Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases

MPG-Autoren
/persons/resource/persons254714

Shima,  Seigo
Department-Independent Research Group Microbial Protein Structure, Max Planck Institute for Terrestrial Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ilina, Y., Lorent, C., Katz, S., Jeoung, J.-H., Shima, S., Horch, M., et al. (2019). X-ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 58(51), 18710-18714. doi:10.1002/anie.201908258.


Zitierlink: https://hdl.handle.net/21.11116/0000-0008-F2E6-3
Zusammenfassung
[NiFe] hydrogenases are complex model enzymes for the reversible cleavage of dihydrogen (H-2). However, structural determinants of efficient H-2 binding to their [NiFe] active site are not properly understood. Here, we present crystallographic and vibrational-spectroscopic insights into the unexplored structure of the H-2-binding [NiFe] intermediate. Using an F-420-reducing [NiFe]-hydrogenase from Methanosarcina barkeri as a model enzyme, we show that the protein backbone provides a strained chelating scaffold that tunes the [NiFe] active site for efficient H-2 binding and conversion. The protein matrix also directs H-2 diffusion to the [NiFe] site via two gas channels and allows the distribution of electrons between functional protomers through a subunit-bridging FeS cluster. Our findings emphasize the relevance of an atypical Ni coordination, thereby providing a blueprint for the design of bio-inspired H-2-conversion catalysts.