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Abstract. Effective monitoring methods are needed for assessing the state of biodiversity and detecting
population trends. The popularity of camera trapping in wildlife surveys continues to increase as they are
able to detect species in remote and difficult-to-access areas. As a result, several statistical estimators of the
abundance of unmarked animal populations have been developed, but none have been widely tested. Even
where the potential for accurate estimation has been demonstrated, whether these methods estimators can
yield estimates of sufficient precision to detect trends and inform conservation action remains questionable.
Here, we assess the effort—precision relationship of camera trap distance sampling (CTDS) in order to help
researchers design efficient surveys. A total of 200 cameras were deployed for 10 months across 200 km?” in
the Tai National Park, Cote d'Ivoire. We estimated abundance of Maxwell’s duikers, western chimpanzees,
leopards, and forest elephants that are challenging to enumerate due to rarity or semi-arboreality. To test the
effects of spatial and temporal survey effort on the precision of CTDS estimates, we calculated coefficient of
variation (CV) of the encounter rate from subsets of our complete data sets. Estimated abundance of leopard
and Maxwell’s duiker density (20% < CV < 30% and CV = 11%, respectively) were similar to prior estimates
from the same area. Abundances of chimpanzees (20% < CV < 30%) were underestimated, but the quality
of inference was similar to that reported after labor-intensive line transect surveys to nests. Estimates for the
rare forest elephants were potentially unreliable since they were too imprecise (60% < CV < 200%). General-
ized linear models coefficients indicated that for relatively common, ground-dwelling species, CVs between
10% and 20% are achievable from a variety of survey designs, including long-term (64 months) surveys at
few locations (50), or short term (2-week to 2-month) surveys at 100-150 locations. We conclude that CTDS
can efficiently provide estimates of abundance of multiple species of sufficient quality and precision to
inform conservation decisions. However, estimates for the rarest species will be imprecise even from ambi-
tious surveys and may be biased for species that exhibit strong reactions to cameras.
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INTRODUCTION of wildlife including rare, nocturnal, and elusive
species. They are particularly useful for monitor-

Camera traps (CT) that detect wildlife using ing biodiversity over large areas, and in habitats
heat or motion sensors can detect a wide variety  with poor visibility and limited access (Rovero
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et al. 2010, Burton et al. 2015, Rovero and Zim-
mermann 2016). As a consequence, CTs are now
used worldwide in monitoring programs. How-
ever, well-developed approaches to estimating
animal population size, such as capture-recap-
ture or spatially explicit capture-recapture (Kar-
anth 1995, Després-Einspenner et al. 2017), are
limited to animals that are individually identifi-
able. Rowcliffe et al.s (2008) random encounter
model (REM) was the first estimator of absolute
abundance from CT data that did not rely on
marked or recognizable individuals. Many other
estimators have been proposed, but most have
had little evaluation or testing (Chandler and
Royle 2013, Howe et al. 2017, Campos-Candela
et al. 2018, Moeller et al. 2018, Nakashima et al.
2018, Gilbert et al. 2020, Luo et al. 2020). Chan-
dler and Royle’s (2013) spatial count models
require intensive sampling and yield imprecise
estimates. All other estimators require random-
ized sampling and include both spatial and tem-
poral components to account for the small area
within which detection by CTs can be assumed
to be high or certain, and animal movement. The
REM, the model proposed by Campos-Candela
et al. (2018), and the random encounter staying
time (REST) model (Nakashima et al. 2018) are
all based on ideal gas models predicting collision
rates; an estimator for animal density can be
derived from the rates of contact between ani-
mals and camera traps (Hutchinson and Waser
2007, Rowrcliffe et al. 2008). The REM and Luo
et al.’s (2020) methods require accurate estimates
of day range or the speed of animal movement,
which may be difficult to obtain or to estimate
precisely. The REST is an extension of the REM
that substitutes staying time (i.e., the amount of
time detected animals remains within a specific
area within the field of view of a camera trap) for
the speed of movement. Campos-Candela et al.’s
(2018) model replaces speed movement with
home range size based on the principle of associ-
ation, defined as the number of ongoing occur-
rences within a given area and at a given instant
(Hutchinson and Waser 2007).

Camera trap distance sampling (CTDS)
extends point transect distance sampling meth-
ods to account for the fact that CTs monitor a sec-
tor within which detection is imperfect and a
function of distance from the camera. Rather
than relying on estimates of home range size,
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animal speed, day range, or staying time, CTDS
accounts for animal movement by recording
observation distances at predefined snapshot
moments. It relies on the usual assumptions of
distance sampling surveys of live animals: (1)
lines or points are placed independently of the
distribution of animals, (2) animals on the line or
point are detected with certainty, (3) animals are
detected at their initial location prior to any
movement in response to the observer, and dis-
tance measurements are accurate (Buckland et al.
2001). Observations of distance from CTDS sur-
veys are not independent, because multiple
observations of distance to the same animal(s)
are recorded during a single pass by an animal
or group of animals in front of a CT (to avoid
potential positive bias in observed distances;
Howe et al. 2017). Independence of observations
is not a critical assumption of DS methods: viola-
tions are not expected to affect point estimates of
abundance, but they render P values of good-
ness-of-fit tests and model selection criteria inva-
lid, and variance may be underestimated with
analytic estimators; bootstrapping generally
improves confidence interval coverage in these
situations (Buckland et al. 2001, Fewster et al.
2009, Howe et al. 2017). Temporally limited
availability for detection must be accounted for
to avoid negative bias in CTDS estimates, but the
proportion of time active is estimable from the
CT data (Rowcliffe et al. 2014, Cappelle et al.
2019). See Howe et al. (2017) for a more detailed
description of CTDS including assumptions and
practical considerations, and Gilbert et al. (2020)
for a recent review and comparison of abun-
dance estimators with camera traps.

All of the models mentioned above have had
their accuracy tested using simulations, and in
some cases with field data, but none has been
demonstrated to consistently yield accurate esti-
mates for a variety of species under field condi-
tions. There has been ongoing development of
the REM framework (Rowcliffe et al. 2011, 2014,
2016, Lucas et al. 2015, Gilbert et al. 2020, Jour-
dain et al. 2020), but practical applications have
had mixed success due to inappropriate survey
design or difficulties estimating the speed of ani-
mal movement (Rovero and Marshall 2009, Zero
et al. 2013, Anile et al. 2014, Cusack et al. 2015,
Balestrieri 2016, Caravaggi et al. 2016). Naka-
shima et al. (2020) estimated densities and
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relationships between density and habitat covari-
ates for sympatric duiker species and concluded
that the method could be effective for estimating
ungulate densities. Cappelle et al. (2019) applied
CTDS, line transect distance sampling of nests,
and spatially explicit capture-recapture to a
habituated chimpanzee community of known
size. The CTDS estimate of abundance was accu-
rate (relative bias was only 0.2%), but imprecise
(coefficient of variation [CV] =~ 40% of the esti-
mate). Trends can be detected only with accurate
and precise estimates (Nichols and Williams
2006, Si et al. 2014), and Howe et al. (2017) and
Cappelle et al. (2019) recommended maximizing
the number of sampling locations (rather than
survey duration) to improve precision, but no
data were presented regarding the performance
of CTDS at varying spatial and temporal sam-
pling effort. Bessone et al. (2020) used CTDS to
estimate densities of 14 species from a large-scale
survey in Salonga National Park, Democratic
Republic of the Congo. Authors identified low
detectability and reactivity to the camera as
potentially important sources of bias but con-
cluded that CTDS could allow for rapid assess-
ments of wildlife population status and trends to
inform conservation strategies.

We applied CTDS to multiple species at a large
spatial scale over an extended period of time in
Tai National Park (TNP), Cote d’Ivoire. In addi-
tion to information about animal abundance in
one of the only remaining primary rainforests in
West Africa, we were interested in quantifying
relationships among survey effort (spatial and
temporal), animal density, and the precision of
CTDS estimates of abundance, including for spe-
cies that are particularly challenging to enumer-
ate due to rarity or semi-arboreal behavior.
Ideally, we would have subsampled complete
data sets from multiple species hundreds or
thousands of times and analyzed each subsam-
ple to estimate density its variance. However,
model fitting, model selection, and especially
variance estimation by bootstrapping (further
subsampling and reanalyzing each subset
500-1000 times) would have become pro-
hibitively time-consuming. Fortunately, because
animals are often patchily distributed and move
non-randomly, whereas sampling locations are
randomly selected, the encounter rate compo-
nent of the variance usually dominates the
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overall variance in animal densities estimated
from DS surveys, including CTDS surveys (Buck-
land et al. 2001, Fewster et al. 2009, Howe et al.
2017). We therefore estimated the encounter rate
component of the variance from hundreds of ran-
domized spatiotemporal subsets of the complete
data sets from species occurring at different den-
sities to quantify the relationships between spa-
tial and temporal sampling effort and the
precision of estimates of the encounter rate, as a
proxy for the relationships between effort and
the precision of density estimates. We expect our
results to help researchers select among available
methods for enumerating wildlife, and to design
efficient multispecies CTDS surveys that yield
estimates of sufficient precision to inform man-
agement and conservation activities.

MATERIALS AND METHODS

Study site and chimpanzee’s true population size

The field survey took place in Tai National
Park (TNP), Cote d’Ivoire (5°08' N to 6°407' N,
and 6°47" W to 7°25" W; Fig. 1). This park is one
of the largest remaining tracts of undisturbed
lowland rainforest in West Africa, spreading over
5400 km?. The average annual rainfall in the area
is approximately 1800 mm and the annual aver-
age temperature is between 24°C and 30°C
(Anderson et al. 2005).

The study area was in the western area of the
park, where six stable social groups of chim-
panzees occur (Fig. 1). Four of them (the North,
Middle, South, and East groups) have been habit-
uated to humans over several years by Tai Chim-
panzee Project researchers and field assistants
(Boesch et al. 2006, 2008). These groups are fol-
lowed on a daily basis; all individuals have names
and their ages are known (individuals, North
n = 20; Middle range estimated between 1 and 3;
South n = 36, and East n = 32). At the time of the
study, another group was undergoing habituation
(North-East) with the group size approximately
known (range estimated between 35 and 60 indi-
viduals). The size of an unstudied group (West
group; Boesch et al. 2008) was also approximately
known from observations of inter-group encoun-
ters (range estimated between 7 and 10 individu-
als; S. Lemoine, personal communication).

Camera traps were deployed throughout the
smaller territories of the West and Middle
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Fig. 1. Location of cameras and the study area in the Tai National Park (TNP).

groups, and over most of the larger territories of
the East, North-East, North, and South groups.
Thus, the exact true population size within the
surveyed area during sampling is unknown, but
we are confident that between 131 and 161 chim-
panzees were living in and around it.

Field data collection

We deployed 200 CTs in a systematic grid with
1-km spacing and a random origin within our
200-km” study area (Fig. 1) in October 2016. All
CTs were installed by mid-December and
removed in August 2017. Camera traps (Bushnell
Trophy Cam; http://bushnell.com) were installed
within 30 m of the design-specified locations, at
a height of 0.5 m, oriented approximately north
(£20°). Two cameras did not function and one
was destroyed by a poacher, so data were
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collected at only 197 locations. We programmed
the cameras to record 10-60 s videos when trig-
gered (not all cameras could be programmed to
record 60 s videos), and set the motion sensor to
high sensitivity. At each location, reference
videos of researchers holding signs indicating
distances from the camera (from 1 to 15 m at 1-m
intervals, in the center, and at each side of the
camera’s field of view) were recorded so that we
could subsequently measure distances to filmed
animals (see Howe et al. 2017 for details).

Video processing

We initially processed all videos to record the
species and number of individuals detected,
along with the location, date, and time of record-
ing. Where species identification was not possi-
ble, we recorded the genus. We then selected
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four medium- to large-bodied species that occur
at very different densities, three of which are
expected to be particularly difficult to enumerate
using CTDS due to their rarity or semi-arboreal
behavior: (1) forest elephants (Loxodonta africana
cyclotis; very rare), (2) leopards (Panthera pardus;
rare, semi-arboreal), (3) western chimpanzees
(Pan troglodytes verus; uncommon, semi-arbo-
real), and (4) Maxwell’s duikers (Philantomba
maxwelli; common; Jenny 1996, Tiedoué et al.
2016, WCF 2016, Howe et al. 2017). We measured
distances between CTs and the midpoints of indi-
viduals of these species at predetermined snap-
shot moments two seconds apart (at 0, 2, 4, ...,
58 s after the even minute) for as long as they
were visible, by comparing videos of animals to
reference videos showing distance markers. Ani-
mals were assigned to 1-m distance intervals
from 0 to 8 m. As larger distances were more dif-
ficult to measure precisely observations >8 m
were assigned to one of the following categories:
8-10 m, 10-12 m, 12-15 m, and beyond 15 m.

The duration of the time interval between
snapshot moments () is at the discretion of
researchers, and selected to minimize missed
detections of rare or fast-moving animals with-
out accumulating unmanageable numbers of
observations of common or slow-moving ani-
mals (because measuring distances is time-con-
suming, and uncertainty in detectability usually
contributes only a small fraction to the overall
variance of density estimates; Howe et al
2017:1559). Howe et al. (2017) suggested
0.25-3.00 s; optimal species-specific values have
not been identified. We chose a two-second inter-
val because a shorter interval was not necessary
to avoid missed detections of the species sam-
pled, and for the sake of consistency with prior
studies (Howe et al. 2017, Cappelle et al. 2019,
Bessone et al. 2020).

Data analyses

Availability for detection and temporal sampling
effort—The CTDS method overestimates survey
duration (T of Eq. 1 below) and therefore under-
estimates abundance unless the proportion of
time when animals are not available for detection
is accounted for. This proportion of time can be
estimated either by defining T as only a subset
of the hours within each day, and/or correcting
for limited availability within T, (Howe et al.
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2017). Data were insufficient to calculate the
availability of elephants, so we considered that
they were available for the camera between the
start time of the first video to the end of the end
time of the last video (5:00-17:59). T\ was defined
as 12 h 59 min and 59 s (or 46,799 s) x the num-
ber of camera-days for the elephants.

We obtained abundant data from Maxwell’s
duikers—so much that measuring distances to
all of them would have been very time-consum-
ing and unnecessary. We therefore only included
data from duikers filmed during the two peaks
of activity (7:00-7:59, and 17:00-17:59) and
defined survey duration for duikers as 1 h and
58 min (or 7198 s) x the number of camera-days.
Leopards and chimpanzees were likely not avail-
able for detection at all times included in Tj for
these species, that is, during periods of inactivity
and time spent outside the vertical range of CTs
(in trees). Sufficient data were collected to
estimate daily availability of the leopards and
chimpanzees. We therefore defined T for
semi-arboreal species as 24 h and estimated the
proportion of each 24-h day that these species
were available for detection using methods
described in Rowcliffe et al. (2014; ARo), and
Cappelle et al. (2019; ACa). Both methods require
the assumption that 100% of the population was
available for detection during the daily peak of
activity. For Maxwell’s duikers, we did not adjust
for limited availability during daily peaks of
activity, but assumed 100% of the population
was available at these times.

To avoid overestimating temporal sampling
effort on days when animals may have been dis-
placed away from cameras by researchers visit-
ing them (e.g., to replace batteries or memory
cards), or when cameras were not functioning,
we excluded all data from those days.

Abundance estimation.—We estimated densities
using Distance 7.1 (Thomas et al. 2010) using
the following equation for camera trap point
transects:

K
k17K % 1

Do
w2y, ePy  activity level

@™

where ¢, = 0T}/2xt is the sampling effort at point
k, Ty is the temporal sampling effort at point k in
seconds, t is the length of the time step between
snapshot moments (2 s), 6 is the central angle of
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field of view of the camera in radians, w is the
truncation distance beyond which any recorded
distances are discarded, n; is the number of
observations of distance to animals at point k,
and Py is the probability that an individual is
detected by the sensor and an image obtained
when within the field of view of the camera at a
snapshot moment, estimated by modeling the
distance data (Howe et al. 2017). We estimated
population sizes by multiplying density esti-
mates by the study area size (200 km?; Fig. 1).

Attraction to or avoidance of CTs (observers)
violates one or more standard assumptions of
distance sampling and can cause bias (Buckland
et al. 2001, Marshall et al. 2008, Marini et al.
2009, Howe et al. 2017, Bessone et al. 2020). To
minimize this bias, we first excluded all videos
where individuals were showing obvious signs
of interest in the CT and remained in front of it
for more than 60 s. We then investigated devia-
tions from expected numbers of observations
within different distance categories using the y*
goodness-of-fit (GOF) test for binned distance
data (Buckland et al. 2001:71, Eq. 3.57) and
inspected plots of fitted probability density func-
tions of observed distances and of the estimated
probability of detection as a function of distance
against scaled histograms of distance observa-
tions to determine left-truncation points that
resulted in the best fit. Both leopards and chim-
panzees often showed strong attraction to cam-
eras (though some chimpanzees exhibited
avoidance), and more observations than
expected were recorded between 0 and 2 m, so
we left-truncated these data sets at 2 m. There
was no attraction or avoidance of the cameras
apparent in videos of Maxwell’s duikers, and
only slightly fewer than expected observations
close to the camera, so we did not censor or left-
truncate those data. We right-truncated distance
observations >15 m for leopards, chimpanzees,
and Maxwell’s duikers, because longer distances
were difficult to measure accurately. Data from
elephants were sparse and most models of the
detection function did not fit well. We achieved a
reasonable fit only when we did not left-truncate
and right-truncated at 8 m, while combining dis-
tance observations into 2 m intervals.

Frequently, Akaike’s information criterion
(AIC) is used to select among multiple candidate
models of the detection function, including
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models with adjustment terms, which can
improve fit (Buckland et al. 2001). However, the
overdispersion introduced by non-independent
detections causes AIC to select overly complex
models of the detection function (Buckland et al.
2001, 2010, Burnham and Anderson 2002). Fur-
thermore, models with adjustment terms were
frequently not monotonically non-increasing
when fit to our data. We therefore considered
only simple, unadjusted half-normal and hazard
rate models of the detection function to avoid
overfitting (Buckland et al. 2004, 2010, Marques
et al. 2007), and inspected fitted probability den-
sity functions of observed distances and plots of
the estimated probability of detection as a func-
tion of distance against scaled histograms of dis-
tance observations to select between models, and
to verify that fits were monotonically non-in-
creasing. We estimated variances two ways: (1)
using the default analytic variance estimators in
Distance 7.1, which use \/uﬁ,,z of Fewster et al.
(2009: Eq. 24, Web Appendix B) for the encounter
rate component of the variance, and from 999
non-parametric  bootstrap resamples (with
replacement) of data from different points (Buck-
land et al. 2001, Howe et al. 2017). For each spe-
cies and variance estimator, we calculated the
CV of the density estimate as the point estimate
divided by the square root of the variance.
Spatiotemporal sampling effort and precision.—We
quantified the effects of spatial and temporal sur-
vey effort on the precision of CTDS abundance
estimates by subsampling our complete data
sets, calculating the encounter rate and its vari-
ance for each subsample, and fitting regression
models with the species-specific CV of the
encounter rate as the response variable, and the
number of sampling locations and the mean
number of sampling days per location as predic-
tors. The complete data set comprised 30,195
camera-days from 197 locations on 314 consecu-
tive days. We first defined fixed spatial subsets of
data from the first 55 and 102 cameras deployed
and fixed temporal subsets of the data from the
start of sampling to the end of 2016, and from the
start of sampling through March of 2017. Fixed
spatial and temporal subsets comprised approxi-
mately one half and one quarter of the total sam-
pling locations and durations, respectively
(Table 1). Subsets of locations were contiguous in
space and located where CTs were deployed
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Table 1. Total numbers of locations where and day when sampling occurred, mean numbers of effective
sampling days per location, and total camera-days of sampling in different fixed spatial and temporal subsets

of our complete survey.

Data set No. locations ~ No.days  Mean no. sampling days/location =~ No. camera-days = Subsample sizest
Complete 197 314 153.3 30,195 2, 5,10, 15, 20, 25
Half locations 102 306 147.0 14,990 2,5,10
Quarter locations 55 291 130.6 7181 2,5

Half duration 193 165 91.8 17,722 2,5,10,15
Quarter duration 190 75 37.3 7078 2,5

Notes: Locations exclude those where cameras never functioned, and mean sampling days per location and camera-days
include only days when cameras functioned and were not visited by researchers. Also shown are numbers of camera-days
subsampled from each subset (100 random samples of each size were selected from each respective data set; see Materials and

Methods).
+ Sizes of subsamples of camera-days (thousands).

earliest, and temporal subsets were continuous
in time and included the beginning of the survey.
Thus, our fixed spatial and temporal subsets
mimicked real surveys over smaller areas, and
shorter durations, respectively. We then selected
one hundred random subsamples, without
replacement, of 2000, and multiples of 5000, cam-
era-days, up to a maximum of 25,000 camera-
days, from the complete data set and each fixed
subset thereof (Table 1). Subsampling yielded a
total of 1700 data sets representing 17 different
design scenarios (Table 1).

The empirical, design-based variance of densi-
ties estimated by CTDS includes components for
both detection probability and encounter rate
(Fewster et al. 2009). The encounter rate variance
is often the dominant contributor to the overall
variance in density (Fewster et al. 2009, Howe
et al. 2017). Therefore, to simplify the analyses of
the many subsets of the data, we did not estimate
density, and we ignored the detection probability
component of the variance. Rather, for each sub-
sample of camera-days, we calculated the
encounter rate as the total number of observa-
tions of animals (1) divided by the total effort (as
the sum of ¢, of Eq. 1 across all days and loca-
tions included in the subsample; Fewster et al.
2009:230), and the variance of the encounter rate
as vary,, of Fewster et al. (2009). Coefficient of
variations of encounter rates were calculated as
the square root of the var,, divided by the point
estimate.

We initially fit linear regression models with
the CV of the encounter rate as the response vari-
able, and the number of sampling locations and
the mean duration of sampling (in days) per
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location as predictors. Diagnostic plots revealed
skewness in the raw data and the residuals, and
evidence of heteroscedasticity, so we fit general-
ized Linear Models (GLM; McCullagh and
Nelder 1989) with a gamma error structure and
inverse link function to the same data. There was
no evidence of overdispersion after fitting the
GLMs (range of dispersion parameters =
1.001-1.002). We used the estimated GLM coeffi-
cients to predict CVs of the encounter rate from a
range of theoretical surveys for species occurring
at different densities. We also predicted CVs of
encounter rates from GLM coefficients and infor-
mation describing survey effort in previously
published CTDS surveys (Howe et al. 2017, Cap-
pelle et al. 2019, Bessone et al. 2020), and com-
pared our predictions to reported CVs of density.

REsuLTS

Data collection and video processing

It took one crew of two people approximately
one day to install CTs and record reference
videos at four locations. A total of two months
was required to set up cameras in 200 locations.
Cameras were left in place for a total of 59,380
camera-days (equivalent of about 297 d per cam-
era), but camera theft, memory card capacity,
and battery life reduced the total camera trap
effort to 33,237 camera-days (168 d/camera).
After removing data from days when cameras
were being installed or visited by researchers, a
total of 30,195 camera-days remained (153
d/camera).

We obtained 82,806 videos of which 36,937 (al-
most 45%) included no animals, because CTs
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were either triggered by moving foliage or ani-
mals moving so quickly that they left the field of
view within the trigger speed of the CT, or mal-
functioned, recording videos every minute until
the batteries were drained. In the end, 45,869
videos included animals. We were able to iden-
tify over 90% of the filmed animals to species
and recorded 77 different species.

Abundance estimation

Sample sizes varied among species, with 18
videos from only three locations yielding 503
observations of distances to elephants, to 3537
videos from 174 locations yielding 41,386 obser-
vations of distances to Maxwell’s duikers
(Table 2).

We estimated that chimpanzees were available
for detection 36% of the time each day using
ARo (Fig. 2) and 73% during daytime interval,
but ACa yielded an estimate of 27% over the
same time interval and 49% between daytime
interval. Independent data from direct observa-
tions of the well-habituated groups (Doran 1989),
showed that males were active on the ground for
a larger proportion of each day than females, but
females made up more than half of the popula-
tion; sex-ratio weighted average availability
(ADO) was 51% over the daytime interval. Avail-
ability of leopards estimated using ARo was 55%
of the time each day and 40% using ACa.

The unadjusted hazard rate model and the
unadjusted half-normal model of the detection
function were the only valid models for ele-
phants and leopards, respectively. The hazard
rate model provided a better fit to our duiker
data (Figs. 3, 4) than the half-normal model. We
were concerned that the avoidance behavior
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some chimpanzees exhibited induced hetero-
geneity in detectability, in which cases the hazard
rate key function may appear to fit well, but
underestimates abundance (Buckland et al. 2004,
Buckland 2006), so we estimated chimpanzee
density from the half-normal model. Plots of fit-
ted probability density functions and probabili-
ties of detection revealed a reasonably good fit to
data from duikers, but also the potential for
problems in data from other species (Figs. 3, 4).
More observations of leopards than expected
were recorded in the first distance interval, data
from chimpanzees showed fewer than expected
detections within 6 m of the camera, and the
probability of detecting elephants dropped shar-
ply within the first of only four distance intervals
(Figs. 3, 4).

Density estimates indicate that duikers (19.744/
km?) were approximately 40 times more abun-
dant than chimpanzees (~0.5/km?), and approxi-
mately 400 times more abundant than leopards
and elephants (z0.0S/kmz; Table 3). We esti-
mated that 13 elephants, 10-14 leopards (de-
pending on availability estimator), 87-109
chimpanzees (depending on availability estima-
tor), and 3949 Maxwell’s duikers occupied our
200-km? study area (Table 3). Estimates for duik-
ers were the most precise (CV = 11%); estimates
for chimpanzees were reasonably precise
(20% < CV < 30%), and estimates for elephants
were potentially too imprecise to be useful
(50% < CV < 200%; Table 3). The analytic esti-
mator yielded variances that were larger than
those estimated by bootstrapping (except for
very rare elephants), and only slightly larger
than the variance of the encounter rate calculated
from the raw data (Table 3).

Table 2. Sample sizes of videos of each species (total obtained during the survey, excluded because of behavioral
responses to camera traps, and considered for distance analysis), the number of locations where species were

filmed, and the total number of observations of distance (1) included in analyses to estimate abundance (after

excluding entire videos and truncating distance observations.

No. videos
Species Total Excluded Considered No. locations n No. individuals
Elephant 21 3 18 7 503 32
Leopard 283 96 187 60 651 147
Chimpanzee 330 15 315 87 5519 866
Maxwell 20,250 16,713 3537 174 41,202 5100
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Fig. 2. Distribution of videos as function of time of day for leopards (a) and chimpanzees (b) at the study site
in Tai National Park. Histograms are observed frequencies, and lines are fitted circular kernel distributions.
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Fig. 4. Probability density functions of observed distances to elephants (a), leopards (b), chimpanzees (c) and

Maxwell’s duikers (d).

Spatiotemporal sampling effort and precision

Increasing the number of sampling locations
had a slightly larger effect than the duration of
sampling per location (in days) on the precision
of estimates of duiker encounter rates, but a con-
siderably larger effect on the precision of chim-
panzee encounter rates (Table 4). Estimated
coefficients for leopards (not presented) indi-
cated only a small effect of number of locations.
Additional exploratory analyses showed that (1)
a large fraction of the observations of leopards
came from relatively few cameras and camera-
days, (2) removing approximately half of our
locations dropped the few locations with the
most observations, reducing average encounter
rates but also providing a more even distribution
of observations across locations and therefore a
lower CV variance, and (3) further reducing the
number of locations removed most observations
of leopards, such that estimates of the encounter
rate were much lower with high variances.

Our predictions suggest that for ground-dwell-
ing species as common and detectable as duikers,
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CVs will always be >20% with 25 or fewer loca-
tions, and that with 50 locations, >100 effective
sampling days per location would be required to
achieve a CV of 20% (Fig. 5). Increasing the num-
ber of sampling locations from 25 to 150 should
yield considerable gains in precision, and having
more sampling locations is increasingly impor-
tant with shorter survey durations (Fig. 5). Pre-
dictions further suggest that researchers could
achieve CVs as low as 20% from surveys with at
least 100 sampling days at as few as 50 locations,
but that for rapid (e.g., 2-week to 2-month) sur-
veys or surveys designs that involve removing
cameras to new areas this frequently, 100-140
sampling locations would be required to yield
similar precision. Coefficient of variations as low
as 10%, if achievable, would require >200 sam-
pling locations even with long (>130 d) survey
durations. Predicted CVs of chimpanzee encoun-
ter rates remained >30% except where survey
effort approached the maximum we achieved in
the field. Decreasing slopes and comparisons to
Bessone et al. (2020) suggest that further
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Table 3. Estimates of animal density (per km?), with lower and upper confidence limits (LCL and UCL) and
percent coefficients of variation (%CVs) calculated from bootstrap and analytical (empirical design-based)

variances.
Density
Empirical
designed-based
. Bootstrap variance variance N
Species
detection % % %CV
Species functionf  Estimate LCL UCL CV LCL UCL CV (varp) Estimate LCL UCL
Elephant UHR 0.063 0.003 1.401 196.3 0.019 0.213 683 53.5 13 1 280
Leopard (ARo) UHN 0.05 0.033 0.069 18.0 0.031 0.080 24.4 20.1 10 7 14
Leopard (ACa) 0.069 0.045 0.093 181 0.046 0.103 20.8 14 9 19
Chimpanzee (ARo) UHN 0.434 0.295 0.605 181 0.254 0.743 27.8 23.6 87 59 121
Chimpanzee (ACa) 0.547 0377  0.766 18.0 0.334 0.896 254 109 75 153
Chimpanzee (ADO) 0.513 0.342 0.709 183 0.313 0.842 255 103 68 142
Maxwell’s duiker UHR 19.744 15916 23.863 105 1577 2473 114 10.7 3949 3183 4773

Note: Also shown are %CVs of the encounter rate (V;ﬁpz) calculated from the raw data, and estimated population sizes (N)

with bootstrap LCLs and UCLs.

+ Detection function abbreviations are UHR, unadjusted hazard rate; UHN, unadjusted half-normal.

Table 4. Effects (and standard errors of effects) of the
number of sampling locations and the average dura-
tion of sampling per location (in days) on the coeffi-
cient of variation of the encounter rate in camera
trap distance sampling surveys of species occurring
at different densities, on the inverse link scale.

Model coefficients ~ Maxwell’s duiker Chimpanzee
Intercept 1.529 (5.9607%%)  8.4277°! (4.6107%%)
Locations 2.4907°%(3.900™")  1.0007°% (3.0007%

Days per location 22507 (6.9007") 57007 (4.0007%%)

increases in survey effort would have diminish-
ing returns with respect to precision (Fig. 5).

DiscussioN

Camera trap distance sampling shows poten-
tial to improve the efficiency and quality of infer-
ence about animal abundance from CT surveys
(Howe et al. 2017, Cappelle et al. 2019, Bessone
et al. 2020). Ours is only the second study to
apply CTDS to multiple species or over a broad
geographic scale (Bessone et al. 2020), and the
first to explore relationships between spatiotem-
poral sampling effort and precision for species
occurring at different densities and exhibiting
different behaviors that affect detectability.

During our 10-month CT survey, we obtained
sufficient data (minimum 60 observation of dis-
tance distributed over many locations; Buckland
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et al. 2001) to estimate abundance of 31 species,
including one species listed as critically endan-
gered (western chimpanzee), two as endangered
(pygmy hippopotamus and Jentink’s duiker) and
nine as vulnerable species (leopard, forest ele-
phant, white-breasted guinea fowl, zebra duiker,
African golden cat, and two species of primates
and pangolins; IUCN red list). By comparison,
Hoppe-dominik et al. (2011) were able to esti-
mate abundances of 11 species after a 5-yr line
transect survey in the same area.

For Maxwell’s duikers, estimated density was
similar to that reported by Hoppe-dominik et al.
(2011; 17.1 ind./km?* with night count) and Howe
et al. (2017, 14.5-16.5 ind./km®> by CTDS).
Ground-dwelling, medium- to large-bodied spe-
cies such as duikers are ideal subjects for CT sur-
veys designed for estimating abundance, because
their behavior, including being available for
detection by CTs whenever they are active and
moving, and exhibiting minimal behavioral
responses to CTs, conforms well to the assump-
tions of statistical models (Rowcliffe et al. 2013,
Howe et al. 2017, Bessone et al. 2020). Further-
more, they tend to be detected at a large fraction
of random sampling locations, such that abun-
dance can be estimated with reasonable precision
(Rowcliffe et al. 2008, Nakashima et al. 2018).

As in Kouakou et al. (2009), Després-Einspen-
ner et al. (2017), and Cappelle et al. (2019) true
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Fig. 5. Predicted coefficients of variation (CVs) of the encounter rate from camera trap distance sampling sur-

veys of duikers and chimpanzees. Different lines show predictions for surveys of different durations (as the mean
number of effective sampling days per location; labels at left).

densities of chimpanzees were known, but we
sampled multiple social groups over a larger
area. Camera trap distance sampling estimates
were sensitive to the method used to correct for
temporally availability for detection when active;
we may have overestimated availability gener-
ally, possibly because there was no time at which
100% of the population was on the ground and
available for detection (Rowcliffe et al. 2014, Cap-
pelle et al. 2019). Furthermore, reactions to the
camera could have caused bias either via the cen-
soring of observations where chimpanzees were
apparently reacting to CTs or effects on the distri-
bution of observed distances (Buckland et al.
2001). By comparison, line transect distance sam-
pling of nests either underestimated abundance
(marked nest count methods) or were highly sen-
sitive to the estimate of nest decay rate, and were
no more precise than the estimates presented
here, after nearly two years of active fieldwork to
estimate decay rates and conduct the surveys.

Superior estimates were obtained from both 83
CTs deployed at targeted locations and 23 CTs
deployed at random locations, by identifying
individuals and estimating density using spa-
tially explicit capture-recapture (SECR) methods
(Després-Einspenner et al. 2017, Cappelle et al.
2019).
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Estimating abundances of the rarest species by
CIDS proved challenging. We obtained rela-
tively few detections of rare elephants and leop-
ards, and those detections were unevenly
distributed in both space and time. These species
also exhibited complex reactions to cameras,
with effects on distributions of observed dis-
tances. Nevertheless, our estimate of 10-14 leop-
ards on a 200-km? study area is similar to Jenny’s
(1996) estimate of seven leopards on their 100-
km” study area. Forest elephants occur at very
low densities and move along established trails,
which makes it difficult to obtain sufficient data
and precise estimates from randomized surveys.
Our estimate of elephant density is more than
twice as high and much less precise than a prior
estimate from line transect surveys over a 520-
km? area that included our study area (13 indi-
viduals, 95% CI = 7-24; WCEF, unpublished report).
We also are cautious with our estimates for ele-
phants, since they were derived from few loca-
tions, and distance sampling models did not fit
our elephant data well.

The variance of the encounter rate was a rea-
sonable proxy for the variance of density. How-
ever, our estimates of encounter rates (and
therefore densities) of leopards were sensitive to
sampling artifacts, that is, not the number of
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locations or the average duration of sampling,
but which specific locations and days were
included in each data set, and therefore that we
cannot reliably quantify the relative influence of
different components of survey effort on the pre-
cision of CTDS estimates for species as rare as
leopards and elephants. Our assessment of the
relative influences of spatial and temporal survey
effort on the precision of estimates of duiker
encounter rates can help researchers design effi-
cient surveys of relatively common, ground-
dwelling species. Coefficients for duikers pre-
dicted a CV of the encounter rate of 27% from
Howe et al.’s (2017) survey with 21 locations and
a mean of 72 d of sampling per location—similar
or identical to their reported analytic CVs of den-
sity. Coefficients for chimpanzees predicted a CV
of 44% from Cappelle et al.’s (2019) survey with
23 locations and a mean of 206 survey days per
location; they reported a bootstrap CV of 40%.
When we used coefficients for duikers and chim-
panzees to predict CVs from Bessone et al.s
(2020) survey with 734 locations and 36.4 sam-
pling days per location, we obtained 5% and
12%, respectively. However, Bessone et al. (2020)
did not achieve CVs lower than 20% for any spe-
cies occurring at a density similar to chim-
panzees on our study area, and they obtained
CVs closer to 40% for semi-arboreal species.
None of the species occurred at densities similar
to Maxwell’s duikers on our study area, but even
for the most abundant and commonly detected
species, CVs were >15%. Comparisons to Bes-
sone et al. (2020) highlight the risks and uncer-
tainty associated with predicting CVs beyond the
range of our own data (maximum approximately
200 locations and 150 d per location), and is not
recommended. Predictions from GLM coeffi-
cients within the range of our own data indicate
that CVs between 10% and 20% of the point esti-
mate are achievable from a wide variety of sur-
vey designs, including designs that involve
moving cameras, but also that this level of preci-
sion is likely not attainable except after more
than six months of sampling at a minimum of 50
sampling locations, or as little as 2-3 weeks of
sampling at each of 150 or more locations.

Our results for chimpanzees, leopards, and ele-
phants are informative regarding CTDS surveys
of uncommon to very rare species that are
detected rarely at randomly located CTs because
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they travel along trails or spend time outside the
vertical range of CTs. We suggest that crude but
useful estimates of the abundance of, for exam-
ple, primates, felids, and meso-carnivores could
be obtained from ambitious CTDS surveys. Fur-
thermore, if the data collected are insufficient to
estimate abundance by CTDS, data collected
from randomized surveys can be used to address
other questions, for example, studies of occu-
pancy and habitat use. However, if enumeration
of a single or very few rare and difficult-to-detect
species is the main objective of a CT survey, other
methods, such as spatially explicit capture—
recapture (Borchers and Efford 2008), which
relies on individual identification but allows for
non-random trap placement, should be consid-
ered. This might still not preclude a simultane-
ous multispecies CTDS survey. In some
situations, identifying individuals detected by
the same randomly located cameras used for a
CTDS survey might be sufficient to estimate den-
sity by SECR (Després-Einspenner et al. 2017),
and in others, a randomized design could be
augmented with a small number of non-random
sampling locations, for example, to increase
detections of animals that use trails.

We conclude that CTDS could allow research-
ers to take advantage of the efficiency of camera
trapping to obtain reliable estimates of the abun-
dance of multiple species, of sufficient precision
to detect strong trends and to inform conserva-
tion status and actions.
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