Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Low-Expressing synucleinopathy mouse models based on oligomer-forming mutations and C-terminal truncation of α-synuclein

MPG-Autoren
/persons/resource/persons15217

Martinez Hernandez,  A.
Department of Genes and Behavior, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons256267

Silbern,  I.
Research Group of Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons191954

Geffers,  I.
Department of Genes and Behavior, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons14824

Becker,  S.
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15947

Urlaub,  H.
Research Group of Bioanalytical Mass Spectrometry, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons16093

Zweckstetter,  M.
Research Group of Protein Structure Determination using NMR, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15147

Griesinger,  C.       
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15030

Eichele,  G.
Department of Genes and Behavior, MPI for biophysical chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

3353219.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Martinez Hernandez, A., Silbern, I., Geffers, I., Tatenhorst, L., Becker, S., Urlaub, H., et al. (2021). Low-Expressing synucleinopathy mouse models based on oligomer-forming mutations and C-terminal truncation of α-synuclein. Frontiers in Neuroscience, 15: 643391. doi:10.3389/fnins.2021.643391.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-8730-8
Zusammenfassung
α-synuclein (αSyn) is the main protein component of Lewy bodies, intracellular inclusions found in the brain of Parkinson’s disease (PD) patients. Neurotoxic αSyn species are broadly modified post-translationally and, in patients with genetic forms of PD, carry genetically encoded amino acid substitutions. Mutations and C-terminal truncation can increase αSyn oligomerization and fibrillization. Although several genetic mouse models based on αSyn mutations and/or truncations exist, there is still a lack of mouse models for synucleinopathies not relying on overexpression. We report here two synucleinopathy mouse models, which are based on a triple alanine to proline mutation and a C-terminal truncation of αSyn, but do not overexpress the mutant protein when compared to the endogenous mouse protein. We knocked hαSynTP or hαSynΔ119 (h stands for “human”) into the murine αSyn locus. hαSynTP is a structure-based mutant with triple alanine to proline substitutions that favors oligomers, is neurotoxic and evokes PD-like symptoms in Drosophila melanogaster. hαSynΔ119 lacks 21 amino acids at the C-terminus, favors fibrillary aggregates and occurs in PD. Knocking-in of hαSynTP or hαSynΔ119 into the murine αSyn locus places the mutant protein under the control of the endogenous regulatory elements while simultaneously disrupting the mαSyn gene. Mass spectrometry revealed that hαSynTP and hαSynΔ119 mice produced 12 and 10 times less mutant protein, compared to mαSyn in wild type mice. We show phenotypes in 1 and 1.5 years old hαSynTP and hαSynΔ119 mice, despite the lower levels of hαSynTP and hαSynΔ119 expression. Direct comparison of the two mouse models revealed many commonalities but also aspects unique to each model. Commonalities included strong immunoactive state, impaired olfaction and motor coordination deficits. Neither model showed DAergic neuronal loss. Impaired climbing abilities at 1 year of age and a deviant gait pattern at 1.5 years old were specific for hαSynΔ119 mice, while a compulsive behavior was exclusively detected in hαSynTP mice starting at 1 year of age. We conclude that even at very moderate levels of expression the two αSyn variants evoke measurable and progressive deficiencies in mutant mice. The two transgenic mouse models can thus be suitable to study αSyn-variant-based pathology in vivo and test new therapeutic approaches.