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We propose a model reduction method for LPV systems. We consider LPV state-space representations with an affine

dependence on the scheduling variables. The main idea behind the proposed method is to compute the reduced order

model in such a manner that its frequency domain transfer function coincides with that of the original model for some

frequencies. The proposed method uses Loewner-like matrices, which can be calculated from the frequency domain

representation of the system. The contribution of the paper represents an extension of the well-established Loewner

framework to LPV models.

1 Introduction

Linear parameter-varying (LPV) systems are linear systems where

the coefficients are functions of a time-varying signal, the so-

called scheduling variable. Control design and system identifi-

cation of LPV systems is a popular topic [1–11]. Model reduc-

tion refers to a general class of methodologies used to reduce

the complexity of typically large-scale models, by approximat-

ing them with simpler, smaller models (and by retaining, at the

same time, the main characteristics of the original model). We

refer the reader to [12–14], and to the references therein for more

details on some of the recent methods developed. Model reduc-

tion has also been investigated for LPV systems in the last two

decades; we refer the reader to the collection [5,15–24], for more

details. However, model reduction of LPV systems preserving

some component of the frequency response has not been investi-

gated so far, to the best of our knowledge.

In this paper we propose a model reduction method which pre-

serves some component of the frequency response of an LPV

model. We will concentrate on LPV state-space representations

with an affine dependence on the scheduling parameters. This

approach is an extension of the well-known Loewner framework

for LTI systems [25] and it is closely related to the Loewner

framework for linear switched systems [26] and bilinear systems

[27]. The basic idea is to define a set of generalized transfer

functions which represent the multivariate Laplace transforms of

the input-output map of an LPV system. The definition of these

generalized transfer functions resembles that of bilinear systems

[28], and it is closely related to generalized kernel functions for

linear switched systems [26]. Similarly, the ensuing Loewner

framework formulated here for LPV systems follows closely that

for linear switched systems [26], and bears some resemblance

with that for bilinear systems [27].

The motivation for formulating a moment matching model re-

duction algorithm for LPV systems is as follows. First, it al-

lows to deal with LPV systems which are not quadratically sta-

ble. This is in contrast to model reduction methods based on bal-

anced truncation or solving LMIs [15–18, 21, 24], and its com-

putation complexity is likely to be lower than that of methods

based on solving LMIs. Second, it has a system theoretic inter-

pretation in frequency domain. Finally, in contrast to moment

matching methods based on matching sub-Markov parameters

[20], the input-output behavior of the reduced model is an ap-

proximation of the original one for scheduling signals and con-

trol inputs which are linear combinations of certain harmonics.

That is, it is possible to relate the frequency response of the orig-

inal and reduced model. In turn, for LPV control synthesis the

use of frequency domain specifications is quite natural, rendering
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the model reduction method compatible with control design.

To the best of our knowledge, the results of the paper are new.

The existing literature is mostly applicable for stable LPV sys-

tems. The method of [19] is applicable to quadratically stabi-

lizable and detectable LPV systems. In contrast, this paper does

not impose any stability restrictions on the class of LPV systems.

In [5], a modification of the realization algorithm is proposed.

However, it requires the construction of the Hankel matrix and

hence it suffers from the curse of dimensionality. In [29], reduc-

tion of the number of states and the number of scheduling pa-

rameters was investigated. However, the method of [29] requires

constructing the Hankel matrix explicitly. Hence, it displays the

same type of challenges as the method in [5].

Outline: In Section 2 we present the definition of the model

class, their input-output maps, equivalence and minimality, fol-

lowing [30]. In Section 3, the definition of generalized transfer

functions for LPV models is presented. In Section 4 contains

a brief introduction to the classical Loewner framework for LTI

systems. Section 5 contains the presentation of the main result.

In Section 6 we present a numerical example to illustrate the pro-

posed model reduction method.

2 Preliminaries

2.1 Notation and terminology

Let N be the set of all natural numbers including zero. For a

finite set X , denote by S (X) the set of finite sequences gener-

ated by elements from X , i.e., each s ∈ S (X) is of the form s =
ζ1ζ2 · · ·ζk with ζ1,ζ2, . . . ,ζk ∈ X , k ∈N; |s| denotes the length of

the sequence s. For s,r ∈S (X), sr ∈S (X) denotes the concate-

nation of s and r. The symbol ε is used for the empty sequence

and |ε| = 0 with sε = εs = s. Denote by XN the set of all func-

tions of the form f : N → X . Let I
τ2
τ1
= {s ∈ Z | τ1 ≤ s ≤ τ2} be

an index set.

Let T = R+
0 = [0,+∞) be the continuous-time time axis.

A function f : R+
0 → Rn is called piecewise-continuous, if f

has finitely many points of discontinuity on any compact subin-

terval of R+
0 and, at any point of discontinuity, the left-hand and

right-hand side limits of f exist and are finite. We denote by

Cp(R
+
0 ,R

n) the set of all piecewise-continuous functions of the

above form. We denote by Cd(R
+
0 ,R

n) the set of all differen-

tiable functions of the form f : R+
0 → Rn.

2.2 System theoretic definitions

An LPV state-space (SS) representation with affine linear depen-

dence on the scheduling variable (abbreviated as LPV-SSA) is a

state-space representation of the form

Σ

{
ẋ(t) = A(p(t))x(t)+B(p(t))u(t),
y(t) = C(p(t))x(t)+D(p(t))u(t),

(1)

where x(t) ∈ X = Rnx is the state, y(t) ∈ Y = Rny is the output,

u(t)∈U= Rnu is the input, and p(t)∈ P⊆ Rnp is the value of the

scheduling variable at time t, and A,B,C,D are matrix valued

functions on P defined as

A(p) = A0 +
np

∑
i=1

Aipi, B(p) = B0 +
np

∑
i=1

Bipi,

C(p) =C0 +
np

∑
i=1

Cipi, D(p) = D0 +
np

∑
i=1

Dipi,

(2)

for every p= [ p1 p2 · · · pnp ]⊤ ∈ P, with constant matri-

ces Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ci ∈ Rny×nx and Di ∈ Rny×nu for all

i ∈ I
np

0 . It is assumed that P contains an affine basis of Rnp (see

[31] for the definition of an affine basis). In the sequel, we use

the tuple

Σ = (P,{Ai,Bi,Ci,Di}np

i=0)

to denote an LPV-SSA of the form (1) and use dim(Σ) = nx

to denote its state dimension. Define X = Cd(R
+
0 ,X), Y =

Cp(R
+
0 ,Y), U = Cp(R

+
0 ,U), P = Cp(R

+
0 ,P). By a solution of

Σ we mean a tuple of trajectories (x,y,u, p) ∈ (X ,Y ,U ,P)
such that (1) holds for all t ∈ T. For an initial state xo ∈ X define

the input-to-state map XΣ,xo and the input-output map YΣ,xo of Σ
induced by xo as

XΣ,xo : U ×P → X , YΣ,xo : U ×P → Y , (3)

such that for any (x,y,u, p) ∈X ×Y ×U ×P , x =XΣ,xo(u, p)
and y =YΣ,xo(u, p) holds if and only if (x,y,u, p) is a solution of

(1) and x(0) = xo.

We say that Σ is span-reachable from an initial state xo ∈ X, if

Span{XΣ,xo(u, p)(t) | (u, p) ∈ U ×P, t ∈ T}=X. In this paper

we will concentrate on zero initial states, hence we will say that

Σ is span-reachable, if it is span-reachable from the zero initial

state. We say that Σ is observable, if for any two initial states

x̄o, x̂o ∈ Rnx , YΣ,x̂o = YΣ,x̄o implies x̂o = x̄o. Let Σ of the form

(1) and Σ′ = (P,{A
′
i,B

′
i,C

′
i ,D

′
i}

np

i=0) with dim(Σ) = dim(Σ′) = nx.

A nonsingular matrix T ∈ Rnx×nx is said to be an isomorphism

from Σ to Σ′, if

∀i ∈ I
np

0 : A′
iT = TAi, B′

i = T Bi, C′
iT =Ci, D′

i = Di.

We formalize the input-output behavior of LPV-SSAs as maps of

the form

F : U ×P → Y . (4)

While any input-output map of an LPV-SSA induced by some

initial state is of the above form, the converse is not true. The

LPV-SSA Σ is a realization of an input-output map F of the form

(4) from the initial state xo ∈ X, if F =YΣ,xo . In this paper we

will concentrate on LPV-SSA realizations from the zero initial

state. Accordingly, we will say Σ is realization of F, if Σ is a re-

alization of F from zero initial state. An LPV-SSA Σ is a minimal
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realization of F from the initial state xo, if Σ is a realization of

F from the initial state xo, and for every LPV-SSA Σ′ which is a

realization of F, dim(Σ)≤ dim(Σ′). Again, when the initial state

is zero, we say that Σ is a minimal realization of F, if Σ is a min-

imal realization of F from the zero initial state. It can be shown

that a LPV-SSA is a minimal realization of an input-output map,

if and only if it is span-reachable and observable, moreover, all

minimal LPV-SSA realizations of the same input-output map are

isomorphic [30]. Furthermore, span-reachability and observabil-

ity can be characterized by rank conditions of suitably defined

matrices [30].

In this paper, in order to avoid excessive notation, we will

make the following simplifying assumptions on the LPV-SSA

models considered.

Assumption 1 In the sequel we assume that there is only one

control input, i.e., nu = 1 and we consider only LPV-SSA models

of the form (1) for which the D matrix is zero, and C and B ma-

trices do not depend on the scheduling parameters, i.e., C(p) =
C0,B(p) =B0, D(p) = 0 and hence D0 = 0, Ci = 0,Bi = 0,Di = 0

for all i = 1, . . . ,np,

3 Generalized transfer functions for

LPV-SSA

Note that an input-output map F of the form (4) is realizable by

an LPV-SSA from the zero initial state satisfying Assumption 1,

only if F admits a so called impulse response representation [30],

i.e., only if

F(u, p)(t) =

∫ t

0
(hF ⋄ p)(δ , t)u(δ ) dδ , (5)

where for every p ∈ P the function (hF ⋄ p) satisfies a number

of technical conditions. These conditions imply that (hF ⋄ p) is

an input-output map induced by generating series in the sense of

[32], where the scheduling signal p plays the role of the input.

Recall from [32, Chapter 3, Section 3.2] that input-output maps

which are induced by generating series also admit a Volterra-

series representation. Moreover, if F has a realization by a LPV-

SSA, then the input-output map wp 7→ (hF⋄ p) can be realized by

a bilinear system whose matrices are matrices of the LPV-SSA

realization of F. More precisely, by [30] there exists a gener-

ating (Fliess) series θF : S(I
np

0 ) → Rny defined on the set of all

sequence of elements of I
np

0 = {0,1, . . . ,np}, such that

(h ⋄ p)(δ , t) = FθF [σδ p](t − δ ) =

θF(ε)+
∞

∑
k=1

np

∑
i1,...,ik=0

θF(i1 · · · ik)×

×
∫ t

δ

∫ τk

δ
· · ·

∫ τ2

δ
pik(τk) · · · pi1(τ1)dτk · · ·dτ1.

(6)

Here, p0 = 1, FθF denotes the input-output map induced by the

generating series θF, σδ p : s 7→ p(δ + s), and FθF [p̃] is the value

of the input-output map FθF for the input signal p̃. Here we

use the standard notation used for generating (Fliess) series, see

[32]. The second equation in (6) is just the definition of an input-

output map induced by a generating series. If Σ is of the form

(1), satisfying Assumption 1, with B(p) = B0 = B and C(p) =
C0 =C, and Σ is a realization of F, then it holds that

θF(s) =CAsB, (7)

where for s=ε , As is the identity matrix, and for s= s1s2 · · · sn,

s1, . . . ,sn ∈{0, . . .np}, n>0, then As = AsnAsn−1
· · ·As1

.

In other words, , the input-output map FθF is the input-output

map of the bilinear system

ż(t) = (A0 +
np

∑
i=1

Ai pi(t))z(t), z(0) = B,

y(t) =Cz(t),

(8)

and hence, y(t) = hF ⋄ p(δ , t) is the output of the following bi-

linear system at time t

ż(t) = (A0 +
np

∑
i=1

Ai pi(t))z(t), z(δ ) = B,

y(t) =Cz(t),

(9)

driven by the scheduling signal interpreted as input.

Recall from [32, Chapter 3, Section 3.2] that input-output maps

induced by generating series can also be represented by Volterra-

kernels. For the specific case of hF ⋄ p, this representation is

as presented here; let us define functions WF
q1,...,qk

(τk,τk, . . . ,τ0),

τk ≥ τk−1 ≥ ·· · ≥ τ0 ≥ 0, q1, . . . ,qk ∈ {1, . . . ,np} and WF
0 (τ0) as

follows

WF
q1···qk

(τk,τk, . . . ,τ0) =

∑
n0,...,nk∈N

θF(0
n0q10n1 · · ·qk0nk)

τ
n0
0

n0!
Πk

i=1

(τi − τi−1)
ni

ni!

WF
0 (τ0) = ∑

n0∈N

θi, j,F,l(0
n0)

τn0

n0!
.

(10)

Here 0k represents the k-fold repetition of the symbol 0, i.e., 00 =
ε , 0k = 00 · · ·0︸ ︷︷ ︸

ktimes

. It then follows that

(hF ⋄ p)(δ , t) =WF
0 (t − δ )+

∞

∑
k=1

np

∑
q1...qk=1

∫ t

δ

∫ τk

δ
· · ·

∫ τ1

δ
WF

q1,...,qk
(t − δ ,τk − δ , . . . ,τ1 − δ )×

pqk
(τk) · · · pq1

(τ1)dτk · · ·dτ1 =

WF
0 (t − δ )+

∞

∑
k=1

np

∑
q1...qk=1

∫ t−δ

0

∫ τk

0
· · ·

∫ τ1

0
WF

q1,...,qk
(t − δ ,τk, . . . ,τ1)×

pqk
(τk + δ ) · · · pq1

(τ1 + δ )dτk · · ·dτ1.
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In particular, if Σ is a realization of F of the form (1), with C(p)=
C and B(p) = B being constants, then

WF
0 (t) =CeA0tB,

WF
q1,...,qk

(τk,τk−1, . . . ,τ0) =

CeA0(τk−τk−1)Aqk
eA0(τk−1−τk−2)Aqk−1

· · ·eA0(τ1−τ0)Aq1
eA0τ0B

The Volterra-kernels (10) are the classical Volterra-kernels of

input-affine nonlinear systems. In particular, we can take their

multivariate Laplace transforms resulting in a sequence of trans-

fer functions H0(s)
F, HF

q1,...,qk
(s0,s1, . . . ,sk)

HF
q1···qk

(s0,s1,s2 . . . ,sk) =
∫ ∞

0
· · ·

∫ ∞

0
WF(

k

∑
j=0

τ j ,
k−1

∑
j=0

τ j, . . . , ,τ0)e
−(∑k

j=1 s jτ j)dτ0 · · ·dτk,

HF
0 (s) =

∫ ∞

0
WF

0 (τ)e−sτ dτ. (11)

Strictly speaking, the right-hand sides of in the equations (11) are

well-defined only if ℜ(si)> σ for a suitably chosen real number

σ which depends on k and q1, . . . ,qk. In particular, if A0 is stable,

then σ above can be taken to be 0. For the sake of simplicity, in

the sequel we will implicitly assume that the functions HF
0 and

HF
q1,...,qk

are evaluated only for arguments for which the right-

hand side of (11) is convergent.

In Σ is a LPV-SSA realization of F of the form (1) with C(p) =
C and B(p) = B, then

HF
q1···qk

(s0,s1,s2 . . . ,sk) =

CΦ(sk)Aqk
Φ(sk−1)Aqk−1

· · ·Aq2
Φ(s1)Aq1

Φ(s0)B,

HF
0 (s0) =CΦ(s0)B,

(12)

where Φ(s) = (sI −A0)
−1 for all s ∈ C.

Definition 1 (Generalized transfer functions) The following se-

quence of transfer functions given by

{HF
0 ,HF

q1···qk
| q1, . . . ,qk ∈ {1, . . . ,np},k > 0}, (13)

is called the sequence of generalized transfer functions of F.

4 The Loewner framework for

modeling classical LTI systems

In this section we present a brief overview of the Loewner frame-

work, originally introduced in [25], for the LTI systems with

multiple inputs and multiple outputs. For more details on var-

ious aspects of the method, we refer the reader to [33]. This

framework is a data-driven modeling approach that constructs

an LTI dynamical model with transfer function HM : C → Cp×m

which interpolates the given 2M samples (data measurements),

for M ∈ N+. Let the left (or row) data values be given together

with the right (or column) data values, as follows

(µ j, l
T
j ,v

T
j )

for j = 1, . . . ,M

}
and

{
(λi,ri,wi)

for i = 1, . . . ,M
, (14)

where vT
j = lT

j H(µ j) and wi = H(λi)ri, with l j ∈ Cp×1, ri ∈
Cm×1, v j ∈ Cm×1 and wi ∈ Cp×1. Then, split the distinct interpo-

lation points {ηk}2M
k=1 ⊂ C is split up into two disjoint subsets of

same size, i.e.

{ηk}2M
k=1 = {µ j}M

j=1 ∪{λi}M
i=1. (15)

The first step is to compute two matrices, i.e., the Loewner matrix

L ∈ CM×M and shifted Loewner matrix Ls ∈ CM×M defined for

i = 1, . . . ,M and j = 1, . . . ,M, as:

[L] j,i =
vT

j ri − lT
j wi

µ j −λi

=
lT

j

(
H(µ j)−H(λi)

)
ri

µ j −λi

,

[Ls] j,i =
µ jv

T
j ri −λil

T
j wi

µ j −λi

=
lT

j

(
µ jH(µ j)−λiH(λi)

)
ri

µ j −λi

.

(16)

Additionally, we introduce the following matrices

V =
[
v1 · · · vM

]T
, W =

[
w1 · · · wM

]
, (17)

with the following notation that holds for all j, i = 1, . . . ,M

vT
j = lT

j H(µ j), and wi = H(λi)ri. (18)

Then, the Loewner LTI model ΣM is characterized by the follow-

ing realization,

ΣM :

{
EM ẋ(t) = AMx(t)+BMu(t),

y(t) =CMx(t),
(19)

where EM =−L, AM =−Ls, BM = V and CM = W. The transfer

function of ΣM is given by

HM(s) =CM(sEM −AM)−1BM. (20)

Theorem 1 Given the framework previously introduced, the func-

tion HM interpolates H at the given driving frequencies and di-

rections, i.e., for all 1 ≤ i ≤ M, it holds that

lH
j HM(µ j) = lH

j H(µ j),

HM(λi)ri = H(λi)ri.
(21)

Next, we assume that the number of available measurements

is larger than the underlying system’s order denoted with n, i.e.,

2M ≥ n. In this case, it was shown in [25] that a minimal model

Hn of dimension n < M (that still interpolates the data) can be
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computed by means of projecting (19). In order for this to be

possible, the conditions below

rank(ηkL−Ls) = rank([L,Ls]) = rank([LT ,Ls
T ]T ) = n, (22)

need to hold for k = 1, . . . ,2M, where ηk are as in (15). In that

case, let Y ∈ CM×n be the matrix containing the first n left sin-

gular vectors of [L,Ls] and X ∈ CM×n the matrix containing the

first n right singular vectors of [LT ,Ls
T ]T . Then, construct a re-

alization by means of projection as

En = Y T EMX , An = Y T AMX ,

Bn = Y T BM,Cn =CMX ,
(23)

which is equivalent to that in (19). The realization in (23) en-

codes a minimal McMillan degree equal to rank(L).
Finally, the number of singular vectors (n) that enter matrices

Y and X in (23) could be indeed decreased to a value r < n. This

would result in computing a reduced r-th order rational model

that approximately interpolates the data. This allows a trade-

off between complexity of the resulting model and accuracy of

interpolation (as explained in [25]).

5 The proposed procedure

In what follows we describe the proposed procedure to construct

a reduced order LPV-SSA Σ̃ = (P,
{

Ãi, B̃i,C̃i, D̃i

}np

i=0
) from an

LPV-SSA of the form (1) satisfying Assumption 1.

To this end, let N ∈ N be a positive integer and introduce the

following sequences of scalars:

1. (µ0,µ1, . . . ,µN) is the tuple of left interpolation points in

the frequency domain, with µi ∈ C.

2. (λ0,λ1, . . . ,λN) is the tuple of right interpolation points in

the frequency domain with λ j ∈ C.

3. (q
(l)
1 q

(l)
2 . . .q

(l)
N ) is the word of left expansion points in the

parameter domain with q
(l)
i ∈ N.

4. (q
(r)
1 q

(r)
2 . . .q

(r)
N ) is the word of right expansion points in

the parameter domain with q
(r)
j ∈ N.

The associated generalized observability matrix O ∈C(N+1)×nx

of the LPV-SSA (1) is put together as follows

O =




CΦ(µ0)
CΦ(µ0)A

q
(l)
1

Φ(µ1)

CΦ(µ0)A
q
(l)
1

Φ(µ1)A
q
(l)
2

Φ(µ2)

...

CΦ(µ0)A
q
(l)
1

Φ(µ1)A
q
(l)
2

Φ(µ2) · · ·A
q
(l)
N

Φ(µN)




. (24)

Recall that C = C0, as by Assumption 1 C does not depend on

the scheduling variable. Additionally, the associated generalized

controllability matrix R ∈ Cnx×(N+1) of (1) is also put together;

below, we explicitly provide the entries of the jth column of ma-

trix R, denote with R j, as

R1 =
[

Φ(λ0)B
]
, R2 =

[
Φ(λ1)A

q
(r)
1

Φ(λ0)B
]

R3 =
[

Φ(λ2)A
q
(r)
2

Φ(λ1)A
q
(r)
1

Φ(λ0)B
]

(25)

RN =
[

Φ(λN)A
q
(r)
N

Φ(λN−1)A
q
(r)
N−1

Φ(λN−2) · · ·A
q
(r)
1

Φ(λ0)B
]
.

Recall that B=N0, as by Assumption 1 C does not depend on the

scheduling variable. Then, put together a reduced-order model

Σ̃ for the system in (1), which is constructed from the original

quantities. Define matrices for 1 ≤ i ≤ np

Ê = OR, Â0 = OA0R, Âi = OAiR, B̂ = OB, Ĉ =CR.

(26)

Provided that Ê is nonsingular, one can write for all 1≤ i≤ np:

Ẽ = I, Ã0 = Ê−1Â0, Ãi = Ê−1Âi, B̃ = Ê−1B̂, C̃ = Ĉ. (27)

We then define the reduced order model Σ̃ as

Σ̃ = (P,
{

Ãi, B̃i,C̃i, D̃i

}np

i=0
), (28)

where D̃i = 0, i = 0, . . . ,np and C̃i = 0, B̃i = 0 for i = 1, . . . ,np

and B̃0 = B̃,C̃ = C̃0 and {Ãi}np

i=1, C̃, B̃ are as in (27).

5.1 Data-driven interpretation

We will show in this section that the matrices computed in (26)

can indeed be expressed in terms of samples of the transfer func-

tions introduced in (11).

For example, one can directly write the entries of vectors B̂ =
OB and Ĉ =CR in (26) as

B̂ =




HF
0 (µ0)

HF

q
(l)
1

(µ1,µ0)

HF

q
(l)
2 ,q

(l)
1

(µ2,µ1,µ0)

...



, Ĉ =




HF
0 (λ0)

HF

q
(r)
1

(λ0,λ1)

HF

q
(r)
1 ,q

(r)
2

(λ0,λ1,λ2)

...




T

(29)

Additionally, the matrices Ai for 1 ≤ i ≤ np are written element-

wise, as follows:

(
Âi

)
k+1,ℓ+1

= Ok+1AiRℓ+1 (30)

= HF

q
(r)
1 ,...,q

(r)
ℓ

,i,q
(l)
k
,...,q

(l)
1

(λ0, . . . ,λℓ,µk, . . . ,µ0)

Preprint. 2021-04-23



I. V. Gosea, M. Petreczky, A.C. Antoulas: Data-driven MOR of LPV systems 6

Next, proceed to explicitly writing the (k+1, ℓ+1) entry of ma-

trix Ê for k, ℓ≥ 0. We make use of the recursion formulas on the

rows and columns of matrices O , and respectively, R as (to have

consistent notations, we enforce O0 = R0 = 1):

Ok+1 = OkA
q
(l)
k

Φ(µk), Rℓ+1 = Φ(λℓ)A
q
(l)
ℓ

Rℓ. (31)

Hence, based on the two identities presented above, we write

the (k+ 1, ℓ+ 1) entry of matrix Ê , for all 0 ≤ k, ℓ ≤ N, in the

following way:

(
Ê
)

k+1,ℓ+1
= Ok+1IRℓ+1 = OkA

q
(l)
k

Φ(µk)IΦ(λℓ)A
q
(r)
ℓ

Rℓ. (32)

Next, we make use of the identity: I = Φ−1(µk)−Φ−1(λℓ)
µk−λℓ

and by

substituting it in the equality above, it follows that:

(
Ê
)

k+1,ℓ+1
= Ok+1IRℓ+1

= OkA
q
(l)
k

Φ(µk)
Φ−1(µk)−Φ−1(λℓ)

µk −λℓ

Φ(λℓ)A
q
(r)
ℓ

Rℓ

=−αk,ℓ−βk,ℓ

µk −λℓ

, (33)

where ∀0 ≤ k, ℓ≤ N, and the following notations are used:

αk,ℓ = OkA
q
(l)
k

Φ(µk)A
q
(r)
ℓ

Rℓ

= HF

q
(r)
1 ,...,q

(r)
ℓ

,q
(l)
k
,...,q

(l)
1

(λ0, . . . ,λℓ−1,µk, . . . ,µ0),

βk,ℓ = OkA
q
(l)
k

Φ(λℓ)A
q
(r)
ℓ

Rℓ

= HF

q
(r)
1 ,...,q

(r)
ℓ

,q
(l)
k
,...,q

(l)
1

(λ0, . . . ,λℓ,µk−1, . . . ,µ0).

(34)

Hence, we have shown that the entries of matrix Ê are divided

differences composed of measurements corresponding to trans-

fer functions in (11). We proceed similarly for the entries of

matrix Â0. By using identity A0 =
µkΦ−1(µk)−λℓΦ

−1(λℓ)
µk−λℓ

, it follows

(
Â0

)
k,ℓ

= OkA0Rℓ =−µkαk,ℓ−λℓβk,ℓ

µk −λℓ

, (35)

where αk and βℓ are as defined in (34), i.e., as samples of trans-

fer functions introduced in (11). So, we have shown that all ma-

trices forming the data-driven surrogate realization in (26) are

composed of transfer function measurements.

Remark 1 The matrix Ê ∈ C(N+1)×(N+1) defined element-wise

as in (33) is a Loewner matrix, while the matrix Â0 ∈C(N+1)×(N+1)

in (35) is a ”shifted Loewner matrix”, by following the terminol-

ogy introduced in [25].

5.2 Interpolation property

In this section we will show that the reduced model satisfies in-

terpolation conditions.

For the reduced-order LPV-SSA Σ̃ given in (28), let F̃ be the

input-output map of Σ̃. It then follows that

HF̃
q1···qk

(s1,s2 . . . ,sk) =

C̃Φ̃(sk)Ãqk
Φ̃(sk−1)Aqk−1

· · · Ãq2
Φ̃(s1)Aq1

Φ̃(s0)B,

HF̃
0 (s0) = C̃Φ̃(s0)B̃,

(36)

where Φ̃(s) = (sI − Ã0)
−1 for all s ∈ C.

Given unit vectors ek+1,e1 ∈ RN+1, one can write that:

eT
k+1ÊΦ̃−1(λ0)e1 = eT

k+1Ê(λ0I− Ã0)e1

= eT
k+1(λ0Ê − Â0)e1

= λ0eT
k+1Êe1 − eT

k+1Â0e1

=−λ0

αk,0 −βk,0

µk −λ0

+
µkαk,0 −λ0βk,0

µk −λ0

= αk,0 = eT
k+1B̂ = eT

k+1ÊB̃

(37)

Hence, we have shown that eT
k+1ÊΦ̃−1(λ0)e1 = eT

k+1ÊB̃, ∀0 ≤
k ≤ N which implies that Φ̃−1(λ0)e1 = B̃. By multiplying this

identity to the left with C̃Φ̃(λ0), we can write that:

C̃Φ̃(λ0)Φ̃
−1(λ0)e1 = C̃Φ̃(λ0)B̃ ⇒ C̃e1 = C̃Φ̃(λ0)B̃

⇒ HF̃
0 (λ0) = HF

0 (λ0).
(38)

Here we used that C̃ = Ĉ =CR and hence it follows that C̃e1 =
CRe1 = CΦ(λ0)B = HF

0 (λ0), where Φ(s) = (sI − A0)
−1. By

repeating the above procedure, we can show that the interpola-

tion condition ĤF
0 (λ0) = HF

0 (λ0) also holds. In general, we can

show that all measurements that appear as entries in the matri-

ces of the reduced-order realization (28), are actually matched

by (36). More precisely, we formulate the following result that

explicitly states the interpolation conditions satisfied by the sur-

rogate model.

Theorem 2 Given the framework previously introduced, the fol-

lowing (N +1)2 +np(N +1)2 interpolation conditions are satis-
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fied by the transfer functions in (36):

HF̃

q
(r)
1 ,...,q

(r)
ℓ

,q
(l)
k
,...,q

(l)
1

(λ0, . . . ,λℓ,µk−1, . . . ,µ0)

= HF

q
(r)
1 ,...,q

(r)
ℓ

,q
(l)
k
,...,q

(l)
1

(λ0, . . . ,λℓ,µk−1, . . . ,µ0),

HF̃

q
(r)
1 ,...,q

(r)
ℓ

,q
(l)
k
,...,q

(l)
1

(λ0, . . . ,λℓ−1,µk, . . . ,µ0)

= HF

q
(r)
1 ,...,q

(r)
ℓ

,q
(l)
k
,...,q

(l)
1

(λ0, . . . ,λℓ−1,µk, . . . ,µ0),

HF̃

q
(r)
1 ,...,q

(r)
ℓ

,i,q
(l)
k
,...,q

(l)
1

(λ0, . . . ,λℓ,µk, . . . ,µ0)

= HF

q
(r)
1 ,...,q

(r)
ℓ

,i,q
(l)
k
,...,q

(l)
1

(λ0, . . . ,λℓ,µk, . . . ,µ0),

(39)

for all 0 ≤ k, ℓ ≤ N and 1 ≤ i ≤ np.

Example 1 Below, we illustrate the proposed extension of the

Loewner framework through one simple example (np = 1 and

N = 2). The associated generalized observability and controlla-

bility matrices are put together as follows

O =

[
CΦ(µ0)

CΦ(µ0)A1Φ(µ1)

]
,

R =
[

Φ(λ0)B Φ(λ1)A1Φ(λ0)B
]
.

(40)

The next step is to show that we can interpret matrices:

Ê = OR, Â0 = OA0R, Â1 = OA1R, B̂ = OB, Ĉ =CR,

in terms of data, i.e., measurements of transfer functions. To do
so, we repeat the general procedure presented in Section 5.1 for
this simplified scenario, and hence write that

Ê =−




H
F
0 (µ0)−H

F
0 (λ0)

µ0−λ0

HF
1 (λ0,µ0)−HF

1 (λ0,λ1)
µ0−λ1

HF
1 (µ1 ,µ0)−HF

1 (λ0,µ0)
µ1−λ0

HF
1,1(λ0,µ1 ,µ0)−HF

1,1(λ0,λ1,µ0)

µ1−λ1


 ,

Â0 =−




µ0HF
0 (µ0)−λ0HF

0 (λ0)
µ0−λ0

µ0HF
1 (λ0,µ0)−λ1HF

1 (λ0,λ1)
µ0−λ1

µ1HF
1 (µ1,µ0)−λ0HF

1 (λ0,µ0)
µ1−λ0

µ1HF
1,1(λ0,µ1 ,µ0)−λ1HF

1,1(λ0,λ1,µ0)

µ1−λ1


 ,

Â1 =

[
HF

1 (λ0,µ0) HF
1,1(λ0,λ1,µ0)

HF
1,1(λ0,µ1,µ0) HF

1,1,1(λ0,λ1,µ1,µ0)

]
,

B̂ =

[
HF

0 (µ0)

HF
1 (µ1,µ0)

]
, Ĉ =

[
HF

0 (λ0) HF
1 (λ0,λ1)

]
.

(41)

So, in this simple case in which N = np = 1, it follows that (N +
1)2+np(N+1)2 = 8 interpolation conditions are satisfied by the

reduced model Σ̃ calculated according to (28) and (27). Below,

we enumerate the transfer function values that are matched:

HF
0 (µ0), HF

0 (λ0), HF
1 (µ1,µ0), HF

1 (λ0,µ0), HF
1 (λ0,λ1),

HF
1,1(λ0,µ1,µ0), HF

1,1(λ0,λ1,µ0), HF
1,1,1(λ0,λ1,µ1,µ0).

6 Numerical example

In this section we revisit the example presented in [30] (Section

III, Example 1). Based on Assumption (1) that was imposed

in Section 2 of the current paper, the B and C matrices will be

considered to be constant. Additionally, we shift the original

matrix A0 from [30] so that all its poles are located into the left-

half (complex) plane. Finally, choose np = 2 (originally, np = 1

was enforced) and assume zero initial conditions. The system

matrices of the modified system are given as follows:

A0 =




−1 1 −1

−1 −2 1

−1 1 −3



 , A1 =




1 −1 −1

−1 2 0

−1 0 2



 , B0 =




1

0

0



 ,

A2 =




0 −1 1

0 1 2

2 1 0



 , C0 =
[
1 −1 −1

]
, D = 0. (42)

The control input is chosen as u(t) = 0.1cos(20t) · e−0.1t, while

the scheduling signals are purely oscillatory, with different main

frequencies, i.e., p1(t) = 2.5sin(5πt) and p2(t) = 1.25sin(7πt).
We apply the newly-proposed method for N = 2 and the follow-

ing choice of left and right interpolation points (located on the

imaginary axis; here ı =
√
−1).

{
µ0 = 2ı, µ1 = 4ı, µ2 = 6ı,

λ0 = 3ı, λ1 = 5ı, λ3 = 8ı.
(43)

It is to be noted that we construct three reduced-order models of

dimension r for all values 1 ≤ r ≤ 3, by following the procedure

outlined in Section 5. The accuracy of these interpolation-based

surrogate models is tested by means of time-domain simulations.

We simulate the original system together with the three reduced

ones on a time range of [0,10]s (by applying a classical first-order

Euler scheme on 5 · 104 points). The observed outputs of the

original system, together with the outputs of the three reduced

models are depicted in Fig. 1.

0 2 4 6 8 10
-0.01

-0.005

0

0.005

0.01
Original
Reduced: r=1
Reduced: r=2
Reduced: r=3

Figure 1: The observed outputs (original and reduced).

Additionally, we compute the magnitude of the relative ap-

proximation error for each reduced dimension r ∈ {1,2,3} and

Preprint. 2021-04-23



I. V. Gosea, M. Petreczky, A.C. Antoulas: Data-driven MOR of LPV systems 8

depict the curves in Fig. 2. Clearly, the order r = 3 system

computed by means of the new method perfectly matches the

response of the original system (the approximation errors are in

the range of machine precision). The other two reduced systems,

of course enforce higher errors; in particular, the output of the

one of order r = 2 follows quite accurately the original response

(as illustrated in Fig. 1).

0 2 4 6 8 10
10-20

10-15

10-10

10-5

100

Reduced: r=1
Reduced: r=2
Reduced: r=3

Figure 2: The relative approximation errors.

7 Conclusion

We have proposed an extension of the Loewner framework to

LPV systems with an affine dependence on parameters. The pro-

posed framework yields a model reduction procedure which is

based on matching the frequency response of the original system

at some particular frequencies. In order to avoid complex no-

tations, we have restricted the attention to the single input case

and to models for which the B and C matrices do not depend on

the scheduling parameters. Moreover, we analyzed a particular

choice of frequencies to be matched. Future research will be di-

rected towards extending these results to general LPV systems

with affine dependence on parameters. Other research direc-

tions include finding system theoretic interpretations for the pro-

posed method, i.e., showing that for certain inputs and schedul-

ing signals the time-domain responses of the original and re-

duced model coincide, possibly after filtering. Finally, we plan

to test the proposed method for more complex models.
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