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The Min proteins from Escherichia coli can self-organize into traveling waves on supported
lipid bilayers. In Ref. [1] we showed that these waves are guided along the boundaries of
membrane patches. We introduced an effective two-dimensional model reproducing the
observed patterns. In their text2, Jacob Halatek and Erwin Frey contest the ability of our
effective two-dimensional model to describe the dynamics of Min proteins on patterned
supported lipid bilayers. We thank Halatek and Frey for their interest in our work and for
again highlighting the importance of dimensionality and geometry for pattern formation
by the Min proteins. Here we reply in detail to the objections by Halatek and Frey and
show that (1) our effective two-dimensional model reproduces the observed patterns on
isolated patches and that (2) a three-dimensional version of our model produces similar
patterns on square patches.
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I. BRIEF RESPONSE TO HALATEK AND FREY

Here, we summarize the essential points of our response to Halatek and Frey. A detailed

response can be found below.

Halatek and Frey2 contest our claim that a two-dimensional effective model of Min-protein

dynamics accounts for geometry sensing by self-organized patterns1. Our model notably includes

transient binding of MinE to the membrane, a process that to our knowledge was first suggested

by Meacci and Kruse3 and then studied in context of MinE-ring formation by Derr et al.4. The

impact of MinE membrane binding on Min-protein patterns in a cellular geometry was first studied

subsequently by Arjunan and Tomita5.

Hsieh et al. initially suggested direct membrane binding of MinE, which has been attributed to

positively charged residues located at positions 10-12 of MinE6. In Loose et al, we mutated these

residues and found that the corresponding mutant MinE (C1) still supports dynamic instability of

the Min system in vitro, but fails to displace MinC from MinD7. In a subsequent structural study

by Park et al.8 a nascent amphipathic helix at the extreme N-terminus of MinE was identified,

which allows MinE to directly interact with the membrane. In contrast to the study by Hsieh et

al, the residues involved in membrane binding were found to be located at positions 3-8. Park

et al. suggested that residues 10-12 might still contribute to membrane-binding, but are more

important for the interaction with MinD since mutations here impair MinE’s ability to displace

MinC from MinD. In light of this more recent data, we conclude that the MinE C1 mutant we

tested still has some affinity to the membrane. So far, we have not been able to study the

effect of mutations of residues 3-8 in our in vitro assay, however it was found they lead to erratic

oscillations in vivo (J. Lutkenhaus personal communication). We therefore conclude that MinE

membrane binding is required for the formation of regular Min protein patterns and consequently

geometry sensing.

In contrast to the allegations by Halatek and Frey the mechanism studied in Ref. 1 does

account for the observed MinDE protein patterns. This holds for a two- dimensional as well

as for a three-dimensional implementation, see below. The parameters presented in Ref. 1

were unfortunate in that the corresponding solutions depended on the size of the gold layer

implemented in the simulations. As the data presented below show, however, this is not a

short-coming of either the mechanism nor the model. Furthermore, the purpose of our model
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was to show that accounting for transient MinE membrane binding allows us to reproduce the

effect of geometry sensing observed in experiments. Parameters were not optimized to yield

quantitative agreement with experiments or to reproduce the exact form of the density profiles.

More importantly and in contrast to all other published models, however, the mechanism we

studied is able to qualitatively reproduce all hitherto observed Min-protein patterns.

The two-dimensional model studied in Ref. 1 is an effective description of the Min-protein

dynamics in three dimensions. Solving the corresponding model equations in three dimensions

can also produce patterns similar to those observed in experiment. Although a formal mapping

between the three-dimensional and the two-dimensional model is still lacking, we find that there

is a correspondence between the patterns generated by both models. This feature highlights the

robustness of the mechanism that we propose to explain the essential features of the Min-protein

dynamics observed in vivo and in vitro.

In conclusion, while our choice of parameters might have been unfortunate in some respects,

we maintain our claim that transient membrane binding of MinE is able to reproduce the exper-

imentally observed geometry sensing.

II. DETAILED RESPONSE TO HALATEK AND FREY

A. Introduction

In our work [1], we presented experimental data showing that spontaneous surface waves

of Min proteins on supported lipid bilayers can be guided by lateral confinement. In these

experiments binding of the Min proteins to the surface was restricted to membrane patches of

different shapes and sizes by covering the rest of the surface with a passivating gold layer. The

patches were either arranged in arrays or isolated, separated by about 50 µm from each other. We

analyzed the Min-protein waves on the membrane patches by using an effective two-dimensional

description of the protein dynamics on the surface. In this effective model, we accounted for

persistent binding of MinE to the membrane. While this property had already been proposed to

be important for the formation of the so-called E-ring [4]-[9], an accumulation of MinE at the

rim of the polar MinD zone in vivo, experimental evidence for this assumption has only been

available recently.

Our model describes the evolution of the densities cD and cE of MinD and MinE not bound to
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the membrane and of the densities cd, cde, and ce of membrane-bound MinD, MinDE complex, and

MinE, respectively, using a meanfield approach. In our deterministic, effective two-dimensional

description, the densities are all surface densities. The densities cd, cde, and ce are restricted to

the regions of the membrane patches. The complete system, however, is larger and comprises

also regions corresponding to the gold layer. The latter regions are only accessible to MinD and

MinE in solution. Explicitly, the equations read

∂tcD = DD∆cD − cD(ωD + ωdDcd)(cmax − cd − cde)/cmax

+ (ωde,m + ωde,c)cde (1)

∂tcE = DE∆cE − ωEcEcd + ωde,ccde + ωece (2)

∂tcd = Dd∆cd + cD(ωD + ωdDcd)(cmax − cd − cde)/cmax

− ωEcEcd − ωedcecd (3)

∂tcde = Dde∆cde + ωEcEcd + ωedcecd − (ωde,m + ωde,c)cde (4)

∂tce = De∆ce + ωde,mcde − ωedcecd − ωece . (5)

For the diffusion currents of MinD and MinE not attached to the membrane, we apply periodic

boundary conditions at the system’s boundaries. The membrane patches do not affect diffusion

of the unbound proteins. In addition, we apply zero flux conditions on the currents for the

membrane-bound densities perpendicular to the patch boundaries. The various constants Dα

denote the diffusions constants for species α = D, E, d, de, and e. The values of ωD and ωdD

parameterize binding of MinD to the membrane, ωE binding of MinE. Dissociation of MinDE

complexes is described by ωde,m and ωde,c giving unbinding of MinD with MinE staying on the

membrane or not, respectively. Finally, cmax is the maximal protein density on the surface.

Let us point out that this description does not account for possible intermolecular inter-

actions between membrane-bound molecules. There is some experimental evidence for such

interactions7,9,10 and they have been shown to be able to trigger a dynamic instability that leads

to pattern formation of Min proteins3,11. However, these interactions have not been characterized

experimentally and their molecular nature is presently unknown. We thus refrain at this point

from making any ad hoc assumptions. As we will see below, these suggested interactions are not

necessary to comprehensibly describe the influence of the geometry on the Min-protein patterns

nor for giving a comprehensive description of all Min-protein patterns observed in vivo up to
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date12. They are presumably important, though, to get a quantitative agreement of the wave

form and the residence times of the Min proteins on the membrane as we will see below.

The solutions to these equations we presented in Ref. [1] were obtained for parameter values

that present certain shortcomings. However, as we show here, these shortcomings are indeed

linked to the parameter values and not to the model per se. Since a comprehensive numerical

study of parameter space is prohibited by limited computer power. Further quantitative experi-

ments are needed to provide constraints on parameters. For the time being it seems appropriate

to focus on certain features of the Min-protein patterns. We will come back to this point in the

discussion at the end of this article.

We will now give a point-to-point response to the issues raised by Halatek and Frey. For

convenience of the reader, the points of Halatek and Frey are copied in this text.

B. Response to the points made by Halatek and Frey

We investigated the simulation files provided by the authors and found that the model neither

accounts for actual MinE membrane interactions nor for any observed MinDE protein patterns.

It does not reproduce any of the computational data presented in the article [1].

In contrast to the allegations by Halatek and Frey, the computational data were obtained from

the dynamic equations given above and in the article. Our model includes the densities cde and

ce, which describe MinE bound to the membrane either in a complex with MinD or alone. The

figures presented in Ref. [1] show patterns similar to the ones observed in the corresponding

experiments. In Ref. [12], we furthermore show, that our model reproduces all experimental

Min-protein patterns reported so far.

For the published parameters, pattern formation is restricted to very small cytosol/membrane

ratios.

It is not clear to us, which ”cytosol/membrane ratios” Halatek and Frey have in mind. In any

case, in Ref. 1, we make no statement about the parameter dependence of the in vitro patterns.

Cytosolic volume is not accounted for and total densities indicate an effective bulk height below

6µm.

Indeed, in Ref. 1 we considered an effective 2d model as has been done in several studies before
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our work. The relation between the full three-dimensional model and the effective 2d model

is not obvious and remains to be worked out. For the time being we can say, though, that

both models produce similar patterns for the membrane-bound protein densities. Below, we give

results that show that the mechanism studied by our computational analysis in 2d and 3d yields

patterns similar to the experimental patterns. In our 3d calculations we used a bulk height of

90µm and we observed that the cytosolic concentrations were essentially homogenous above

a height of about 15µm. Furthermore, as shown in Fig. S1 in the appendix of Ref. [1], the

protein patterns are indeed confined to a narrow region above the membrane above which the

corresponding fluorescence intensitiy appears to be homogenous.

We find that scaling the cytosolic dynamics by a small factor O(1) or increasing gold layer size

eliminates the instability. Hence, the model configuration deviates from the experiment by orders

of magnitude. In striking contradiction to the accompanying experiments and to the claim in

the article, bulk volume has a severe effect on the computational model.

We are not sure, what Halatek and Frey have in mind here. In our two-dimensional computational

model we cannot study the effect of the bulk volume on the patterns formed, because we do not

have an exact mapping of the 3d model to 2d. We show below that in a full three-dimensional

model of the same mechanism as used for the two-dimensional model in Ref. [1], the bulk volume

does not affect the membrane patterns as long as it is higher than 15µm.

The authors compensated for this system size dependence by adjusting intrinsic system parame-

ters (MinE/MinD ratio) without mentioning it. Moreover, the adjusted parameters deviate from

the experimental value while the published parameters do not.

For the parameter sets given below for the calculations in 2d and 3d, our computational model

produces all observed patterns, see Figs. 1-5. In the 3d calculations, the total MinD and MinE

densities correspond to the values used in Ref. [7].

Even with these adjustments the model relies on simulation artifacts to reproduce the experi-

mental data. Alignment to the aspect ratio requires periodic boundaries at the gold layer. The

alignment angle is controlled by cross-boundary coupling in horizontal and vertical directions.

The aspect ratio of the patch has a negligible effect on alignment. Without periodic boundaries
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or for gold layers sizes as used in the experiment alignment ceases and waves become disordered

blobs. This invalidates the model on a conceptual level.

As shown in Figures 1 and 2 below, our computational model (or rather the molecular processes

implemented in the model) can reproduce the experimentally observed patterns on patched mem-

branes in a robust way and independently of the boundary conditions chosen for the gold layer.

In Figures 1 and 2, we present numerical solutions that were obtained for patches surrounded

by an inert region of sizes 1.625mm×1.625mm and 2.303mm×3.290mm, using the parameter

set given in Table I for the 2d model defined above. Solutions were obtained by using Comsol

Multiphysics 4.1 R©. Far away from the patch, the densities cD and cE are essentially homogenous

and the size of the surrounding gold layer can be increased further without affecting the pattern

on the patch. While we agree that the parameter set used in Ref. [1] was unfortunate as the

patterns depend for these values on the size of the gold layer, we conclude that the mechanism

studied in our work is indeed capable of reproducing the patterns observed experimentally also if

the membrane patches are isolated and thus is valid on a conceptual level.

DD DE Dd De Dde cmax ωD
50µm

2

s
50µm

2

s
0.24µm

2

s
0.48µm

2

s
0.24µm

2

s
2.0 · 104 1

µm2 0.0451
s

ωdD ωE ωed ωde,c ωde,m ωe CD0 CE0

9 · 10−4 µm
2

s
4 · 10−4 µm

2

s
2.5 · 10−3 µm

2

s
0.081

s
0.81

s
0.081

s
1631 1

µm2 563 1
µm2

TABLE I. Parameter values for the 2d model used in Figs. 1 and 2.

In order to underline this point even further we will now show that the molecular mecha-

nisms accounted for in our computational model can produce patterns similar to those observed

experimentally also in a three-dimensional geometry.

Let us first describe the formulation of our model in three spatial dimensions. We consider

the volume densities cD and cE for MinD and MinE, respectively, and the surface densities cd,

cde, and ce for MinD, MinDE complexes, and MinE. Note, that the surface densities are defined

only on the regions of the surface corresponding to membrane patches, but not in the regions

corresponding the gold layer. The dynamic equations for our model in three spatial dimensions
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FIG. 1. Solutions of the 2d model equations on rectangular membrane patches for the parameters

given in Table I. a) Snapshots of the distribution of membrane-bound MinD on rectangular mem-

brane patches with different aspect ratios. In the rightmost case, planar waves emanating from

the two opposite sides meet in the patch center. In the other cases, waves emanate from the upper

right corner. b) Distribution of MinD in the buffer for the square membrane patch shown in (a).

c) Distribution of MinE in the buffer for the square membrane patch shown in (a). In (b) and

(c) the whole simulated area is shown for the patch with aspect ratio 1:1. Heterogeneities in the

concentrations are limited to the region of the membrane patch. Similar behavior is observed for

the other patch geometries.

are then given by

∂tcD = DD∆cD (6)

∂tcE = DE∆cE (7)

∂tcd = Dd∆‖cd + cD(ωD + ωdDcd)(cmax − cd − cde)/cmax

−ωEcEcd − ωedcecd (8)

∂tcde = Dde∆‖cde + ωEcEcd + ωedcecd

−(ωde,m + ωde,c)cde (9)

∂tce = De∆‖ce + ωde,mcde − ωedcecd − ωece . (10)

The first two equations are defined in the volume above the surface, the remaining equations

only in the regions of the surface corresponding to the membrane patches. The parameters have

the same meaning as in Ref. [1]. Let us note immediately, however, that it is not obvious how to
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FIG. 2. Solution of the 2d model equations in presence of an L-shaped membrane patch for the

parameters given in Table I. a) Snapshots of the distribution of membrane-bound MinD on the

membrane patch. Waves are guided by the patch an move from left to right. b, c) Corresponding

distributions of MinD and MinE in buffer. Again heterogeneities in the concentrations are limited

to the region of the membrane patch.

relate the respective values of the corresponding parameters in the three- and two-dimensional

models. We do observe, though, that both variants of the model produce qualitatively similar

patterns if parameters are chosen appropriately. Future work has to establish the exact relation

between the two variants.

In addition to the bulk equations, we also have to determine the boundary conditions on the

diffusion currents. At the boundaries of the membrane patches we use no-flux conditions for the

surface densities. For the buffer species cD and cE, the diffusion currents perpendicular to the

boundaries vanish at the system’s top as well as on the gold layer. In the region of the membrane,

the component of the diffusive fluxes perpendicular to the surface obey:

−DD∇⊥cD = cD(ωD + ωdDcd)(cmax − cd − cde)/cmax − (ωde,m + ωde,c)cde (11)

−DE∇⊥cE = ωEcEcd − ωece − ωde,ccde. (12)

Finally, we apply periodic boundary conditions at the system’s sides.

We solved the equations numerically using Comsol Multiphysics 4.1 R© for the parameter values

given in Table II in a domain of size 200µm×200µm×90µm. The membrane patch is quadratic

with edges 60µm long. The system produces a wave moving along the diagonal of the patch, see
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cde
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-24
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T=36s

30µ
m

30µm
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FIG. 3. Solution of the 3d model equations in presence of a quadratic membrane patch. a)

Distribution of membrane-bound MinD on the patch. b) Buffer concentration of MinD along a

representative slice through the system. Compare to Fig. S1 in the appendix of Ref. [1]. Parameters

are given in Table II.

Fig. 3 and Video S1. The buffer concentrations are homogenous at the systems boundaries with

exception of the vicinity of the membrane patch indicating that further increasing the simulation

box will not affect the pattern on the membrane. Upon increasing the aspect ratio of the

membrane patch, the waves are more and more directed along the patch’s long axis, see Fig. 4.

The solution for an L-shaped membrane patch is given in Fig. 5 and Video S2. Again densities

are homogeneous at the system boundaries making this solution insensitive to a further increase

in the system size.

As explained before, we did not attempt to match parameters such that the patterns in the

three-dimensional model are exactly the same as in the two-dimensional model as many aspects

of the systems like the nature of protein-protein interactions on the membrane are not yet fully

characterized.

DD DE Dd De Dde cmax ωD
50µm

2

s
50µm

2

s
0.3µm

2

s
1.8µm

2

s
0.3µm

2

s
2.75 · 104 1

µm2 5·10−4 µm
s

ωdD ωE ωed ωde,c ωde,m ωe CD0 CE0

3.18 · 10−3 µm
3

s
1.36 · 10−4 µm

3

s
4.9 · 10−3 µm

2

s
0.161

s
2.521

s
0.51

s
484 1

µm3 696 1
µm3

TABLE II. Values of the parameters used for the numerical solutions of the 3d model equations.
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FIG. 4. Solution of the 3d model equations on rectangular membrane patches with different aspect

ratios. The cytosolic concentrations are not shown. Parameters are given in Table II.

FIG. 5. Solution of the 3d model equations in presence of a L-shaped membrane patch. a)

Distribution of membrane-bound MinD on a L-shaped patch. b) Buffer concentration of MinD

along a representative slice through the system. Compare to Fig. S1 in the appendix of Ref. [1].

Parameters are given in Table II.

The model is claimed to extend and supersede previous models by incorporating experimental

evidence regarding MinE membrane interactions [8,7]. We note that MinE membrane binding

was already proposed and analyzed by Arjunan and Tomita.

Transient membrane-binding by MinE was first suggested in Ref. [3] to underlie MinE-ring forma-

tion and was then studied in this context by Derr et al.4. Arjunan and Tomita studied a system, in

which MinE could directly bind to another membrane-bound MinD after inducing detachment of

a membrane-bound MinD5. In difference to the model presented in Ref. [1], though, these authors

only considered MinE dimers forming a complex with MinD to stay on the membrane; in absence

of MinD, MinE could not stay bound to the membrane. The work by Arjunan and Tomita was

the first to numerically study a stochastic model for Min-protein dynamics in a cellular geome-

try incorporating this feature. It nicely demonstrated the formation of a MinE-ring in this setting.
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Moreover, the model contradicts the experimental references in several aspects. Park et al. [8]

have shown that unmasking the anti- MinCD domains in MinEF7E/I24N restores the wild type

phenotype without membrane binding. In contrast, computational patterns are lost if MinE

membrane binding is reduced and cannot be recovered by adjusting MinE recruitment.

Halatek and Frey falsely claim that experiments by Park et al. disprove our finding that membrane

binding is required or responsible for geometry sensing. In their paper, Park et al. identified

the MinE double-mutant MinEF7E/I24N , which does not bind to the membrane in vivo and

is supposedly consecutively activated for MinD binding. While it is true that cells with this

mutant show similar colonies on agar plates as with the wildtype protein, Park et al. make no

comment about cell morphology, cell length distributions nor the dynamics of the Min proteins in

vivo. Therefore, ”assuming that the MinEF7E/I24N mutant most likely restores pole-to-pole Min

oscillations (hence, geometry sensing) without requiring membrane binding” as Halatek and Frey

do in their letter is unfounded. In fact, this MinE mutant could even fail to induce oscillations

but lead to a static Min protein distribution to regulate cell division as seen in B. subtilis. To

conclude, instead of making assumptions about how proteins might behave, it is important to

test these MinE mutants for their ability to initiate protein pattern formation in vivo as well as

in vitro.

Hence, the model actually implies that MinE membrane binding is required for pattern formation

in the first place and not for geometry sensing in particular as the paper claims.

It would be interesting to test experimentally whether MinE membrane binding is required for

pattern formation or not. In any case, we do not see a contradiction in the two statements (MinE

membrane binding is required for pattern formation and MinE membrane binding is necessary

for geometry sensing). Furthermore, using other models we did not find geometry sensing in the

absence of MinE membrane binding, so we maintain our claim that MinE membrane binding is

necessary for geometry sensing.

The ratio of MinE/MinD residence times quantifies the relative strength of MinE membrane

binding. It has been quantified experimentally by Loose et al. [7]. The value in the computational

model exceeds the experimental value by an order of magnitude. As a consequence MinDE waves

contain about ten times more MinE than MinD, in contradiction to experiments [7, 13].

We estimated the membrane residence times for MinD and MinE in the three-dimensional model
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FIG. 6. Properties of traveling waves. a) Profiles of membrane-bound MinD and MinE for the wave

traveling presented in Fig. 5 along the long leg of the L-shaped membrane. b) Spatially resolved

residence times of MinD and MinE in the membrane and corresponding ratio for the same wave.

Parameters are given in Table II.

for the parameters given in Tab. II. They are given by the inverse of the respective detachment

rates. Explicitly, we use

〈τD〉 = (ωEcE + ωedce)
−1 + (ωde,c + ωde,m)−1 (13)

〈τE〉 =
2(ωde,m + ωedcd + ωe)

ωde,cωedcd + (ωde,c + ωde,m)ωe
. (14)

Because of the non-linear reaction terms, the residence times depend on the protein densities.

In Figure 6, we present the profile of residence times along a wave traveling along the long bar

of the L-shaped membrane presented in Fig. 5. Here, we find an average ratio of the residence

times of about 7, which is closer to the experimentally reported value than for the parameters

reported in the original article, see Fig. 6. Due to limited computer power, we did not aim at

optimizing parameters further.

We would like to emphasize another point: in our meanfield description we did not include

interactions between membrane-bound molecules, which could affect their diffusion constant.

Only steric interactions are captured by the maximal protein density on the membrane. In con-

trast to the experimental findings reported in Ref. [7], the diffusion constant of membrane-bound

MinD and MinE does thus not change within the wave? . Furthermore, in our description the

residence time of MinD on the membrane decreases as the rear of the wave is approached.

This is simply due to an increase in the concentration of membrane-bound MinE towards the

rear of the wave. This is again different from the experimental findings reported in Ref. [7],

where the residence time of MinD increased towards the rear of the wave. As mentioned

in that work, this observation suggests that intermolecular interactions become more likely at
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the rear of the wave. These interactions could then stabilize the membrane-bound state of MinD.

In particular, we note that the computational data in Figure 5C cannot be reproduced. We

find a 16-fold increased MinE/MinD ratio, which represents a 23-fold deviation from the cited

experiments [1].

Unfortunately, we do not know the results of Halatek and Frey’s simulations nor the parameters

they used to comment meaningfully on the discrepancy they mention here. Concerning the prop-

agation velocity of the waves, which is the quantity discussed here, the relevant concentrations

of MinD and MinE are those at the trailing edge of the wave. In fact, their ratio determines the

rate at which MinE removes MinD from the membrane and thus the propagation velocity. The

ratios in Fig. 5C of Ref. [1] were read of the density profiles at the position, where the MinE

concentration has reached 85% of its maximum value. Furthermore, we note that only MinE was

labeled in the corresponding experiment, such that it remains obscure to us, how Halatek and

Frey obtained the ratio of membrane-bound MinE to membrane-bound MinD from the published

experimental data.

III. CONCLUSION

In summary, we maintain that the mechanism encoded in the dynamic equations given above

is able to reproduce the patterns observed on membrane patches reported in Ref. [1]. The

mechanism is also able to reproduce the in vivo patterns as we describe in Ref. [12]. It fur-

thermore predicts the existence of traveling waves in sufficiently long cells, which we found also

experimentally. This supports the important role of the persistent interaction of MinE with

the membrane as we concluded in Ref. [1]. As supported by the findings by Park et al. this

persistent interaction of MinE is most likely due to direct, though transient membrane binding

of MinE via an N-terminal amphipathic helix. A detailed analysis of the model and notably of

the relation between the effective description in two spatial dimensions and the model in three

spatial dimensions remains to be done. Furthermore, more experimental input will be needed

to constrain parameter values, notably those describing interactions between membrane-bound

proteins, such that a meaningful quantitative comparison between the model calculations and

experimental observations will be possible. In this context, one should note, in particular, that

– to our knowledge – none of the models presented prior to the one introduced in Ref. [1] had
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been reported to qualitatively reproduce all observed Min-protein patterns in vivo as well as in

reconstitution experiments, whereas the model of Ref. [1] does12. We are thus convinced that

our model is a good starting point for attempting also a quantitative description. Obviously, as

we learn more about the system, further modifications of the equations might be necessary and

parameter values will be optimized. As stated above, notably, intermolecular interactions could

account for some features of the dynamics of membrane-bound Min proteins. Independently of

possibly necessary changes of the model equations, limited computational resources and/or the

lack of sufficient experimental constraints currently prohibit the identification of a parameter set

that would reproduce at the same time, wave forms, speeds, lengths, and protein residence times.

The aim of the theoretical part of Ref. [1] was to show that the mechanism represented by

the dynamic equations given above and for which all incorporated processes have experimental

support can account for the observed guidance of Min-protein surface waves. From the analysis

presented above we conclude that these assertions remain valid.
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