included
hippocampus, parahippocampal gyrus, precuneus, dorsolateral
prefrontal cortex, and medio-orbitofrontal cortex as ROIs. The
hippocampus plays a key role in episodic memory (Eichenbaum
2017). Hippocampal volume is, on average, smaller in healthy
older than in healthy younger adults, and shrinks with time
in normal aging (Raz 2005; Raz et al. 2005; Fjell et al. 2009;
Walhovd et al. 2011; Jancke et al. 2020). Smaller hippocampal
volume is related to poorer episodic memory performance in
cross-sectional studies in old age (for reviews, see Squire 1992
or Kaup et al. 2011; Ward et al. 2015). Longitudinal studies show
that less decline over time in hippocampal volume in older
adults is related to less decline in episodic memory performance
(Persson et al. 2012; Gorbach et al. 2017). Similar results were
found at the functional level, such that smaller decrements in
activation were associated with better preservation of memory
performance (Persson et al. 2012).

Regarding the role of hippocampal microstructural integrity
in age-related cognitive decline, there is some indication that
higher mean diffusivity (MD) in hippocampus, indicating a less
dense tissue structure, is related to poorer episodic memory per-
formance in older adults (Carlesimo et al. 2010). In studies using
magnetization transfer (MT) imaging, it could be shown that a
higher MT ratio, indicating denser microstructure, is related to
lower MD (Diizel et al. 2010), faster processing speed, and higher
fluid intelligence (Aribisala et al. 2014), but not better memory
(Dlizel et al. 2010, 2008; Aribisala et al. 2014). Still, taken together,
these findings suggest that the macro- and micro-structural
integrity of hippocampus might be critical for preserving its
functionality for episodic memory in older age.

Hippocampus does not operate in isolation (Rugg et al.
2008; Dickerson and Eichenbaum 2009; Rugg and Vilberg 2013;
Eichenbaum 2017). The parahippocampal gyrus is, together with
the entorhinal cortex, a major input source for hippocampus,
and critically supports episodic memory (Persson et al. 2012).
Parahippocampal volume is smaller in older than in younger
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adults (Henson et al. 2016; Gorbach et al. 2017; Foster et al.
2019), and longitudinal decline in parahippocampal gyrus’
volume is related to decline in episodic memory performance
(Gorbach et al. 2017), but cross-sectional associations between
parahippocampal volume and episodic memory performance
are not necessarily observed (Henson et al. 2016; Foster et al.
2019). MD in parahippocampal gyrus is higher in older than in
younger adults (Grydeland et al. 2013).

Further cortical regions are known to interact with hip-
pocampus in support of episodic memory, including prefrontal
areas, retrosplenial/posterior cingulate cortex, and lateral
parietal cortices (e.g., angular gyrus; Rugg and Vilberg 2013).
Here, we restrict the analysis to prefrontal cortex and precuneus
(as it includes the retrosplenial region), given that some of the
structural properties that we examine here have been reported
to be associated with memory performance in relation to these
regions. To begin with, prefrontal cortex is involved in memory
retrieval processes (Eichenbaum 2017). Prefrontal cortex volume
is shrinking with advancing age (Raz et al. 2005), its MD is higher
in older than in younger individuals (Grydeland et al. 2013),
and larger prefrontal gray matter volumes are related to better
associative (Becker et al. 2015) as well as item episodic memory
performance (Persson et al. 2017). Finally, precuneus contributes
to memory retrieval (Cavanna and Trimble 2006), precuneus
volume is related to autobiographic memory (Freton et al. 2014),
and MD in precuneus shows age-specific associations with
cognitive performance (Grydeland et al. 2013).

“Brain maintenance” should be reflected by preserved tissue
integrity on many biological levels, which most likely interact
with one another as they change in the course of healthy aging.
In structural imaging, brain maintenance should be reflected
by relatively sparse and little microstructural damage as well
as a relative lack of macrostructural atrophy. Maintenance can
thus be assessed by several imaging modalities carried out at
the same time in the same subjects. Such a multimodal imag-
ing approach might provide a more comprehensive account of
interindividual variability in brain maintenance (Nyberg et al.
2012) than an approach that considers each measure sepa-
rately. In the present study, we combine different structural
characteristics of gray matter tissue into region-specific con-
structs of structural integrity. Our approach takes advantage
of commonalities across measures from different modalities
while removing the modality-specific measurement error; the
rationale being that all selected measures reflect some aspect of
structural integrity, so that their commonality should be a more
robust index of structural integrity than any one measure alone.

Our approach differs from approaches adopted in other mul-
timodal imaging studies. There are many good reasons to invest
more effort into the use of multimodal brain imaging in aging
research (Nevalainen et al. 2015; Fjell and Walhovd 2016). Many
of the existing multimodal imaging studies aim at maximizing
predictive accuracy by combining information from multiple
modalities (Ritchie et al. 2015; Ward et al. 2015; Hedden et al.
2016; Liem et al. 2017). These approaches capitalize on the
unique information that each modality adds to predicting cog-
nitive performance (Ritchie et al. 2015; Ward et al. 2015; Hedden
etal. 2016) or brain age (Liem et al. 2017), so they benefit from the
fact that each modality measures different aspects of integrity.
In contrast, in the present study, we were not primarily inter-
ested in the unique contribution of each measure to predicting
an outcome, but instead in the variance that is shared across
modalities. The presumed primary advantage of multimodality
in our approach is that the resulting latent factor might yield a
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more reliable and valid estimate of the target concept, which is
the purported tissue property of “structural integrity.” A latent
factor of regional gray matter integrity expresses what the indi-
cators have in common, is free of imaging modality-specific
variance, and free of residual variance (measurement error). In
comparison to currently available indicators, we postulate that
a factor of this sort is more likely to do justice to the level of
generality and abstraction that the term integrity suggests.

In this study, we aimed to quantify and jointly model dif-
ferent structural properties of gray matter by using three com-
mon imaging techniques, each being differentially sensitive to
macro- and micro-structural properties of brain tissue (Bartrés—
Faz and Arenaza-Urquijo 2011), namely gray matter volume, MT
ratio, and MD from DTI. In the next paragraph, we describe which
structural properties of gray matter are captured by the imaging
modalities we selected for the current study.

Structural imaging provides static anatomical information
derived from MR signal properties. T1l-weighted, 3D, high-
resolution images are commonly used to estimate the volume
of brain ROIs to study interindividual differences in volume
and volume changes over time. When using the voxel-based
morphometry (VBM) method (Ashburner and Friston 2000;
Good et al. 2001), signal intensity in every voxel is used to
gauge regional variations in structural properties of the tissue
and provides voxel-wise estimations of the local volume of
specific tissue compartments (gray matter, white matter, or
cerebrospinal fluid).

Microstructural properties of gray matter regions, and age-
related differences therein, can be probed by MT imaging (for
a review, see Seiler et al. 2014). MT imaging capitalizes on the
transfer of energy and related magnetization exchange between
mobile water protons and protons that are immobilized by
macromolecules (Wolff and Balaban 1989). MT ratio values
are calculated as the ratio between values measured with a
MT pulse and values without MT pulse. MT can detect subtle
microstructural abnormalities due to age-related or pathological
changes otherwise not detectable with standard MRI (Seiler et al.
2014). MT ratio values depend on content and concentration
of macromolecules bound to water molecules in relation to
free water molecules. Lower MT ratio values can result from
an increase in the mobile proton pool, occurring as a result
of inflammation and edema, or a decrease in the semisolid
proton pool, associated with cell damage, axonal loss, and
demyelination (Seiler et al. 2014).

DTI can detect subtle changes in cellular microstructure by
measuring patterns of water diffusion that likewise cannot be
quantified using more traditional structural MRI sequences. MD
is a DTI metric that measures the rate of water diffusion in all
directions within an image voxel (Pierpaoli and Basser 1996) and
is commonly used as an index of white matter microstructural
integrity. MD can be used to characterize one form of structural
integrity under the assumption that region-specific diffusion
is based on (1) less diffusion across cell membranes in denser
structures or structures with a main direction as seen in white
matter tracts (Sundgren et al. 2004; Jespersen et al. 2007), (2) more
diffusion within less dense brain structures or structures with
no principal direction as seen in gray matter (Sundgren et al.
2004). Although more often used to characterize white matter,
MD is also informative of gray matter microstructural properties
and age-related differences in it (Abe et al. 2008; Grydeland et al.
2013), with lower MD indicating a denser structure, most prob-
ably indicating more cell membranes and intracortical myelin
(Grydeland et al. 2013).

In the present study, we combined macro- and micro-
structural imaging modalities as indicators of gray matter
integrity in a multimodal approach. Thus, we set out to validate
a structural equation model representing the commonalities of
specific tissue characteristics resulting from different imaging
modalities. To establish the plausibility of integrity factors,
we examined whether the empirically observed covariance
structure shows substantial commonalities among the various
gray-matter indices.

We used cross-sectional data from the older participants of
the Berlin Aging Study II (BASE-I[; Bertram et al. 2013), which
amount to a fairly large sample of 1532 healthy adults aged
60-88 years, with structural brain imaging measures of VBM,
MT, and MD taken from a subsample of 333 participants who
underwent MR imaging. Our goal of this analysis approach was
two-fold. First, we sought to demonstrate the benefits of a
multivariate latent variable modeling approach to representing
regional structural integrity while doing justice to the complex-
ity of the underlying measurement problem. Second, we wished
to demonstrate that such an approach can be put to use to
identify the associations between structural properties of gray
matter regions belonging to the episodic memory network and
episodic memory ability in old age.

In a first set of analyses, we established region-specific latent
brain integrity factors. To this end, we specified confirmatory
factor models within each of the brain regions by defining
a latent brain integrity factor representing the variance that
is shared across the three imaging modalities. This latent
factor should capture the statistical communality of different
physical properties of gray matter tissue. This parallels
psychometric approaches targeting a nonobservable (or latent)
psychological construct by measuring a range of indicators
and interpreting their common variance as representative
of the target construct. By using different indicators, we
triangulate our target construct, integrity, which is sensible even
if our indicators should only have limited overlap in variance
(Little et al. 1999).

In a second set of analyses, we combined the latent brain
integrity model with a latent episodic memory factor to inves-
tigate the associations of brain integrity and episodic mem-
ory performance. We hypothesize that gray matter integrity in
regions of the episodic memory network is related to episodic
memory performance.

Materials and Methods
Participants and Study Design

Healthy older participants were recruited from BASE-II, a multi-
institutional and multidisciplinary study assessing variables
from a wide range of domains for each participant (Bertram
et al. 2013). Participants completed a comprehensive cognitive
examination (see Diizel et al. 2016, for further details). A
subsample of eligible participants was then invited to take
part in a separate MRI session within a couple of weeks (mean
time interval 3.8 months, SD=4.4) after completing cognitive
testing. None of the participants took any medication that is
known to potentially affect memory function or had a history
of head injuries, medical (e.g., heart attack), neurological (e.g.,
epilepsy), or psychiatric disorders (e.g., depression). Additionally,
all participants had completed at least 8 years of education.
BASE-II includes a larger sample of persons above age 60 and
a smaller sample of participants in early adulthood. Here,
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Table 1 Descriptive statistics of the background variables and episodic memory task scores both in the full sample and the magnetic resonance

(MR) sample, and selectivity (in SD) of the MR sample
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Variable N Mean SD Skewness Kurtosis Selectivity?®
Total Total MR Total MR Total MR Total MR
sample sample sample sample sample sample sample sample sample

Age 1511 70.60 70.08 3.84 3.83 0.31 0.22 3.59 2.99 0.13

Sex (% f) 1522 50.72 38.44

Education 1339 14.16 14.08 2.89 2.90 0.14 0.13 1.62 1.69 0.03

VLMT 1497 8.50 8.46 2.68 2.52 —0.43 -0.35 2.49 2.66 0.02

FP 1495 0.27 0.27 0.21 0.20 —0.02 0.11 2.89 2.70 —0.04

SE 1495 0.28 0.29 0.14 0.14 —0.02 —0.09 2.93 291 —0.10

OL 1505 13.26 13.56 4.00 4.03 0.05 0.10 3.12 3.52 —0.08

Notes: VLMT, verbal learning and memory test—sum of remembered words after five learning trials with the same 15 words; FP, Face-profession task—hits minus
false alarms; SE, scene-encoding task—hits minus false alarms; OL, object location task—sum of correct placements across two trials (each consisting of 12 items).

a SeleCtiVity = (mean(total sample) 'mean(MR sample))/SD(total sample) -

Table 2 Descriptive statistics of the MR variables, in the MR sample

Variable N Mean SD Skewness Kurtosis
VBM hippocampus 330 0.5218 0.0458 —0.3126 3.8741
VBM parahippocampal gyrus 330 0.4316 0.0317 —0.6077 4.4632
VBM precuneus 330 0.3969 0.0304 —0.037 2.9566
VBM medio-orbitofrontal cortex 330 0.4156 0.0307 —0.0886 2.7687
VBM dorsolateral prefrontal cortex 330 0.4147 0.0297 —0.0652 2.9019
MT hippocampus 197 332.58 31.15 —1.041 5.5332
MT parahippocampal gyrus 197 363.62 14.92 —1.0487 8.5256
MT precuneus 197 335.81 18.81 —0.0541 3.0495
MT medio-orbitofrontal cortex 197 354.50 16.79 0.2575 4.321
MT dorsolateral prefrontal cortex 197 300.51 21.40 0.6943 3.8887
MD hippocampus 274 0.0014 0.000135 0.6734 3.4187
MD parahippocampal gyrus 274 0.0013 0.000111 0.481 3.3893
MD precuneus 274 0.0012 0.000112 0.4331 3.4798
MD medio-orbitofrontal cortex 274 0.0012 0.000102 0.3673 3.276
MD dorsolateral prefrontal cortex 274 0.0012 0.000081 0.4319 3.4547

Notes: N, sample size in the MR subsample; SD, standard deviation; VBM, voxel-based morphometry, MT, magnetization transfer ratio; MD, mean diffusivity (in gray

matter).

we selected only data from participants above age 60, of
which 1532 had completed cognitive testing, of which 342 had
additionally taken part in MR imaging. We had to exclude nine
cases with erroneous data from the cognition sample, two
of which were in the MR sample as well. We then excluded
multivariate outliers with highly unlikely combinations of
values (P <0.0001 of robust Mahalanobis distances; detected
using R-package faoutlier, version 0.7.2, Chalmers and Flora
2015, method “mve,” in complete cases only). We detected
multivariate outliers separately for the 4 episodic memory tests
in the total sample (n=1523; one outlier found) and for the 12
MR variables in the MR sample (n=340; seven outliers found).
Hence, the effective sample with cognitive data consisted of
1522 older adults (Table 1), the effective sample with MR-
data consisted of 333 older adults (Table 2). Thus, of the total
sample, for 78.12% we had no MR data. The ethics committee
of the Max Planck Institute for Human Development had
approved the cognitive testing and the ethics committee of the
Deutsche Gesellschaft flir Psychologie (DPGs) had approved the
imaging study. Participants received monetary compensation
for their participation in the cognitive and imaging sessions and

provided informed consent in accordance to the Declaration of
Helsinki.

MRI Acquisition

Images were acquired on a Siemens Tim Trio 3T scanner (Erlan-
gen, Germany) using a 32-channel head coil. The T1 images
were obtained using a 3D T1-weighted magnetization prepared
gradient-echo (MPRAGE) sequence based on the ADNI protocol
(www.adni-info.org; repetition time (TR)=2500 ms; echo time
(TE)=4.77 ms; TI=1100 ms, acquisition matrix =256 x 256 x 176,
flip angle=7°; 1x1x1 mm?® voxel size). Diffusion-weighted
images were obtained with a single-shot diffusion-weighted
spin-echo-refocused echo-planar imaging sequence (FOV
218 x 218 mm; 128 x 128 matrix interpolated to 256 x 256;
TE=98 ms; TR=11000 ms; 73 slices; slice thickness 1.7 mm; b-
value 1000 s/mm?; 60 directions). MT ratio images consisting of
two volumes were acquired with identical settings (transversal,
256 x 256 pixels, TE=5.5 ms, TR=28 ms, 48 slices, voxel size
1 x 1 x 3 mm?3). The first image (MT image) was acquired with a
magnetic saturation pulse (1200 Hz off-resonance, 16 ms) and
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the second (noMT image) without a magnetic saturation pulse
resulting in a proton-density-like image.

MR Preprocessing

Voxel-Based Morphometry

Structural data were processed with Computational Anatomy
Toolbox 12 (CAT12, Structural Brain Mapping group, Jena Univer-
sity Hospital), a toolbox that is implemented in Statistical Para-
metric Mapping (SPM12, Institute of Neurology) for VBM analysis
of imaging data. We applied the CAT12 default cross-sectional
preprocessing stream, which implements correction of the T1-
weighted images for bias-field inhomogeneities, segmentation
into gray matter, white matter and CSF, and spatial normal-
ized using the Diffeomorphic Anatomical Registration Through
Exponentiated Lie algebra (DARTEL) algorithm. Modulation with
Jacobian determinants was applied in order to preserve the
volume of a particular tissue within a voxel leading to a measure
of volume of gray matter. Gray matter images were used for the
current set of analyses and smoothed with a Gaussian kernel of
8 mm (full width at half maximum).

Magnetization Transfer Imaging

The MT ratio (MTR) maps for each subject were calcu-
lated on a voxel-by-voxel basis according to the formula
MTR = (noMT — MT)/noMT. The data were then normalized into
MNI space.

Diffusion Tensor Imaging

Diffusion-weighted images were preprocessed using the FSL
software package (Smith et al. 2004; Jenkinson et al. 2012), ver-
sion 5.0. This included corrections of potential head move-
ment and inspection of image quality. The first non diffusion-
weighted image of each individual image set was used as a brain
mask. The difference in alignment between this initial image
and recurrent ones in the sequence was estimated using FMRIB’s
Linear Image Registration Tool (FLIRT; Jenkinson et al. 2002) and
then corrected for by means of re-alignment. The resulting data
were then processed via FSL'’s dtifit to fit a diffusion tensor model
at each voxel and obtain the MD values. The MNI based maps
were produced using the standard TBSS pipeline (Smith et al.
2006).

ROI Extraction and Adjustment for Differences in
Intracranial Volume

Based on prior studies on associations between regional gray
matter structure and episodic memory (Squire 1992; Pantel et al.
2003; Cavanna and Trimble 2006; Raz and Rodrigue 2006; Becker
et al. 2015; Gorbach et al. 2017) as well as functional correlates of
episodic memory (Persson et al. 2012; Benoit and Schacter 2015),
we extracted mean values of CAT12/VBM, MD, and MT ratio
bilaterally from the ROIs hippocampus, medio-orbitofrontal cor-
tex, dorsolateral prefrontal cortex, parahippocampal gyrus, and
precuneus, as defined by the automated anatomical labelling
(AAL) atlas (Tzourio-Mazoyer et al. 2002). ROI masks were fitted
in MNI space after normalization to a standard template.

We used intracranial volume (ICV) to adjust the VBM val-
ues for each ROI via the analysis of covariance formula (Raz
et al. 2005): adjusted volume =raw volume — b*(ICV — mean ICV),
where b is the slope of regression of the appropriate ROI volume
on ICV.

Episodic Memory Assessment

All BASE-II participants were invited to 2 cognitive test sessions
with an exact interval of 7 days and at the same time of day
to avoid circadian confounding effects on performance. Each
session lasted about 3.5 h. Participants were tested in groups
of 4-6 individuals. Each group was instructed via a standard-
ized session manual. Each task started with a practice trial to
ensure that every participant understood the task. Depending on
the task, responses were given via button boxes, the computer
mouse, or a keyboard.

The cognitive battery of BASE-II covers key cognitive abilities
measured by 21 tasks, 4 of which assess aspects of episodic
memory and were thus selected for the present study: 1)
“Verbal Learning and Memory,” assessing free recall of auditorily
presented words after each of five learning trials each consisting
of the same 15 words (score: sum of remembered words
across the responses to five identical learning trials). Partici-
pants typed the words they recalled on the keyboard, one by one
visible on the screen; (1) “Face-Profession,” testing associative
recognition memory 5 min after incidental encoding of 45
face-profession pairs. Participants were instructed to judge
whether the face matches the profession. During recall, they
were presented with 27 old, 9 new, and 18 rearranged pairs and
were asked to provide old-new judgments (score: hits minus
false alarms); (3) “Scene Encoding,” measuring recognition
memory of 88 incidentally encoded scenes (task: indoor-outdoor
judgment) after a delay of 2.5 h (score: hits minus false alarms);
(4) “Object Location,” assessing free recall of 12 deliberately
encoded object locations in a 6 by 6 locations grid (score: sum
of correct placements across two trials). The tasks are described
in detail in Diizel et al. (2016) and in the Supplementary
Materials.

Statistical Analyses

We used structural equation modeling to investigate the rela-
tionship between episodic memory performance and structural
gray matter integrity in a multivariate approach, for two reasons.
First, it enables us to capture variance shared across three
different structural brain-imaging modalities in a latent factor of
structural integrity for any given brain region. This makes sense
from a theoretical perspective, as we aim to define a statisti-
cally plausible index of region-specific gray matter structural
integrity. While the three imaging modalities are designed to
assess different characteristics of gray matter structure, their
shared variance can be interpreted as indicating a common
cause for relatively good or relatively poor gray matter structural
integrity. By separating the shared variance (i.e., what is com-
mon across measures) from the unique, modality-specific vari-
ance (i.e., what is specific to the measurement instrument), we
hope to acquire a more reliable and valid estimate of integrity.
In addition, we defined latent method factors for each modality
(VBM, MTR, and MD) that capture common variance within
the modality across all regions (capturing what is common
to the measurement instrument only but not to the common
factor). As a consequence, the residual variance estimates in our
model represent variance that is neither shared by all ROIs in a
given modality nor shared by all modalities in a given ROI (e.g.,
measurement error).

Second, we used structural equation modeling to examine
whether the region-specific factors of gray matter structural
integrity were associated with episodic memory performance.
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In this context, a particular virtue of structural equation mod-
eling is that we can model gray matter integrity for each of
the ROIs as well as episodic memory performance as latent
factors.

We specified and estimated structural equation models in
Onyx (Oertzen et al. 2014), version 1.0-1029, and lavaan (Rosseel
2012), version 0.6-5, a SEM package in R (R Core Team 2019),
version 3.6.2 (2019-12-12). To account for missing data, we used
full information maximum likelihood estimation. Given that
large differences in measurement scales, like those in our data,
typically pose problems for numerical optimization algorithms,
all observed variables were rescaled. We chose a scale with a
mean of 5 and a standard deviation of 2. To evaluate model fit,
we used the root-mean-square error of approximation (RMSEA),
the comparative fit index (CFI), and the standardized root mean
residual (SRMR). We interpret an RMSEA < 0.08, a CFI > 0.90, and
SRMR < 0.8 as acceptable model fit (Schermelleh-Engel et al.
2003). To assess statistical significance of individual parameter
estimates within a model, we used the likelihood ratio test.
That is, we compared the model with the parameter of interest
freely estimated to a nested model with this parameter fixed
to zero, and compared whether the x? difference between the
models indicated a significant difference in fit (Kline 2015). For
loadings and variance parameters, we used the Z-value (or Wald
statistic; parameter estimate divided by its standard error) from
the lavaan output.

In a first set of analyses, we specified separate CFAs to
validate each latent integrity factor model for the selected ROIs
(dorsolateral prefrontal cortex, medio-orbitofrontal cortex, hip-
pocampus, parahippocampal gyrus, precuneus) defined by the
indicators representing the three imaging modalities. In a next
set of analyses, we combined the individual, fully saturated
models to one structural equation model, in which all latent
integrity factors were allowed to covary with one another. The
intercorrelation of the medio-orbitofrontal cortex factor and the
dorsolateral prefrontal cortex factor was too high for the two
factors to be meaningfully modeled as separate latent variables
(estimated r > 1), hence we decided to specify a single latent pre-
frontal cortex factor with six indicators, two per modality, from
medio-orbitofrontal cortex and dorsolateral prefrontal cortex.
Next, we added modality-specific latent factors (methods fac-
tors), which were defined to be orthogonal to the ROI factors, so
that they represent the modality-specific share of the variance
in the measures after the ROI-specific variance is accounted
for. The methods factors were allowed to correlate with one
another, and to be measured by all indicators that were derived
from the respective modality, with loadings freely estimated
(see Fig. 1). This type of model is known as a MTMM model
(Campbell and Fiske 1959; Eid et al. 2008). It is the appropriate
measurement model if multiple characteristics (usually traits,
but here, ROIs) are each measured by several distinct measures
(usually raters, but here, imaging modalities), yielding a latent
integrity factor for each ROI and a latent method factor for
each imaging modality. The latent scales of both the ROI factors
and method factors were identified by fixing the loading of
a reference indicator to one, which was the respective VBM
indicator for the ROI factors and the respective measure of
precuneus for the method factors. Within this model, we then
correlated the ROI factors and the method factors with age to
investigate age differences in variables of interest. We expected
age differences for all ROI integrity factors (Raz et al. 2005;
Fjell et al. 2009; Grydeland et al. 2013; Seiler et al. 2014). We
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did not formulate any specific hypotheses for age differences
in the methods factors, because method-specific variance was
not in the focus of the investigation. Age differences in any
method factor would indicate that this method is especially age-
sensitive, over and above the age-related variance it shares with
the other methods and that is captured in the ROI-wise integrity
factors. Another purpose of investigating age differences was to
be able to statistically control for age differences in both gray
matter and episodic memory, potentially underlying observable
associations between the two.

In a second set of analyses, we investigated associations
between gray matter structure and episodic memory. An
episodic memory latent factor based on these tasks and data
was reported before (Diizel et al. 2016; Kithn et al. 2017). Perfor-
mance on these four tasks is well captured by a latent factor of
episodic memory ability as indicated by good fit both in the total
sample, CFI > 0.999; RMSEA < 0.001; SRMR =0.004, and in the MR
sample, CFI > 0.999; RMSEA =0.009; SRMR =0.018. We set up the
latent associations between gray matter integrity factors and
episodic memory in two ways that are statistically equivalent
but highlight different aspects of the multivariate associations:
once we report covariances as estimates of the first-order
correlations among ROIs and episodic memory (correlational
model) and once we report multiple regression coefficients to
assess the unique associations of each ROI factor with episodic
memory while controlling for the other factors’ association with
it (regression model). With the correlational model, we sought to
assess ROI-memory associations independent of the other ROIs
in the model. As complementary piece of information, with the
multiple regression model, we were able to assess how much
variance in episodic memory each ROI factor accounts for, over
and above the other ROI factors. In addition, we estimated the
total variance in episodic memory that all ROI factors together
accounted for (see MIMIC model in Kievit et al. 2012, p. 93).

In a next step, we entered age, and education (years) as
well as sex into the correlational model to statistically con-
trol for the extent to which potential associations between
episodic memory and gray matter integrity are being caused by
these covariates. With respect to age, we expected that older
participants tended to show lower gray matter integrity and
lower episodic memory ability, so that not controlling for age
in this age-heterogeneous sample would most likely yield a
strong association between gray matter and episodic memory
that is at least partly driven by those age differences. Education
was expected to be related to episodic memory performance
such that persons with more years of education tend to score
better in episodic memory tests (Stern 2009). Education may
affect performance as a consequence from education-related
early training of memory, but also serves as a proxy for socio-
economic status, differences in which are not of interest in this
study. Sex differences in episodic memory performance were to
be expected (for areview, see Asperholm et al. 2019), and possibly
even in gray matter structure (for a review, see Ruigrok et al.
2014). These then could induce an association if not adjusted
for.

As an additional ad-hoc exploratory analysis, we investigated
differences between men and women in the factor models and
in the associations between gray matter integrity and episodic
memory (Supplementary Material).

Models that entailed only brain data or brain data and covari-
ates were fitted to data from the MR sample (n=333), and models
that entailed episodic memory data were fitted to data from
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the total sample, under the assumption that the MR data were
missing at random (Rubin 1976; Schafer and Graham 2002). This
assumption holds as long as missingness in the gray matter
variables is either completely random or can be explained by
variables in the model.

Results
Sample Descriptives

Table 1 displays the descriptive statistics of the selected
covariates and episodic memory task performance variables
in the full sample and the MR sample. None of the variables
were heavily skewed, and kurtosis was high only in the verbal
learning and memory test in the full sample, so we assumed
that all variables follow the normal distribution to an acceptable
extent. The MR sample did not differ much from the full BASE-
II sample, with selectivity below 0.13 standard deviations in
the continuous variables. The only considerable difference was
found in the sex distribution, with ~38% females in the MR
sample and 51% females in the full sample. In Table 2, we
report the descriptive statistics of the gray matter structure
variables in their original scale in the MR sample. We deemed
skewness and kurtosis levels acceptable in these variables, too.
Days between the cognitive assessment and the MR-session
differed between individuals (absolute difference in days:
mean=113.8, SD=126.9, min =8, max=774). For sex differences
in all variables of interest, see the Supplementary Material.
For pairwise correlations between all variables of interest,
see Table 3.

We succeeded in establishing a factor model with four ROI
factors capturing shared variance across VBM, MT, and MD
within each ROI (prefrontal cortex, hippocampus, parahip-
pocampal gyrus, precuneus). We extracted ROI-wise data from
five ROIs, but the two frontal ROIs medio-orbitofrontal cortex
and dorsolateral-prefrontal cortex shared such a large amount
of their variance (estimated correlation of r > 1) that we rather
estimated only latent factor (prefrontal cortex) with all six
indicators from the two regions, which is a more parsimonious
representation of the common variance of these regions. The
model included method-specific factors (VBM, MT, MD) that
were orthogonal to the ROI factors and captured the shared
variance of measures within imaging modalities and across
ROIs (Fig.1). We allowed for residual covariances between
the VBM indicators of closely neighboring ROIs (namely, of
medio-orbitofrontal and dorsolateral prefrontal cortex and of
hippocampus and parahippocampal gyrus), as we expected
dependencies between them to exceed the shared variance
modeled in the latent VBM factor. Fixing these residual
covariances to zero (as done with all other residual covariances
among indicator variables) significantly decreased model fit.
The proposed model with the residual covariances freely
estimated fitted the data well, x?gr-eq)=152.876; CFI=0.965;
RMSEA =0.065; SRMR =0.046. As the residual variance of the
indicator variable MD medio-orbitofrontal cortex was estimated
at a low negative value, we constrained that parameter to
zero in all following models. This constraint did not result
in worse model fit (Ax?gs-1)=0.01, P=0.91). All observed
variables loaded reliably on the postulated latent ROI factors
except for MD of medio-orbitofrontal cortex on the prefrontal
cortex factor (standardized loading=-0.02, z=-0.16, P=0.87,
all other standardized loadings >0.27, z’s > 2.13, P’s < 0.034). All

indicators loaded reliably on the postulated method factors
(absolute standardized loadings >0.18, abs. z’s > 3.12, P < 0.003).
We estimated covariances among the ROI integrity factors and
among method factors, while method factors were defined as
being orthogonal to ROI factors. For covariances among the
latent factors see Table 4.

Association Between Latent Factors and Age

We included age in the model to estimate covariances between
age and all latent factors. Model fit remained acceptable,
x?(af=73) =171.707; CFI= 0.962; RMSEA = 0.064; SRMR = 0.045. Age
was negatively associated with all ROI factors except precuneus,
Tage,PEC = -0.21, AXZ(df= ) = 5.66, P=0.017; Tage,HC = -0.22,
AX2(df=1) = 13.2, P =0.0003; Yage, PHG = —0.22, sz(df=1) = 9422,
P=0.0024; Tage pre = 0.01, Ax?(gf-1) = 0.026; P=0.87. In addition,
age was associated with the method factors (rage, v =-0.16,
sz(df: 1) =4.35, P= 0037, Yage' MT = —0.29, AXQ(df: 1) = 11‘3,
P=0.0008; Tage,Mp = 0.40, Ax?gr-1) =354, P <0.0001). We had
also tested for measurement invariance across age groups after a
median split, which suggested no age differences in the loadings
on the ROI factors (Supplementary Table 9).

Associations Between Gray Matter Integrity ROIs and
Episodic Memory in the Correlational Model

We added an episodic memory latent factor to the model, which
was indexed by the four episodic memory task scores. We then
estimated correlations between the episodic memory factor
and the ROl integrity factors (correlational model) as well as the
method factors. We fit this model to the data from all included
participants with episodic memory data available (n=1522),
assuming missingness of MR data to be at random. The fit
was acceptable, x?gr_120)=203.27; CFI=0.97; RMSEA=0.02;
SRMR=0.05 (for more fit indices, see Supplementary Table 1).
The scores that served as indicators all loaded significantly
on the latent episodic memory factor with moderate effect
size (standardized loadings between 0.46 and 0.56, z's > 10.41,
P’s <0.001), indicating that they contributed similarly to the
latent factor. Episodic memory was significantly associated
with all ROIs except precuneus, rgm, prc =0.24, A Xz(df: 1)=7.02;
P= 0008, TEM, HC = 0.33, sz(df=1) = 16, P <0.0001; TEM, PHG = 0.27,
sz(df: 1) = 928, P =00023, TEM, PRE =O.16, sz(df: )= 329, P=0.07.
In contrast, episodic memory was not reliably related to the
method factors, rgm,v=0.07, sz(dfﬂ):o.%, P=0.51; rgm, MT=
-0.02, AXZ(df:‘l) =0.03; P=0.86; rgm, mp =—0.12, sz(df: )= 2.19;
P=0.41 (for a list of all estimates, see Supplementary Table
1). Hence, a model with these associations fixed to zero (see
Figure 1) did not fit worse than a model estimating them freely,
Ax?af=3)=3.5,P=0.32, and was used in the following extensions
of the model (x?gf-123=206.77; CFI=0.973; RMSEA=0.021,
SRMR =0.05).

Unique Associations of ROIs with Episodic Memory in
Regression Model

To assess how much variance in episodic memory is uniquely
and jointly predicted by the latent ROI factors, we refit the
previous model with directed paths from each ROI to latent
episodic memory (regression model). This is a latent multiple
regression model regressing episodic memory on each ROI
integrity factor. Note that the directionality of effects (i.e., ROI
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Table 3 Pairwise first-order correlations between all observed variables of interest
Memory VBM MT MD Covariates
VLMT FP SE OL HC PHG PRE OFC DLPFC HC PHG PRE OFC DLPFC HC PHG PRE OFC DLPFC Age Edu
Memory FP 0.25
SE 026 022
oL 030 025 029
VBM HC 012 018 011 012
PHG 008 009 001 —006 061
PRE 004 007 009 004 020 031
OFC 012 003 010 007 029 039 045
DLPFC 008 005 013 007 023 035 040 078
MT HC 016 023 021 005 057 034 020 032 036
PHG 017 017 013 —004 037 030 013 024 029 069
PRE 006 007 008 001 014 007 039 009 013 019 033
OFC 006 010 007 001 021 007 012 020 025 046 045 029
DLPFC -0.03 008 002 -009 014 004 015 018 025 032 035 053 057
MD HC —005 -0.16 -026 -011 —063 -0.35 -020 -025 -031 -0.86 -046 -013 —033 —0.26
PHG  -014 -013 -026 —009 —053 -044 -036 —0.36 -040 -069 —063 -039 —035 —032 064
PRE  -0.09 -012 -016 —-007 —029 -026 -053 —-026 -029 -027 -039 —076 -0.30 -037 029 058
OFC  -0.08 -0.14 -014 —004 -023 -025 —-036 -030 -030 -025 -027 -046 -046 -061 024 052 066

DLPFC -0.13 -0.15 -0.20 -0.03 -0.37 -0.34 -0.37 -0.39 -0.40
Covariates  Age -0.13 -0.16 -0.16 -0.05 -0.30 -0.23 -0.11 -0.10 -0.11

Edu 0.18 0.16 0.09 0.15 -0.03 -0.02 -0.01 -0.05 -0.08

Sex 0.09 0.03 004 004 021 009 021 0.32 0.35

-0.47 -050 -040 -0.65 -0.54 048 0.65 0.55 0.71

-0.27 -0.28 -0.21 -030 -024 033 038 030 041 046

-0.02 -0.05 -0.11 0.07 -0.04 006 011 012

0.37

—0.01 0.01 —0.06
0.28 0.26 026 0.16 -0.26 -040 -028 -0.18 -0.30 0.02 —0.15

Notes: VLMT, verbal learning and memory test; FP, face-profession task; SE, scene encoding; OL, object location task; VBM, volume-based morphometry; MT,
magnetization transfer ratio; MD, mean diffusivity; HC, hippocampus; PHG, parahippocampal gyrus; PRE, precuneus; MOFC, medio-orbitofrontal cortex; DLPFC,
dorsolateral prefrontal cortex; edu, years of education. Based on pairwise complete data.

integrity factor predicting memory) is merely hypothesized and
cannot be tested with the data at hand. Importantly, instead
of interpreting first-order correlations, we now examined
the total effect and the unique effects of each ROI integrity
factor on episodic memory. All ROIs together explained 12.5%
of the variance in episodic memory (R?=0.125). None of the
ROIs showed a significant unique effect. However, the unique
effect of hippocampus had the largest effect size; it was
greater than those of parahippocampal gyrus, precuneus, and
prefrontal cortex by a factor of 2.5, 3.2, and 4.8, respectively
(std. BeM, uc =0.38, sz(df=1) =3.12; P=0.08; std. Bem, pug =—0.15,
A)(z(dle) = 0.28; std. ﬁEM, PRE = 0.12, sz(dle) = 1.05; P= 0.31;
P=0.59; std. Bem, prc =0.08, sz(df: 1) =0.33; P=0.57).

Adjusting for Covariate Effects

In follow-up analyses, we entered age as a covariate into
the correlational model. As before, in the brain-only model
from the first set of analyses, age was negatively associated
with all ROI factors except precuneus and with all method
factors. Here, we regressed the ROI integrity factors, the
method factors, and the episodic memory factor on age
and examined the residual covariances between episodic
memory and the ROI integrity factors. Age was negatively
associated with episodic memory (Table 5). Moreover, the
associations between episodic memory and the ROI factors
were attenuated after controlling for age, leaving only hip-
pocampus and parahippocampal gyrus being significantly
associated with episodic memory, rgm, prc =0.16, AX2(df= 1)=2.98;
P=008, TEM, HC =0.27, A)(z(dle) =10.22; P=00014, TEM, pHG=O.21,
Ax?(f=1)=5.2; P=0.023; ren,pre=0.13, Ax%(gr=1)=1.95; P=0.16.
Thus, the gray matter integrity factors of hippocampus and

parahippocampal gyrus shared a significant amount of variance
with episodic memory that was not collinear with age, further
suggesting that the structural integrity of these two regions
might be critical for episodic memory.

We then added years of education into the model as a
covariate by regressing all ROI factors and episodic memory
as well as the method factors on age and education, which
had very little effect on estimates of associations and did not
change the pattern of significance, rem, prc =0.16, AX2(df= 1)=3.04;
P= 008, TEM, HC = 027, A)(z(df:»l) = 1043, P= 00012, TEM, PHG =O.23,
AXZ(df=1) =5.92; P=0.015; rgym, pre=0.15, AXZ(df=1) =2.6; P=0.11.
For a test of measurement invariance across education, see
Table S10. No differences in loadings nor residual variances were
found. When we added sex as a covariate, all associations were
somewhat further attenuated, but hippocampus and parahip-
pocampal gyrus were still significantly associated with episodic
memory, Tem, PFC =0.05, sz(df:1)=0'29; P=0.59; TEM, HC =0.19,
sz(df=1) =4.66; P= 0.031; TEM, PHG =O.13, AXZ(df=1) =4.08; P= 0.043;
rem, pre = 0.07, sz(dfz 1)=1.76;P=0.19 (for a full list of parameter
estimates and for additional fit indices, see Supplementary
Table 2).

As an additional ad-hoc exploratory analysis, we investigated
differences between men and women in the associations
between gray matter integrity and episodic memory (Supple-
mentary Figure 1) After testing for measurement invariance
across sexes (Supplementary Tables 5 and 6), we ran the
correlational model as a multigroup model, once with (Sup-
plementary Table 7) and once without age and education as
covariates (Supplementary Table 8). The associations between
hippocampal and parahippocampal gray matter integrity were
restricted to men (see Supplementary Material, Section 4, for
details).

120z Ateniga 60 uo Jasn JuswdojeAs(] UBWINK 10} 81Nsu| Youeld XeN Aq 881 S6S/Y9Y LIS/ | £/8101./100182/W 00 dno-olWwspese//:sdny wolj papeojumoq


https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa287#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa287#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa287#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa287#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa287#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa287#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa287#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa287#supplementary-data

1472 | Cerebral Cortex, 2021, Vol. 31, No. 3

VLMT

FP

|| SE oL

Y
HC
VBM MD VBM MT MD VBM MT MD VBM MT MD VBM MT MD
mofc mofc dipfc dipfc dipfc hc hc hc phg phg phg pre pre pre

= A‘ I ——

e N ,
© @ ®

Figure 1. Correlational model. Gray matter integrity factor model separating common variance across structural imaging modalities for each of the ROIs (PFC, HC,
PHG, PRE) from method-specific variance (VBM, MT, MD) and residual variance, and associating gray matter factors with episodic memory. Circles depict latent
variables, squares depict observed variables. Double-headed arrows are covariances, single-headed arrows are loading parameters. Variances of all observed and
all latent variables were estimated, but not visualized in this figure for the sake of clarity. Variable names beginning with VBM are VBM-derived gray matter probability
measures, names with MT are magnetization transfer ratio measures, names with MD are mean diffusivity measures. Further, names indicate the regions: mofc,
medio-orbitofrontal cortex; dlpfc, dorsolateral prefrontal cortex; hc, hippocampus; phg, parahippocampal gyrus. Upper part: Episodic memory factor, measured by
four tasks. EM, episodic memory; VLMT, verbal learning and memory test; FP, face-profession task; SE, scene-encoding task; OL, object location task.

Table 4 Correlations among latent factors in the gray matter integrity model

Prefrontal Hippocampus Parahippo- Precuneus Method VBM  Method MD  Method MT
cortex campal g.

Prefrontal cortex 1

Hippocampus 0.59" 2 1

Parahippocampal g. 0.68" 0.84" 2 1

Precuneus 0.18 0.13 0.37" 1

Method: VBM o° o° o° o° 1

Method: MD 0P oP ob oP -0.53" 1

Method: MT 0P oP oP 0P 0.25" -0.77" 1

Notes: 2Model with this covariance restricted to 0 did not converge, so the Wald test was used instead for statistical inference

bThe parameter was defined as zero in the model.
*p< 0.05; according to x? difference test/likelihood ratio test with 1 df.

Discussion

In this study, we used cross-sectional data on multimodal
structural imaging and episodic memory tasks from a large
cohort to establish a structural equation model of regional gray
matter structure integrity and its associations with episodic
memory. We show that a MTMM latent factor representation of
regional individual differences in gray matter structure enables

researchers to examine links of structural brain properties to
behavior. Specifically, this representation allows researchers to
separate three sources of variance from one another: 1) variance
shared within each ROI across imaging modalities (i.e., the
ROI integrity factors); 2) variance shared within each imaging
modality across ROIs (i.e., the method factors); 3) variance
unique to each ROI in each modality (i.e., residual variance).
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Table 5 Unique effects of age, education, and sex on latent episodic memory and ROI integrity factors

Covariate Effect on EM, B/std. 8  Effect on PFC g/std. g

(SE) (SE)

Effect on HC g/std. g
(SE) B (SE) (SE)

Effect on PHG g/std. Effect on PRE g/std. g

Age (years) —0.06/—0.22 (0.01)" —0.04/-0.28 (0.01)"
Education (years) 0.11/0.29 (0.02)* 0.01/.06 (0.01)

Sex (female 0.32" 0.32"

advantage)

—0.09/-0.28 (0.02)"
0.01/.02 (0.02)
0.69" 0.43" 0.31"

—0.02/-0.17 (0.01)"
—0.002/—0.02 (0.01)

—0.01/-0.06 (0.02)
—0.03/-0.12 (0.02)

Notes: Standardized regression coefficient estimates and SE of estimate. Outcome variables are standardized to mean=>5 and SD=2. EM, episodic memory; PFC,
prefrontal cortex; HC, hippocampus; PRE, precuneus. *p< 0.05, according to Wald statistic

The psychometric viability of the MTMM representation
of regional gray matter integrity demonstrates that macro-
and micro-structural indicators of gray matter can indeed be
combined to yield latent factors of gray matter integrity. In
addition, the latent integrity factors formed a positive manifold,
indicating that individual differences in gray matter integrity
are correlated across regions. By moving away from specific
aspects of integrity indicators to the expression of their
common variance at the latent level, we pave the way for a
deeper understanding of relations between brain structure and
cognitive performance.

Older participants tended to show lower values on all ROI-
wise latent integrity factors except precuneus. This result is
largely in line with previous findings based on single indicators
focusing on volume (Raz et al. 2005; Fjell and Walhovd 2011),
and MT ratio (Seiler et al. 2014), or MD (Grydeland et al. 2013).
We interpret this as suggesting that older individuals tend to
have experienced more gray matter deterioration and therefore
tend to show lower values in most ROI factors, which reflect
a pattern of lower gray matter density in VBM, lower MT ratio,
and higher MD. Also, all method factors showed age differences
in the direction of less beneficial values in older participants.
This suggests that the variance in each of the ROI factors is not
capturing all age differences. There are still age differences in
the methods’ unique variances. In other words, older individuals
tend to show less gray matter integrity (across modalities) in
prefrontal cortex, hippocampus, and parahippocampal gyrus,
and in addition, they tend to have smaller volumes, lower MT,
and higher MD across ROIs.

To examine whether latent gray matter integrity factors are
related to episodic memory, we tested their associations with
episodic memory ability at the latent level. Episodic memory
showed first-order associations with the structural integrity
factors of all ROIs except precuneus, but not with the modality-
specific method factors. When adjusted for age differences,
hippocampus and parahippocampal gyrus continued to be
associated with episodic memory. That is, while prefrontal
cortex’s first-order association with episodic memory could be
accounted for by age differences in both gray matter structure
and performance, the integrity of hippocampal and parahip-
pocampal gray matter not only reflected individual differences
collinear with chronological age, but also associations with
episodic memory performance over and above age. Adjusting
for interindividual differences in years of education did not
substantially affect the associations, with hippocampus and
parahippocampal gyrus still showing the strongest associations
with episodic memory. When adjusting for sex differences
in episodic memory and ROI integrity, hippocampus and
parahippocampal gyrus were still significantly associated with
episodic memory. This is corroborated in the regression model,

with hippocampus showing the numerically largest unique
effect. Overall, this result strongly supports the hypothesis that
maintained structural integrity of the hippocampus is germane
to preserved episodic memory ability in old age (de Chastelaine
et al. 2011; Nyberg et al. 2012; Cabeza et al. 2018; Nyberg and
Lindenberger 2020; Nyberg and Pudas 2019).

To note, we conceptualize episodic memory on a relatively
broad level. Our current focus on the latent factor, which cap-
tures the shared between-person variance across these four
different tasks, implies that we abstract from the details of
the tasks and focus on the commonalities when interpreting
associations with gray matter integrity in the ROIs. The chosen
tasks are heterogeneous in terms of stimulus material (VLMT:
verbal, OL, SE: figural, FP: both), sensory modality of presentation
(VLMT: auditory, OL, SE, FP: visual), type of memory (VLMT, SE:
item memory; FP, OL: associative memory), or retrieval type
(free recall: VLMT, OL; recognition: FP and SE). Performance may
be differentially influenced by component processes such as
familiarity and recognition (Yonelinas 1994). However, in our
view, the heterogeneity of tasks across all these dimensions can
also be thought of as a strength (Little et al. 1999). By virtue of
the method, the latent factor is void of the specifics of the tasks
and extracts what is common to them, and thereby allows us
to examine associations to ROIs at the general level of episodic
memory.

The aims of this study were to establish a gray matter
integrity factor model and validate it by associating its latent
factors with episodic memory performance. We did not
previously plan to investigate sex differences in measurement
models or associations. Only after observing sex differences
both in estimates of average gray matter integrity and episodic
memory, we ran additional post hoc exploratory analyses
to compare the models across men and women. We found
the associations between hippocampal and parahippocampal
gray matter integrity to be restricted to men. We provide
details on these additional analyses and a short discussion in
the Supplementary Material. In consequence of this finding,
we note that we might wrongly generalize across sexes
when interpreting the analyses that are not considering sex
differences in associations. Still, the associations may be present
in both sexes, however, the processes that lead to large-enough
interindividual differences to detect these associations evolve
earlier, on average, in men, then in women. In essence, we
still hypothesize that the hippocampal and parahippocampal
integrity in older adults are relevant for episodic memory
performance irrespective of sex. At this point, we can only
speculate that there might be more men than women who have
already experienced some gray matter integrity deterioration
with consequences for memory functioning, possibly related to
men carrying a higher metabolic risk with detrimental effects

120z Ateniga 60 uo Jasn JuswdojeAs(] UBWINK 10} 81Nsu| Youeld XeN Aq 881 S6S/Y9Y LIS/ | £/8101./100182/W 00 dno-olWwspese//:sdny wolj papeojumoq


https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa287#supplementary-data

1474 | Cerebral Cortex, 2021, Vol. 31, No. 3

for both gray matter integrity and episodic memory (Raz et al.
2005; Raz and Rodrigue 2006; Yates et al. 2012). This could also
be a reason for the observation that men show on average lower
integrity in all ROIs and in episodic memory (Supplementary
Table 4). Further elaboration and investigation of these sex
differences would exceed the scope of this study and should
be pursued in future studies based on longitudinal data.

Our results also suggest that the combination of multimodal
data yields information about general properties of gray mat-
ter tissue that differ between younger and older individuals
above 60 years of age, and are relevant for older adults’ episodic
memory performance. This raises the important question of
which physiological aspects of gray matter are captured by the
common variance of regional brain integrity as estimated by
VBM, MT, and MD. Given that MD and MT ratio load on the same
factor as VBM, it seems worthwhile to consider physiological
factors that affect the physical properties of the tissue and its
overall size. Normal aging is marked by the loss of dendritic
spines, dendritic arbors, synaptic density, and myelinated axons
(Hof and Morrison 2004; Morrison and Baxter 2012); in addi-
tion, normal aging also involves loss of glia and small blood
vessels (Raz and Daugherty 2018). All of these processes can
be assumed to lead to a reduction in average tissue density
as captured by MD and MT, and to a concomitant decrease
in overall volume as captured by VBM. In terms of relative
contributions to variations in the MR signal that affect MD, MT,
and VBM in a correlated manner, we surmise that individual
differences in cortical myelin might play a prominent role. Given
that histochemical staining of myelin has shown that myelin
coverage is more extensive in deeper relative to superficial
cortical layers (Timmler and Simons 2019), one way to follow up
on this proposition would be to test for differences in myelin
content between layers using structural imaging methods with
laminar resolution (Peters and Kemper 2012; Waehnert et al.
2014). Note that the hippocampus is a relatively small structure
with complex shape, structure, and function. Given its complex
geometry, we cannot rule out that embedded white matter and
CSF might contribute to the ROI-specific estimates. Moreover,
the hippocampus has functionally distinct subfields (Yassa and
Stark 2011), which could not be set apart with the imaging
protocols that we used. When interpreting integrity estimates
for any given ROI, and the hippocampus in particular, one must
bear in mind that such estimates represent aggregates over
more or less heterogeneous structures. The primary aim of the
present study is to demonstrate the feasibility of a latent factor
approach to capturing individual differences in brain integrity
at the ROI level. The content validity of this approach awaits
further scrutiny. For instance, future work may be able to define
ROIs at the resolution of hippocampal subfields, which might
reduce confounds due to white matter and CSF while increasing
content validity and specificity (e.g., Keresztes et al. 2018).

The MTMM model of regional gray matter integrity intro-
duced in this article reflects correlated traits and correlated
methods, and properly accounts for the nonindependent
structure of measurement errors in our data. Similar to other
confirmatory factor analysis variants of structural equation
modeling, it links the measurement model (ROI integrity
factors, method factors, and residuals) to the structural model
(associations between latent factors). The structural part of the
model allows researchers to explore relations to behavior, and
their modulation by covariates.

The proposed models are certainly not the only ways to
model associations between brain structure and cognition

(Kievitetal.2012). Hence, we would like to encourage researchers
to adopt the MTMM approach whenever they have multiple
measures for a given construct of interest. Future work
may include a larger number of ROIs, a more fine-grained
parcellation of ROIs into subregions, interhemispheric dif-
ferences and commonalities, a larger number of indicators,
or additional cognitive domains to investigate the domain-
specificity of associations. Furthermore, the general approach
can be expanded to include factors of white-matter integrity,
neurochemistry, or brain activity as assessed by functional MRI.

In this study, we have used a statistical approach to model
the common variance across multiple indicators of gray matter
integrity in latent factors for each ROI. At this point, we can only
speculate about the physiological basis of individual differences
in gray matter integrity captured with the MTMM approach. To
overcome these ambiguities, the field needs a stronger coalition
between animal models and human research, with structural
MRI serving as a critical link (Lerch et al. 2017).

One may wonder whether age-related artifacts present in
each of the imaging modalities might account for age differences
in the latent ROI and method factors. To reiterate, we modeled
the variability in the ROI-wise data from each modality as
a combination of a ROI-specific, modality-general part; a
modality-specific, ROI-general part; and a residual part that
is both ROI- and modality-specific. As ROI factors represent
common variance across methods in a specific ROI, older
individuals tended to show lower volumes, lower MT and higher
MD in these three ROIs. This suggests that older individuals tend
to possess lower gray matter integrity in the ROIs, and/or that
age-associated artifacts of the methods play out to a similar
degree in the different methods in these ROIs. We are not
able to tease apart these two possible causes of the age-ROI
associations with the current modeling approach. However,
here, the differences between what is measured by the three
imaging modalities renders it unlikely that correlated age-
associated measurement error dominates the common variance
to such an extent that it would explain the emergence of a
factor structure. In addition, it is actually a strength of the
present approach that it allows to estimate age differences in
the methods factors, and statistically adjust for them if deemed
meaningful.

Furthermore, the present findings are based on cross-
sectional data. The observed associations with age represent
the joint outcome of individual differences in normal aging and
more stable individual differences that were present in early
adulthood (Hertzog 1985). It remains to be seen how changes in
individual differences in latent patterns of brain integrity map
onto changes in episodic memory. Hence, the present analyses
need to be extended to longitudinal investigations that examine
individual differences in latent brain integrity changes and their
correlation with cognitive changes (for methodological work in
developmental psychology, see Geiser et al. 2010).

Also note that this paper focuses on the association struc-
ture of individual differences in a healthy older population.
Our results might not hold for all subgroups. Plausibly, there
are hidden heterogeneities in the association structures that
should be elucidated by follow-up studies. For instance, associ-
ations between dopamine availability and cognition have been
found to differ between subgroups in a latent class analysis
(Lovdén et al. 2017). Another data-driven way to identify hidden
heterogeneities in associations are decision trees (Strobl et al.
2009), which can be usefully combined with structural equa-
tion models in structural equation modeling trees (Brandmaier
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et al. 2013). In addition to the structural integrity measures
we investigated in this study, a comprehensive understanding
of maintenance may further benefit from the integration of
additional imaging modalities such as white matter integrity,
neurochemical, and connectivity measures.

By applying MTMM modeling to data from a large sample of
BASE-II participants, we established latent factors of gray matter
integrity in hippocampus, parahippocampal gyrus, prefrontal
cortex, and precuneus, which represented the shared variance
of VBM, MT, and MD for each of these regions. Further, we
found that older adults with greater structural integrity in
hippocampus and parahippocampal gyrus also showed higher
levels of episodic memory performance, with hippocampus
showing the largest unique association. Our results are
consistent with the hypothesis that maintained structural
integrity of the hippocampus helps to preserve episodic memory
in old age. Future research needs to corroborate the content
validity of the latent brain factors, and extend the present
approach to longitudinal observations.
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Supplementary material can be found at Cerebral Cortex online.

Notes

We are grateful for the assistance of the MRI team at the Max
Planck Berlin Institute for Human Development consisting
of Sonali Beckmann, Nils Bodammer, Thomas Feg, Sebastian
Schréder, and Nadine Taube, for the team leading the cognitive
tests, and for all participants of BASE-II. Conflict of interest: None
declared.

Funding

European Commission as part of the Lifebrain Consortium (grant
number 732592) within the Horizon 2020 programme; German
Federal Ministry of Education and Research (grant number
01GQ1421B); the MINERVA program of the Max Planck Society
(to M.C.S.).

Data Availability Statement

Data can be requested from the steering committee of the Berlin
Aging Study II. Further information regarding the application
can be found under https://www.base2.mpg.de/en.

References

Abe O, Yamasue H, Aoki S, Suga M, Yamada H, Kasai K, Masutani
Y, Kato N, Ohmoto K. 2008. Aging in the CNS: compari-
son of gray/white matter volume and diffusion tensor data.
Neurobiol Aging. 29:102-116.

Aribisala BS, Royle NA, Maniega SM, Valdés Hernandez MC,
Murray C, Penke L, Gow A, Starr JM, Bastin ME, Deary IJ
et al. 2014. Quantitative multi-modal MRI of the Hippocampus
and cognitive ability in community-dwelling older subjects.
Cortex. 53:34-44.

Ashburner ], Friston KJ. 2000. Voxel-based morphometry—the
methods. Neuroimage. 11:805-821.

Asperholm M, Hogman N, Rafi J, Herlitz A. 2019. What did you
do yesterday? A meta-analysis of sex differences in episodic
memory. Psychol Bull. 145:785-821.

| 1475

Bartrés-Faz D, Arenaza-Urquijo EM. 2011. Structural and func-
tional imaging correlates of cognitive and brain reserve
hypotheses in healthy and pathological aging. Brain Topogr.
24:340-357.

Becker N, Laukka EJ, Kalpouzos G, Naveh-Benjamin M, Bickman
L, Brehmer Y. 2015. Structural brain correlates of associative
memory in older adults. Neuroimage. 118:146-153.

Benoit RG, Schacter DL. 2015. Specifying the core network sup-
porting episodic simulation and episodic memory by activa-
tion likelihood estimation. Neuropsychologia. 75:450-457.

Bertram L, Bockenhoff A, Demuth I, Dlizel S, Eckardt R, Li S-
C, Lindenberger U, Pawelec G, Siedler T, Wagner GG et al.
2013. Cohort profile: The Berlin Aging Study II (BASE-II). Int
] Epidemiol. 43:703-712.

Brandmaier AM, Oertzen v T, McArdle JJ, Lindenberger U.
2013. Structural equation model trees. Psychol Methods. 18:
71-86.

Cabeza R, Albert M, Belleville S, Craik FIM, Duarte A, Grady CL,
Lindenberger U, Nyberg L, Park DC, Reuter-Lorenz PA et al.
2018. Maintenance, reserve and compensation: the cogni-
tive neuroscience of healthy ageing. Nat Rev Neurosci. 19:
701-710.

Campbell DT, Fiske DW. 1959. Convergent and discriminant
validation by the multitrait-multimethod matrix. Psychol Bull.
56:81-105.

Carlesimo GA, Cherubini A, Caltagirone C, Spalletta G. 2010. Hip-
pocampal mean diffusivity and memory in healthy elderly
individuals. Neurology. 74:194.

Cavanna AE, Trimble MR. 2006. The precuneus: a review of
its functional anatomy and behavioural correlates. Brain.
129:564-583.

Chalmers RP, Flora DB. 2015. faoutlier: an R package for detect-
ing influential cases in exploratory and confirmatory factor
analysis. Appl Psychol Measur. 39:573-574.

de Chastelaine M, Wang TH, Minton B, Muftuler LT, Rugg MD.
2011. The effects of age, memory performance, and callosal
integrity on the neural correlates of successful associative
encoding. Cereb Cortex. 21:2166-2176.

de Frias CM, Lovdén M, Lindenberger U, Nilsson L-G. 2007.
Revisiting the dedifferentiation hypothesis with longitudinal
multi-cohort data. Intelligence. 35:381-392.

Dickerson BC, Eichenbaum H. 2009. The episodic memory sys-
tem: neurocircuitry and disorders. Neuropsychopharmacology.
35:86-104.

Diizel S, Minte TF, Lindenberger U, Bunzeck N, Schiitze H,
Heinze H-J, Diizel E. 2010. Basal forebrain integrity and cogni-
tive memory profile in healthy aging. Brain Res. 1308:124-136.

Diizel S, Schiitze H, Stallforth S, Kaufmann J, Bodammer N,
Bunzeck N, Miinte TF, Lindenberger U, Heinze H-J, Diizel
E. 2008. A close relationship between verbal memory and
SN/VTA integrity in young and older adults. Neuropsychologia.
46:3042-3052.

Diizel S, Voelkle MC, Diizel E, Gerstorf D, Drewelies ], Steinhagen-
Thiessen E, Demuth I, Lindenberger U. 2016. The Subjec-
tive Health Horizon Questionnaire (SHH-Q): assessing future
time perspectives for facets of an active lifestyle. Gerontology.
62:345-353.

Eichenbaum H. 2017. Prefrontal-hippocampal interactions in
episodic memory. Nat Rev Neurosci. 18:547-558.

Eid M, Nussbeck FW, Geiser C, Cole DA, Gollwitzer M, Lis-
chetzke T. 2008. Structural equation modeling of multitrait-
multimethod data: different models for different types of
methods. Psychol Methods. 13:230-253.

120z Ateniga 60 uo Jasn JuswdojeAs(] UBWINK 10} 81Nsu| Youeld XeN Aq 881 S6S/Y9Y LIS/ | £/8101./100182/W 00 dno-olWwspese//:sdny wolj papeojumoq


https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhaa287#supplementary-data
https://www.base2.mpg.de/en

1476 | Cerebral Cortex, 2021, Vol. 31, No. 3

Fjell AM, Walhovd KB. 2011. Structural brain changes in aging:
courses, causes and cognitive consequences. Rev Neurosci.
187-221.

Fjell AM, Walhovd KB. 2016. Multimodal imaging of the aging
brain. In: Cabeza R, Nyberg L, Park DC, editors. Cognitive
neuroscience of aging: linking cognitive and cerebral aging. 2nd ed.
Oxford (UK): Oxford University Press, p. 131-182.

Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK,
Hagler D], Holland D, Brewer JB, Dale AM. 2009. One-
year brain atrophy evident in healthy aging. ] Neurosci. 29:
15223-15231.

Foster CM, Kennedy KM, Hoagey DA, Rodrigue KM. 2019. The
role of hippocampal subfield volume and fornix microstruc-
ture in episodic memory across the lifespan. Hippocampus.
25:940-918.

Freton M, Lemogne C, Bergouignan L, Delaveau P, Lehéricy S,
Fossati P. 2014. The eye of the self: precuneus volume and
visual perspective during autobiographical memory retrieval.
Brain Struct Funct. 219:959-968.

Geiser C, Eid M, Nussbeck FW, Courvoisier DS, Cole DA.
2010. Analyzing true change in longitudinal multitrait-
multimethod studies: application of a multimethod change
model to depression and anxiety in children. Dev Psychol.
46:29-45.

Good CD, Johnsrude IS, Ashburner ], Henson RN, Friston K],
Frackowiak RS. 2001. A voxel-based morphometric study
of ageing in 465 normal adult human brains. Neuroimage.
14:21-36.

Gorbach T, Pudas S, Lundquist A, Ordadd G, Josefsson M, Salami A,
de Luna X, Nyberg L. 2017. Longitudinal association between
hippocampus atrophy and episodic-memory decline. Neuro-
biol Aging. 51:167-176.

Grydeland H, Walhovd KB, Tamnes CK, Westlye LT, Fjell AM.
2013. Intracortical myelin links with performance variability
across the human lifespan: results from T1- and T2-weighted
MRI myelin mapping and diffusion tensor imaging. ] Neurosci.
33:18618-18630.

Hedden T, Schultz AP, Rieckmann A, Mormino EC, Johnson KA,
Sperling RA, Buckner RL. 2016. Multiple brain markers are
linked to age-related variation in cognition. Cereb Cortex.
26:1388-1400.

Henson RN, Campbell KL, Davis SW, Taylor JR, Emery T, Erzincli-
oglu S, Cam-CAN, Kievit RA. 2016. Multiple determinants of
lifespan memory differences. Sci Rep. 6: 32527.

Hertzog C. 1985. An individual differences perspective: implica-
tions for cognitive research in gerontology. Res Aging. 7:7-45.

Hof PR, Morrison JH. 2004. The aging brain: Morphomolecular
senescence of cortical circuits. Trends Neurosci. 27:607-613.

Jancke L, Sele S, Liem F, Oschwald J, Merillat S. 2020. Brain aging
and psychometric intelligence: a longitudinal study. Brain
Struct Funct. 225:519-536.

Jenkinson M, Bannister P, Brady M, Smith S. 2002. Improved opti-
mization for the robust and accurate linear registration and
motion correction of brain images. Neuroimage. 17:825-841.

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith
SM. 2012. FSL. Neuroimage. 62:782-790.

Jespersen SN, Kroenke CD, @stergaard L, Ackerman JJH, Yablon-
skiy DA. 2007. Modeling dendrite density from magnetic res-
onance diffusion measurements. Neuroimage. 34:1473-1486.

Josefsson M, de Luna X, Pudas S, Nilsson L-G, Nyberg L.
2012. Genetic and lifestyle predictors of 15-year longitu-
dinal change in episodic memory. ] Am Geriatr Soc. 60:
2308-2312.

Kaup AR, Mirzakhanian H, Jeste DV, Eyler LT. 2011. A review of
the brain structure correlates of successful cognitive aging. J
Neuropsychiatry Clin Neurosci. 6-15.

Keresztes A, Ngo CT, Lindenberger U, Werkle-Bergner M, New-
combe NS. 2018. Hippocampal maturation drives mem-
ory from generalization to specificity. Trends Cogn Sci.
22(8):676-686.

Kievit RA, van Rooijen H, Wicherts JM, Waldorp LJ, Kan K-J,
Scholte HS, Borsboom D. 2012. Intelligence and the brain: a
model-based approach. Cogn Neurosci. 3:89-97.

Kline RB. 2015. Principles and practice of structural equation modeling.
New York: Guilford publications.

Kiihn S, Diizel S, Eibich P, Krekel C, Wiistemann H, Kolbe ],
Martensson ], Goebel ], Gallinat J, Wagner GG, et al. 2017. In
search of features that constitute an “enriched environment”
in humans: associations between geographical properties
and brain structure. Sci Rep. 7:11920.

LerchJP,van der Kouwe AJ,Raznahan A, Paus T, Johansen-Berg H,
Miller KL, Smith SM, Fischl B, Sotiropoulos SN. 2017. Studying
neuroanatomy using MRI. Nat Neurosci. 20:314-326.

Liem F, Varoquaux G, Kynast ], Beyer F, Kharabian Masouleh
S, Huntenburg JM, Lampe L, Rahim M, Abraham A, Crad-
dock RC et al. 2017. Predicting brain-age from multimodal
imaging data captures cognitive impairment. Neuroimage.
148:179-188.

Lindenberger U. 2014. Human cognitive aging: corriger la for-
tune? Science. 346:572-578.

Little TD, Lindenberger U, Nesselroade JR. 1999. On select-
ing indicators for multivariate measurement and mod-
eling with latent variables: when "good" indicators are
bad and “bad” indicators are good. Psychol Methods. 4:
192-211.

Lovdén M, Karalija N, Andersson M, Wahlin A, Axelsson ], K6h-
ncke Y, Jonasson LS, Rieckman A, Papenberg G, Garrett DD
et al. 2017. Latent-profile analysis reveals behavioral and
brain correlates of dopamine-cognition associations. Cereb
Cortex. 28:3894-3907.

Morrison JH, Baxter MG. 2012. The ageing cortical synapse:
hallmarks and implications for cognitive decline. Nat Rev
Neurosci. 13:240.

Nevalainen N, Riklund K, Andersson M, Axelsson ], Ogren
M, Loévdén M, Lindenberger U, Biackman L, Nyberg L.
2015. COBRA: a prospective multimodal imaging study of
dopamine, brain structure and function, and cognition. Brain
Res. 1612:83-103.

Nyberg L, Lindenberger U. 2020. Brain maintenance and cog-
nition in old age. In: Poeppel D, Mangun G, Gazzaniga M,
editors. The cognitive neurosciences. 6th ed. Cambridge (MA):
MIT Press.

Nyberg L, Pudas S. 2019. Successful memory aging. Annu Rev
Psychol. 70:219-243.

Nyberg L, Lévdén M, Riklund K, Lindenberger U, Bickman L.
2012. Memory aging and brain maintenance. Trends Cogn Sci.
16:292-305.

Oertzen v T, Brandmaier AM, Tsang S. 2014. Structural equation
Modeling with £2nyx. Struct Equ Modeling. 22:148-161.

Pantel J, Kratz B, Essig M, Schroder J. 2003. Parahippocampal
volume deficits in subjects with aging-associated cognitive
decline. Am ] Psychiatry. 160:379-382.

Persson ], Pudas S, Lind J, Kauppi K, Nilsson LG, Nyberg L.
2012. Longitudinal structure-function correlates in elderly
reveal MTL dysfunction with cognitive decline. Cereb Cortex.
22:2297-2304.

120z Ateniga 60 uo Jasn JuswdojeAs(] UBWINK 10} 81Nsu| Youeld XeN Aq 881 S6S/Y9Y LIS/ | £/8101./100182/W 00 dno-olWwspese//:sdny wolj papeojumoq



Multimodal Gray Matter Integrity and Episodic Memory Kd&hncke et al.

Persson N, Persson ], Lavebratt C, Fischer H. 2017. Effects of
DARPP-32 genetic variation on prefrontal cortex volume and
episodic memory performance. Front Neurosci. 11:289-298.

Peters A, Kemper T. 2012. A review of the structural alterations
in the cerebral hemispheres of the aging rhesus monkey.
Neurobiol Aging. 33:2357-2372.

Pierpaoli C, Basser PJ. 1996. Toward a quantitative assessment of
diffusion anisotropy. Magn Reson Med. 36:893-906.

Raz N, Daugherty AM. 2018. Pathways to brain aging and their
modifiers: free-radical-induced energetic and neural decline
in senescence (FRIENDS) model — a mini-review. Gerontology.
64:49-57.

Raz N, Rodrigue KM. 2006. Differential aging of the brain: pat-
terns, cognitive correlates and modifiers. Neurosci Biobehav
Rev. 30:730-748.

Raz N. 2005. The aging brain observed in vivo: differential
changes and their modifiers. In: Cabeza R, Nyberg L, Park
DC, editors. Cognitive neuroscience of aging. Oxford, UK: Oxford
University Press.

Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D,
Williamson A, Dahle C, Gerstorf D, Acker JD. 2005. Regional
brain changes in aging healthy adults: general trends, indi-
vidual differences and modifiers. Cereb Cortex. 15:1676-1689.

R Core Team. 2019. R: a language and environment for statisti-
cal computing. Vienna, Austria: R Foundation for Statistical
Computing.

Ritchie SJ, Booth T, Valdés Herndndez M D C, Corley J, Maniega
SM, Gow AJ, Royle NA, Pattie A, Karama S, Starr JM et al. 2015.
Beyond a bigger brain: multivariable structural brain imaging
and intelligence. Intelligence. 51:47-56.

Rosseel Y. 2012. Lavaan: an R package for structural equation
modeling. J Stat Softw. 48:1-36.

Ronnlund M, Nyberg L, Backman L, Nilsson LG. 2005. Stabil-
ity, growth, and decline in adult life span development of
declarative memory: cross-sectional and longitudinal data
from a population-based study. Psychol Aging. 20:3-18.

Rubin DB. 1976. Inference and missing data. Biometrika.
63:581-592.

Rugg MD, Johnson JD, Park H, Uncapher MR. 2008. Encoding-
retrieval overlap in human episodic memory: a functional
neuroimaging perspective. In: Sossin WS, Lacaille J-C, Castel-
lucci VF, Belleville S, editors. Progress in brain research. Vol. 169.
Elsevier, p. 339-352.

Rugg MD, Vilberg KL. 2013. Brain networks underlying episodic
memory retrieval. Curr Opin Neurobiol. 23:255-260.

Ruigrok ANV, Salimi-Khorshidi G, Lai M-C, Baron-Cohen S, Lom-
bardo MV, Tait RJ, Suckling J. 2014. A meta-analysis of sex
differences in human brain structure. Neurosci Biobehav Rev.
39:34-50.

Schafer JL, Graham JW. 2002. Missing data: our view of the state
of the art. Psychol Methods. 7:147-177.

Schaie KW, Maitland SB, Willis SL, Intrieri RC. 1998. Longitudinal
invariance of adult psychometric ability factor structures
across 7 years. Psychol Aging. 13:8-20.

Schermelleh-Engel K, Moosbrugger H, Miiller H. 2003. Evaluating
the fit of structural equation models: tests of significance

| 1477

and descriptive goodness-of-fit measures. Methods Psychol
Res. 8:23-74.

Seiler S, Ropele S, Schmidt R. 2014. Magnetization transfer imag-
ing for in vivo detection of microstructural tissue changes
in aging and dementia: a short literature review. ] Alzheimers
Dis. 42:5229-S237.

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens
TEJ], Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I,
Flitney DE et al. 2004. Advances in functional and structural
MR image analysis and implementation as FSL. Neuroimage.
23(51):208-219

Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE,
Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM
et al. 2006. Tract-based spatial statistics: voxelwise analysis
of multi-subject diffusion data. Neuroimage. 31(4):1487-1505.

Squire LA. 1992. Memory and the hippocampus: a synthesis
from findings with rats, monkeys, and humans. Psychol Rev.
99:195-231.

Stern Y. 2009. Cognitive reserve. Neuropsychologia. 47:2015-2028.

Strobl C, Malley J, Tutz G. 2009. An introduction to recursive par-
titioning: rationale, application, and characteristics of clas-
sification and regression trees, bagging, and random forests.
Psychol Methods. 14:323-348.

Sundgren PC, Dong Q, Gémez-Hassan D, Mukherji SK, Maly P,
Welsh R. 2004. Diffusion tensor imaging of the brain: review
of clinical applications. Neuroradiology. 46:339-350.

Timmler S, Simons M. 2019. Grey matter myelination. Glia.
67:2063-2070.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F,
Etard O, Delcroix N, Mazoyer B, Joliot M. 2002. Automated
anatomical labeling of activations in SPM using a macro-
scopic anatomical parcellation of the MNI MRI single-subject
brain. Neuroimage. 15:273-289.

Waehnert MD, Dinse ], Weiss M, Streicher MN, Waehnert P,
Geyer S, Turner R, Bazin P-L. 2014. Anatomically motivated
modeling of cortical laminae. Neuroimage. 93:210-220.

Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz
N, Agartz I, Salat DH, Greve DN, Fischl B et al. 2011. Consis-
tent neuroanatomical age-related volume differences across
multiple samples. Neurobiol Aging. 32:916-932.

Ward AM, Mormino EC, Huijbers W, Schultz AP, Hedden T, Sper-
ling RA. 2015. Relationships between default-mode network
connectivity, medial temporal lobe structure, and age-related
memory deficits. Neurobiol Aging. 36:265-272.

Wolff SD, Balaban RS. 1989. Magnetization transfer contrast
(MTC) and tissue water proton relaxation in vivo. Magn Reson
Med. 10:135-144.

Yassa MA, Stark CEL. 2011. Pattern separation in the hippocam-
pus. Trends Neurosci. 34:515-525.

Yates KF, Sweat V, Yau PL, Turchiano MM, Convit A. 2012.
Impact of metabolic syndrome on cognition and brain: a
selected review of the literature. Arterioscler Thromb Vasc Biol.
32:2060-2067.

Yonelinas AP. 1994. Receiver-operating characteristics in recog-
nition memory: evidence for a dual-process model. ] Exp
Psychol Learn. 20:1341.

120z Ateniga 60 uo Jasn JuswdojeAs(] UBWINK 10} 81Nsu| Youeld XeN Aq 881 S6S/Y9Y LIS/ | £/8101./100182/W 00 dno-olWwspese//:sdny wolj papeojumoq



	Hippocampal and Parahippocampal Gray Matter Structural Integrity Assessed by Multimodal Imaging Is Associated with Episodic Memory in Old Age
	Introduction
	Materials and Methods
	Participants and Study Design
	MRI Acquisition
	MR Preprocessing
	ROI Extraction and Adjustment for Differences in Intracranial Volume
	Episodic Memory Assessment
	Statistical Analyses

	Results
	Sample Descriptives
	Association Between Latent Factors and Age
	Associations Between Gray Matter Integrity ROIs and Episodic Memory in the Correlational Model
	Unique Associations of ROIs with Episodic Memory in Regression Model 
	Adjusting for Covariate Effects

	Discussion
	Supplementary Material
	Notes
	Funding
	Data Availability Statement


