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Abstract
The core of the Model Predictive Control (MPC) method in every step of the algorithm
consists in solving a time-dependent optimization problem on the prediction horizon of the
MPCalgorithm, and then to apply a portion of the optimal control over the application horizon
to obtain the new state. To solve this problem efficiently, we propose a time-adaptive residual
based a-posteriori error control concept based on the optimality system of this optimal control
problem. This approach not only delivers an adaptive time discretization of the prediction
horizon, but also suggests an adaptive time discretization of the application horizon, whose
length could be either adaptive or fixed.We apply this concept for systems governed by linear
parabolic PDEs and present several numerical examples which demonstrate the performance
and the robustness of our adaptive MPC control concept.

Keywords Optimization with PDE constraints · Model predictive control · Time adaptivity

Mathematics Subject Classification 49M41 · 65M50 · 93B45

1 Introduction

In this article we consider Model Predictive Control (MPC) for systems governed by linear
parabolic PDEs. This approach is also known as moving horizon control or receding horizon
control, where we refer to the (seminal) monographs [9,18] for a comprehensive presentation
of this method. The core of the method for every MPC step at time ti consists in solving
a parabolic PDE constrained optimization problem on the prediction horizon [ti , ti + T̄ ],
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where T̄ > 0. To solve this problem efficiently we propose a time-adaptive residual based
a-posteriori error control concept for the elliptic space-time reformulation of the optimality
system of the PDE constrained optimization problem. The contribution of our paper and the
novelty of our approach is two-fold;

– it delivers an adaptive time discretization of the prediction horizon [ti , ti + T̄ ] using
residual based a-posteriori error control concepts, and

– suggests two possible strategies related to the choice τi ≤ T̄ of the application horizon
[ti , ti + τi ] ⊆ [ti , ti + T̄ ] for the current MPC step. The application horizon τi might
be constant or chosen adaptively. For both cases the interval [ti , ti + τi ] is discretized
adaptively using the a-posteriori error control.

Our time-adaptive MPC algorithm works as follows, where the details of its formulation are
given in Sect. 2.

Algorithm 1Model predictive control (MPC) with adaptive time grids

Require: Prediction horizon length T̄ , number N of time instances in each prediction horizon, initial condition
y◦, desired state yd , source f , space domainΩ , constants ν, μ, α, andflag for the choice of the application
horizon. Number P of time points forming the adaptive application horizon (if flag= 1) or length τ̄ of
a fixed application horizon (if flag= 2).

1: Set t0 = 0, y0 = y◦.
2: for i = 0, 1, 2, . . . do
3: Compute an adaptive grid {t ji }Nj=1 in [ti , t̄i := ti + T̄ ] using (29) solving the elliptic problem (26) using

a coarse spatial grid, where t1i := ti and t Ni := t̄i .
4: Compute the optimal control over [ti , t̄i ] solving the open-loop problem

uN := arg min
u∈L2((ti ,t̄i );Ω)

Ĵ N (u, ti , yi ) (1)

on the time grid from step 3 using a fine spatial resolution.
5: if flag= 1 then
6: Define the length of the application horizon τi := t Pi − t1i .
7: else if flag= 2 then
8: Define the length of the application horizon τi := τ̄ .
9: end if
10: Define the MPC feedback value φN (y[uN ,ti ,yi ](t)) = uN (t) for t ∈ (ti , ti + τi ] using the adaptive

time grid from step 3, i.e. on {t ji : ti < t ji ≤ ti + τi } ∪ {ti + τi }.
11: Compute the associated state yN (t) = y[φN ,ti ,yi ](t) by solving (25) on (ti , ti + τi ] using the adaptive

time grid from step 3, i.e. on {t ji : ti < t ji ≤ ti + τi } ∪ {ti + τi }.
12: Set ti+1 := ti + τi , yi+1 := yN (ti+1), i ← i + 1.
13: end for

Our adaptive concept is implemented with the first statement of theFor-loop in Algorithm
1 and works as follows: in a first step, we rewrite the optimality conditions of the MPC
optimization problem (1) as a second order in time and fourth order in space elliptic equation
for the state variable, to which we then apply classical concepts from residual based a-
posteriori error control for the time variable. This allows to construct a time grid for the state
which is related to the optimal state solution. The time grid will be also used to discretize
the application horizon [ti , ti + τi ] in the current MPC step. The choice of τi might be done
according to steps 5-9 in Algorithm 1. The idea is based on [8], and now is transferred
for a mixed formulation, where the a-posteriori error estimate is obtained from a semi-time
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discrete mixed form. For the fast computation of the adaptive time grid we use a coarse
spatial discretization, where we assume that the structure of the temporal grid is not sensitive
against changes in the spatial resolution. This is verified heuristically by numerical examples
in e.g. [2,3]. In a second step the resulting time grid is used for the numerical solution
of the MPC optimization problem (1). Once the adaptive grid is obtained, we address the
optimization problem by solving the coupled optimality system directly using a monolithic
approach (see e.g. [20, Section 3.7]). Finally, the state is updated on the application horizon
[ti , ti + τi ] through the solution of the parabolic equation (25) with the optimal control
uN (more precisely the feedback value φN ).

Let us briefly comment on related literature. Since there is a vast amount of books and
papers onMPCwe here concentrate on contributions related to adaptivity inMPC. In [11,14]
the authors took advantage of the structure of the problem using Lyapunov functions and/or
the turnpike property to construct adaptive grids for the MPC optimal control problem. The
turnpike property (see e.g. [21]) is often a key tool to prove asymptotic stability of the MPC
method and tofind theminimal predictionhorizon (see e.g. [5,10,13,15]).Our ideas are related
to [12], where a goal-oriented adaptive approach for the MPC optimal control problem is
proposed. This paper appeared while we were editing the first version of our manuscript.
However, the a-posteriori concepts proposed there differ from our approach which relies
on residual based a-posteriori error analysis for the elliptic space-time reformulation of the
optimality systems appearing in every step of the MPC algorithm. Our method uses an error
indicator with regard to the optimal state within each MPC subproblem.

The outline of this paper is as follows. In Sect. 2, we present the optimal control problem
within the MPC framework and recall the basic idea of the MPC method. Further, we state
the optimality conditions for the MPC subproblem. In Sect. 3 we describe the reformulation
of the optimality system to a second order in time and fourth order in space elliptic equation
as well as a mixed variational form. Additionally, we derive an a-posteriori error estimate for
a semi-time discrete form. In Sect. 4, we propose the novel time-adaptive scheme in MPC.
Finally, numerical tests are discussed in Sect. 5 and conclusions are made in Sect. 6.

2 Optimal Control Setting within theMPC Framework

2.1 Preliminaries

Let Ω ⊂ R
n, n ∈ {1, 2, 3} be an open and bounded domain with Lipschitz boundary ∂Ω.

The Lebesgue space of square integrable functions is denoted by L2(Ω) with inner product
(u, v)L2(Ω) := ∫

Ω
uvdx and norm ‖u‖L2(Ω) := (

∫
Ω

|u(x)|2dx)1/2 for u, v ∈ L2(Ω).
Further, let Hk(Ω) be defined by

Hk(Ω) := {u ∈ L2(Ω) : u has weak derivatives Dβu ∈ L2(Ω) for all |β| ≤ k}
with k ∈ N0 and equipped with the norm ‖u‖Hk (Ω) := (

∑
|β|≤k ‖Dβu‖2

L2(Ω)
)1/2 and

Hk
0 (Ω) := {u ∈ Hk(Ω) : Dβu = 0 on ∂Ω in the sense of traces (|β| ≤ k − 1)}.

We use the notation H−1(Ω) for the dual space of H1
0 (Ω) and denote 〈·, ·〉H−1(Ω),H1

0 (Ω) as

the duality pairing of H−1(Ω) with H1
0 (Ω). By | · |H1(Ω) we denote the H

1-seminorm given
by |u|H1(Ω) = ‖∇u‖L2(Ω) for u ∈ H1

0 (Ω). We recall that the Poincaré constant is given by
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the smallest number cp > 0 such that the Poincaré inequality

‖u‖L2(Ω) ≤ cp‖∇u‖L2(Ω), ∀u ∈ H1
0 (Ω)

is fulfilled. Thus, |.|H1(Ω) is a norm on H1
0 (Ω) equivalent to the norm ‖.‖H1(Ω). For a given

Banach space X and a given time T > 0, we denote by L2((0, T ); X) the space ofmeasurable
square integrable abstract functions with norm ‖u‖L2((0,T );X) := (

∫ T
0 ‖u(t)‖2Xdt)1/2. We

define

W ((0, T ); H1
0 (Ω)) := {v ∈ L2((0, T ); H1

0 (Ω)), vt ∈ L2((0, T ); H−1(Ω))}.
Note that for a given function g in space-time, we use the short hand notation g(t) to indicate
the time dependency and drop the space argument.

2.2 Model Predictive Control

In this section we specify our MPC setting of Algorithm 1. At time t0 we initialize our MPC
algorithm and for convenience use a fixed length T̄ > 0 for the prediction horizon. At time
instance ti ≥ t0 (i ∈ N) this horizon is denoted by [ti , t̄i ] with t̄i := ti + T̄ . We denote
with τi the length of the application horizon at time instance ti , so that [ti , ti + τi ] ⊆ [ti , t̄i ].
The adaptive time grid at time instance ti is denoted by {t ji }Nj=1, where we set t

1
i := ti and

t Ni := t̄i . From here onwards we use t Ni instead of t̄i to denote the final time in the prediction
horizon. We note that the value of τi might be either constant or adaptive at each iteration
due to our time-adaptive concept (see steps 5-9 in Algorithm 1).

The reduced cost functional over the domain [ti , t Ni ] × Ω , which is considered at the i-th
time instance of the MPC algorithm for i = 0, 1, 2 . . . , is given by

Ĵ N (u, ti , yi ) :=
∫ t Ni

ti
	(y[u,ti ,yi ](t), u(t)) dt, (2)

where the function 	 in our applications is given by

	(y(t), u(t)) := 1

2
‖y(t) − yd(t)‖2L2(Ω)

+ α

2
‖u(t)‖2L2(Ω)

. (3)

Here yd ∈ L2((ti , t Ni );Ω) denotes the desired state and α > 0 the prescribed regularization
parameter. To anticipate discussions we note that also other cost functionals could be con-
sidered. The governing dynamics for the state y ≡ y[u,ti ,yi ] is given by the linear parabolic
partial differential equation

⎧
⎨

⎩

yt − νΔy = f + u in (ti , t Ni ] × Ω,

y = 0 on (ti , t Ni ] × ∂Ω,

y(ti ) = yi in Ω,

(4)

where ν > 0 is a given constant, f is a given source term and yi is the given initial state
which is obtained from the preceding MPC step. The function u will act as the control. The
weak form of (4) reads: for given f ∈ L2((ti , t Ni );Ω), yi ∈ L2(Ω) and u ∈ L2((ti , t Ni );Ω),
find a state y ∈ W ((ti , t Ni ); H1

0 (Ω)) satisfying y(ti ) = yi such that

〈yt (t), v〉H−1(Ω),H1
0 (Ω) + ν

∫

Ω

∇ y(t) · ∇vdx =
∫

Ω

( f (t) + u(t))vdx (5)
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holds for all v ∈ H1
0 (Ω) and almost everywhere in (ti , t Ni ]. It is clear that (5) admits a unique

weak solution, see e.g. [7, §7.1.2, Theorems 3 and 4]. It therefore is meaningful to consider
the state y as a function of the control u, so that the cost functional in (2) in fact only depends
on the control as independent variable.

Then, the open-loop control problem in the i−th optimization instance of theMPCmethod
is given by

min
u∈L2((ti ,t Ni );Ω)

Ĵ N (u, ti , yi ). (6)

It forms the core of every MPC step. In the next section we develop a time-adaptive concept
for its numerical approximation.

2.3 Optimal Control Problem

In this section, we investigate the distributed optimal control problem which we consider
in each level of the MPC framework. To ease the notation here we will consider a general
finite horizon [0, T ] instead of [ti , t Ni ]. It is clear that in the setting of the previous section
the optimal control problem (6) admits a unique solution u ∈ L2((0, T ); L2(Ω)). Moreover,
there exists a unique adjoint state p ∈ W ((0, T ); H1

0 (Ω)), which together with u and the
state y ∈ W ((0, T ); H1

0 (Ω)) satisfies the optimality system consisting of the state equation
⎧
⎨

⎩

yt − νΔy = f + u in (0, T ] × Ω,

y = 0 on [0, T ] × ∂Ω,

y(0) = y0 in Ω,

(7)

the adjoint equation
⎧
⎨

⎩

−pt − νΔp = y − yd in [0, T ) × Ω,

p = 0 on [0, T ] × ∂Ω,

p(T ) = 0 in Ω,

(8)

and the optimality condition

αu + p = 0 in [0, T ] × Ω. (9)

Remark 1 We note that it is possible to consider control constraints, state constraints and
control operators mapping abstract controls to feasible right hand sides in (6), see Sect. 3.5
for a discussion.

In the next section we rewrite the optimality system as an elliptic boundary value problem
in space-time and exploit its elliptic structure to provide adaptive concepts for its solution.
For this purpose we need the following higher regularity results for the weak solutions of y
of (7) and p of (8), respectively.

Lemma 1 (Higher regularity [7])

(i) Let y0 ∈ H1
0 (Ω) and let f , u, yd ∈ L2((0, T );Ω). Then, according to [7, §7.1.3.

Theorem 5] the weak solution y of (4) and the weak solution p of (8) fulfill y, p ∈
L2((0, T ); H2(Ω)) ∩ L∞((0, T ); H1

0 (Ω)) ∩ H1((0, T ); L2(Ω)).
(ii) Let y0 ∈ H1

0 (Ω) ∩ H3(Ω) and f , u, yd ∈ L2((0, T ); H2(Ω)) ∩ H1((0, T ); L2(Ω)).
Further, let the compatibility assumption (u + f )(0) + νΔy0 ∈ H1

0 (Ω) and yd(T ) ∈
H1
0 (Ω) hold true. Then according to [7, §7.1.3. Theorem 6] the weak solution y of (4)

and the weak solution p of (8) fulfill y, p ∈ L2((0, T ); H4(Ω))∩H1((0, T ); H2(Ω))∩
H2((0, T ); L2(Ω)).
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3 Reformulation of the Optimality System and Time Adaptivity

3.1 Reformulation of the Optimality System

Following along the lines of [8], we can reformulate the optimality system (7)–(8)–(9) as an
elliptic equation of fourth order in space and second order in time involving only the state
variable y. The adjoint state p as well as the control u are not present in this equation and
will be computed by the coupled optimality system (7)–(8)–(9) afterwards. One can also
reformulate the optimality system with respect to the adjoint p or the control u but in this
work we are interested in an adaptive time grid for the state, compare also Sect. 3.5. To
approximate the optimality conditions (7)–(8)–(9) we use an implicit Euler time integration
and linear finite elements in space. This provides piecewise constant approximations with
respect to time and piecewise linear and continuous approximations with respect to space of
the state y, the adjoint state p and the control u.
In particular, the resulting elliptic equation is a two-point boundary value problem in space-
time given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ytt + ν2Δ2y + 1
α
y = 1

α
yd − ft − νΔ f in (0, T ) × Ω,

y = 0 on [0, T ] × ∂Ω,

νΔy = − f on [0, T ] × ∂Ω,

(yt − νΔy) (T ) = f (T ) in Ω,

y(0) = y0 in Ω.

(10)

We note that for ν = 1 and f ≡ 0 this setting coincides with the setting considered in
[8]. Under higher regularity assumptions on the data, the following theorem shows that the
optimal state y of (7)–(8)–(9) fulfills the elliptic equation (10) a.e. in space-time.

Theorem 1 Let (y, u) ∈ W ((0, T ); H1
0 (Ω)) × L2((0, T );Ω) with associated adjoint

p ∈ W ((0, T ); H1
0 (Ω)) denote the unique weak solution to (7)–(8)–(9). Further, let the

assumptions of Lemma 1(ii) be fulfilled. Then, y satisfies (10) a.e. in space-time.

Proof The proof follows along the lines of the proof of [8, Theorem 2.7] and uses differen-
tiation and insertion of the equations (7)–(8)–(9). ��
Let us homogenize (10). For this, let g be a function which fulfills the boundary conditions
as well as initial and end time conditions of (10) and is sufficiently smooth. For example, g
may be taken as the weak solution of (10) with zero right hand side and the same boundary
conditions and the same initial condition. Let y satisfy (10). We define ỹ := y− g and arrive
at

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ỹt t + ν2Δ2 ỹ + 1
α
ỹ = ỹd in (0, T ) × Ω,

ỹ = 0 on [0, T ] × ∂Ω,

νΔỹ = 0 on [0, T ] × ∂Ω,

(ỹt − νΔỹ) (T ) = 0 in Ω,

ỹ(0) = 0 in Ω,

(11)

where

ỹd := 1

α
yd − ft − νΔ f + gtt − ν2Δ2g − 1

α
g. (12)

Now, let us derive a weak formulation of (11). For this purpose we introduce the function
space

H2,1
0 ((0, T );Ω) := {

v ∈ H2,1((0, T );Ω) : v(0) = 0 in Ω
}
,
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where

H2,1((0, T );Ω) := L2((0, T ); H2(Ω) ∩ H1
0 (Ω)) ∩ H1((0, T ); L2(Ω)).

It is equipped with the norm

‖v‖H2,1((0,T );Ω) :=
(
‖v‖2L2((0,T );H2(Ω))

+ ‖v‖2H1((0,T );L2(Ω))

)1/2
.

We introduce the following symmetric bilinear form

A : H2,1
0 ((0, T );Ω) × H2,1

0 ((0, T );Ω) → R,

A(v1, v2) :=
∫ T

0

∫

Ω

(

(v1)t (v2)t + ν2Δv1Δv2 + 1

α
v1v2

)

dxdt +
∫

Ω

ν∇v1(T )∇v2(T )dx,

and linear form

L : H2,1
0 ((0, T );Ω) → R, L(v) :=

∫ T

0

∫

Ω

ỹdv dxdt

where ỹd is defined in (12).

Definition 1 (Weak formulation) The weak formulation of Eq. (11) is given by: find ỹ ∈
H2,1
0 ((0, T );Ω), which satisfies

A(ỹ, v) = L(v) ∀v ∈ H2,1
0 ((0, T );Ω). (13)

Existence of a solution to (13) and its relation to a solution to (10) is shown in the following
theorem.

Theorem 2 Let y denote a solution to (10) and let g be a function which fulfills the boundary,
initial and end time conditions in (10) and is sufficiently smooth. Then, ỹ = y−g is a solution
to (13). On the other hand, if ỹ is a solution to (13) and the assumptions of Lemma 1(ii) are
fulfilled, then y = ỹ + g satisfies (10) a.e. in space-time.

Proof Assume y is a solution to (10). ByGreen’s formula and integration by parts it is straight
forward to prove that ỹ = y − g satisfies (13). The other direction follows vice versa. ��

In order to show equivalence of the optimal control problem (6) over (0, T ) to the weak
formulation of (10) it remains to prove uniqueness of a solution.

Theorem 3 The solution y to (13) is unique.

Proof The proof follows along the lines of the proof of [8, Theorem 2.6] and uses Lax-
Milgram Lemma (see e.g. [7, §6.2.1, Theorem 1]). ��

3.2 Mixed Formulation

In order to use piecewise linear, continuous finite elements for discretization and avoid
the construction of finite element subspaces in H2(Ω), we introduce an auxiliary variable
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w̃ := −νΔỹ. This allows to write (11) as a coupled system in ỹ and w̃ as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−ỹt t − νΔw̃ + 1
α
ỹ = ỹd in (0, T ) × Ω,

νΔỹ + w̃ = 0 in (0, T ) × Ω,

ỹ = 0 on [0, T ] × ∂Ω,

w̃ = 0 on [0, T ] × ∂Ω,

(ỹt − νΔỹ) (T ) = 0 in Ω,

ỹ(0) = 0 in Ω.

(14)

We introduce the function spaces Y := {v ∈ H1((0, T ); H1
0 (Ω)) : v(0) = 0 in Ω}, W :=

L2((0, T ); H1
0 (Ω)) and the product space X := Y × W . We note that the function space W

is different from W ((0, T ); H1
0 (Ω)). Let us define the following bilinear form

AM : X × X → R,

AM ((ỹ, w̃), (v1, v2)) =
∫ T

0

∫

Ω

ỹt (v1)t + ν∇w̃∇v1 + 1

α
ỹv1 − ν∇ ỹ∇v2 + w̃v2dxdt

+
∫

Ω

ν∇ ỹ(T )∇v1(T )dx

and linear form

LM : X → R, LM (v1, v2) =
∫ T

0

∫

Ω

ỹdv1dxdt .

Definition 2 The weak formulation of the mixed formulation (14) is given by: find (ỹ, w̃) ∈
X , which satisfies

AM ((ỹ, w̃), (v1, v2)) = LM (v1, v2) ∀(v1, v2) ∈ X . (15)

By analogy with Theorems 2 and 3 it can be shown that the mixed variational form (15)
admits at most one solution and that the pair (ỹ, w̃) with ỹ denoting the unique solution to
(11) and w̃ := −νΔỹ is a solution to the mixed variational form (15). This means that the
unique solution to (11) defines the solution to the mixed variational form (15).
Note that

AM ((y, w), (y, w)) =
∫ T

0

∫

Ω

y2t + 1

α
y2 + w2dxdt +

∫

Ω

ν|∇ y(T )|2dx

holds. For this reason, we define an energy norm associated with the bilinear form AM by

|||(y, w)||| :=
(∫ T

0

∫

Ω

y2t + 1

α
y2 + w2dxdt

)1/2

.

3.3 A-Posteriori Error Estimate for the Semi-Time Discrete Mixed Form

Let us now consider a semi-time discretization of (15) with respect to ỹ while the variable
w̃ is kept continuous. We introduce a time grid 0 = τ̃0 < τ̃1 < · · · < τ̃m = T with m ∈ N,
time step sizesΔτ̃i = τ̃i − τ̃i−1 and time intervals Ii = (τ̃i−1, τ̃i ] for i = 1, . . . ,m. The time
discrete space V k is defined by

V k = {v ∈ C0((0, T ); H1(Ω)) : v|Ii ∈ P1(Ii )},
where P1 denotes the space of linear polynomials. We set Y k := V k ∩ Y .
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Definition 3 (Semi-time discrete mixed form) The semi-time discrete mixed variational form
reads as: find (ỹk, w̃k) ∈ Y k × W such that

AM ((ỹk, w̃k), (v1, v2)) = LM (v1, v2) ∀(v1, v2) ∈ Y k × W . (16)

With arguments similar to those used for (15) we may show that problem (16) admits a
unique solution.

Let us now derive a residual based error estimate for the semi-time discrete mixed form
(16). We associate with (ỹk, w̃k) the residuals Rk

1 ∈ Y ∗ and Rk
2 ∈ W ∗ by

Rk
1(v1)=

∫ T

0

∫

Ω

ỹdv1−(ỹk)t (v1)t−ν∇w̃k∇v1− 1

α
ỹkv1dxdt −

∫

Ω

ν∇ ỹk(T )∇v1(T )dx

(17)

and

Rk
2(v2) =

∫ T

0

∫

Ω

ν∇ ỹk∇v2 − w̃kv2dxdt . (18)

Next, we derive L2-representations of Rk
1 and Rk

2 by elementwise integration by parts

Rk
1(v1) =

m∑

i=1

∫

Ii

∫

Ω

{

ỹd + (ỹk)t t + νΔw̃k − 1

α
ỹk

}

v1dxdt

+
m∑

i=1

∫

Ω

(ỹk)tv1

∣
∣
∣
∣
Ii

dx +
∫

Ω

νΔỹk(T )v1(T )dx

and

Rk
2(v2) =

m∑

i=1

∫

Ii

∫

Ω

{
−νΔỹk − w̃k

}
v2dxdt .

The residual Rk
1 fulfills the Galerkin orthogonality

Rk
1(v1) = 0 ∀v1 ∈ Y k (19)

and it further holds true

Rk
2(v2) = 0 ∀v2 ∈ W . (20)

Moreover, for (ỹ, w̃) ∈ Y × W and (ỹk, w̃k) ∈ Y k × W it holds for all (v1, v2) ∈ Y k × W :

AM ((ỹ − ỹk, w̃ − w̃k), (v1, v2)) = AM ((ỹ, w̃), (v1, v2)) − AM ((ỹk, w̃k), (v1, v2))

= LM (v1, v2) − AM ((ỹk, w̃k), (v1, v2)) = 0.

Further, the residual equation holds true for all (v1, v2) ∈ Y × W :

AM ((ỹ − ỹk, w̃ − w̃k), (v1, v2)) = Rk
1(v1) + Rk

2(v2) = Rk
1(v1), (21)

where the last equality follows from (20). We are now in the position to derive a tempo-
ral residual based a-posteriori error estimate for the semi-time discrete mixed variational
formulation (16).
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Theorem 4 Let (ỹ, w̃) ∈ X denote the solution to (15) and let (ỹk, w̃k) ∈ Y k ×W denote the
solution to (16). Then, the following residual based a-posteriori error estimate holds true:

|||(ỹ − ỹk, w̃ − w̃k)|||2 ≤ Cη2, (22)

with a constant C > 0 and

η2 =
m∑

i=1

∫

Ii

∫

Ω

(Δτ̃i )
2
∣
∣
∣
∣ỹd + (ỹk)t t + νΔw̃k − 1

α
ỹk

∣
∣
∣
∣

2

dxdt . (23)

Proof We combine (19) together with (21). Let for v1 ∈ Y be I kY v1 the approximation to v1
from Y k . Then, it is

AM ((ỹ − ỹk, w̃ − w̃k), (v1, v2)) = Rk
1(v1 − I kY v1)

=
m∑

i=1

∫

Ii

∫

Ω

rk1,int (v1 − I kY v1)dxdt +
∫

Ω

νΔỹk(T )(v1 − I kY v1)(T )dx

+
m∑

i=1

∫

Ω

(ỹk)t (v1 − I kY v1)

∣
∣
∣
∣
Ii

dx,

where we use the notation rk1,int := ỹd + (ỹk)t t +νΔw̃k − 1
α
ỹk . Note that the last summands

vanish since (v1 − I kY v1)(τ̃i ) = 0 for i = 0, . . . ,m. We can estimate using Cauchy-Schwarz

|AM ((ỹ − ỹk, w̃ − w̃k), (v1, v2))| ≤
∫

Ω

(
m∑

i=1

‖rk1,int‖L2(Ii )‖v1 − I kY v1‖L2(Ii )

)

dx .

Next, using standard interpolation properties (see e.g. [1, Theorem 1.7]), we arrive at

|AM ((ỹ − ỹk, w̃ − w̃k), (v1, v2))| ≤
∫

Ω

(
m∑

i=1

‖rk1,int‖L2(Ii ) c1 Δτ̃i |v1|H1( Ĩi )

)

dx,

where Ĩi denotes the set of intervals which share a vertex with Ii . We recall that |.|H1 denotes
the H1-seminorm. Together with the Cauchy-Schwarz inequality for sums, we arrive at

|AM ((ỹ − ỹk, w̃ − w̃k), (v1, v2))|

≤ c1

∫

Ω

(
m∑

i=1

‖rk1,int‖2L2(Ii )
(Δτ̃i )

2

)1/2 (
m∑

i=1

|v1|2H1( Ĩi )

)1/2

dx

≤ c2

∫

Ω

(
m∑

i=1

‖rk1,int‖2L2(Ii )
(Δτ̃i )

2

)1/2

|v1|H1(0,T )dx

≤ c2

(∫

Ω

m∑

i=1

‖rk1,int‖2L2(Ii )
(Δτ̃i )

2dx

)1/2 (∫

Ω

|v1|2H1(0,T )
dx

)1/2

,

(24)

where we use Hölder’s inequality in the last step. We note that

(∫

Ω

|v1|2H1(0,T )
dx

)1/2

≤
(∫ T

0

∫

Ω

(v1)
2
t + 1

α
v21 + v22dxdt

)1/2

= |||(v1, v2)|||.
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In (24) we choose v1 := ỹ− ỹk and v2 := w̃ − w̃k and denote e := (ỹ− ỹk, w̃ − w̃k), which
leads to

|AM (e, e)| ≤ c2

(∫

Ω

m∑

i=1

‖rk1,int‖2L2(Ii )
(Δτ̃i )

2dx

)1/2

· |||e|||.

By the definition of the energy norm ||| · |||, it follows that AM (e, e) ≥ |||e|||2, which yields
the a-posteriori error estimate

|||e|||2 ≤ C

(∫

Ω

m∑

i=1

‖rk1,int‖2L2(Ii )
(Δτ̃i )

2dx

)

.

��
Remark 2 (Adaptive cycle) In order to construct an adaptive time grid, we follow the standard

solve → estimate → mark → refine

cycle. In practice, we solve (16) using rectangular space-time finite elements. Then, the error
in each time interval is estimated using (22). The intervals with the largest errors are marked
using the Dörfler marking strategy [6]. For refinement, we perform a bisection of the marked
intervals. We iterate this loop until the time grid has a prescribed number of e.g. N time
instances.

Remark 3 (Heuristic assumption) Note that we derived an error estimate (22) for a time
discrete formulation in y whereas w is kept continuous. In practice, we solve a fully space-
time discrete mixed variational formulation, but still use the error estimate for the semi-time
discrete form to construct an adaptive time grid. For this, we assume that the temporal
discretization of yk is insensitive with respect to the spatial discretization. In fact, numerical
studies in [2,3] show that temporal and spatial discretization decouple for the considered
problem settings. In addition, we also assume that a temporal discretization of wk does not
strongly influence the error estimate. Of course, these heuristic assumptions might not hold
in general. For this reason, we will in future research derive a-posteriori error estimates for
a fully space-time discrete mixed variational form.

With the help of (22), we are able to refine the time grid by means of the residual of
the system (14). This property will constitute the major building block for the time-adaptive
approach in the MPC framework as discussed in the next Sects. 4 and 5.

3.4 State Equation with Depletion Term

Let us now consider an optimal control problem of the form (6), where an additional depletion
term in the state equation appears as

⎧
⎨

⎩

yt − νΔy − μy = f + u in (0, T ] × Ω,

y = 0 on [0, T ] × ∂Ω,

y(0) = y0 in Ω,

(25)

with μ > 0. The reformulation of the associated optimality system into an elliptic equation
and an associated mixed formulation, respectively, follows along the lines of Sects. 3.1 and
3.2. In particular, the mixed formulation reads as
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−ỹt t − νΔw̃ + 2νμΔỹ + ( 1
α

+ μ2
)
ỹ = ỹd in (0, T ) × Ω,

νΔỹ + w̃ = 0 in (0, T ) × Ω,

ỹ = 0 on [0, T ] × ∂Ω,

w̃ = 0 on [0, T ] × ∂Ω,

(ỹt − νΔỹ − μỹ) (T ) = 0 in Ω,

ỹ(0) = 0 in Ω.

(26)

Let us define the bilinear form

Aμ
M : X × X → R,

Aμ
M ((ỹ, w̃), (v1, v2)) =

∫ T

0

∫

Ω

(ỹt (v1)t + ν∇w̃∇v1 − 2νμ∇ ỹ∇v1 +
(
1

α
+ μ2

)

ỹv1

−ν∇ ỹ∇v2+w̃v2)dxdt+
∫

Ω

ν∇ ỹ(T )∇v1(T )−μỹ(T )v1(T )dx

and the linear form

Lμ
M : X → R, Lμ

M (v1, v2) =
∫ T

0

∫

Ω

ỹdv1dxdt,

where ỹd := 1
α
yd − ft − νΔ f − μ f + gtt − ν2Δ2g − 2νμΔg − ( 1

α
+ μ2)g.

Definition 4 The weak formulation of the mixed formulation (26) is given by: find (ỹ, w̃) ∈
X , which satisfies

Aμ
M ((ỹ, w̃), (v1, v2)) = Lμ

M (v1, v2) ∀(v1, v2) ∈ X . (27)

The semi-time discrete mixed variational formulation then reads as

Aμ
M ((ỹk, w̃k), (v1, v2)) = Lμ

M (v1, v2) ∀(v1, v2) ∈ Y k × W . (28)

With similar arguments as in the previous sections, one can show existence of a unique
solution of the involved equations provided sufficient regularity of the data.

In analogy toTheorem4we can derive a temporal residual based a-posteriori error estimate
for (28).

Theorem 5 Let (ỹ, w̃) ∈ X denote the solution to (27) and let (ỹk, w̃k) ∈ Y k × W denote
the solution to (28). Further, let μ ≤ ν/c2p, where cp denotes the Poincaré constant. Then,
the following residual based a-posteriori error estimate holds true:

|||(ỹ − ỹk, w̃ − w̃k)|||2 ≤ Cη2, (29)

with a constant C > 0 and

η2 =
m∑

i=1

∫

Ii

∫

Ω

(Δτ̃i )
2
∣
∣
∣
∣ỹd + (ỹk)t t + νΔw̃k − 2νμΔỹk −

(
1

α
+ μ2

)

ỹk
∣
∣
∣
∣

2

dxdt . (30)

Proof The proof follows along the lines of the proof of Theorem 4. Note that it holds

Aμ
M ((ỹ, w̃), (ỹ, w̃)) =

∫ T

0

∫

Ω

ỹ2t − 2νμ|∇ ỹ|2 +
(
1

α
+ μ2

)

ỹ2 + w̃2dxdt

+
∫

Ω

ν|∇ ỹ(T )|2 − μ|ỹ(T )|2dx . (31)
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Using Green’s formula, the definition of w̃ and Young’s inequality, we can estimate the
second summand in (31) by

∫ T

0

∫

Ω

−2νμ|∇ ỹ|2dxdt =
∫ T

0

∫

Ω

2νμΔỹ ỹ dxdt =
∫ T

0

∫

Ω

−2μw̃ ỹ dxdt

≥
∫ T

0

∫

Ω

−2μ|w̃| |ỹ| dxdt ≥
∫ T

0

∫

Ω

−4δμ2 ỹ2 − 1

4δ
w̃2 dxdt .

With the choice δ := 1 + 2αμ2

8αμ2 , it holds that −4δμ2 + 1
α

+ μ2 ≥ 0 and − 1
4δ + 1 ≥ 0.

Using the Poincaré inequality, we can estimate the last term in (31) by

∫

Ω

ν|∇ y(T )|2 − μ|y(T )|2dx ≥
(

ν

c2p
− μ

)

‖y(T )‖2L2(Ω)

with Poincaré constant cp . If μ ≤ ν/c2p , then
∫

Ω

ν|∇ y(T )|2 − μ|y(T )|2dx ≥ 0. Thus, for

μ ≤ ν/c2p it holds that

Aμ
M ((ỹ, w̃), (ỹ, w̃)) ≥ |||(ỹ, w̃)|||2.

With this, the a-posteriori error estimate follows in analogy to Theorem 4. ��

3.5 Control Constraints, Abstract Controls and State Constraints

The case of partially supported controls and control constraints can be treated by switching
to an elliptic system for the adjoint state p. In particular, we can consider linear and bounded
control operators B : U → L2((0, T ); H−1(Ω)) mapping controls to feasible right hand
sides, where U denotes a real Hilbert space, and control constraints u ∈ Uad ⊆ U with Uad

describes a convex, bounded and closed set of admissible controls. Under the corresponding
regularity assumptions similar to those in Lemma 1, the associated optimality system can be
reformulated into an elliptic equation of the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ptt + ν2Δ2 p − BPUad

{− 1
α
B∗ p

} = f + νΔyd − (yd)t in (0, T ) × Ω,

p = 0 on [0, T ] × ∂Ω,

νΔp = yd on [0, T ] × ∂Ω,

(−pt − νΔp)(0) = y0 − yd(0) in Ω,

p(T ) = 0 in Ω

(32)

with B∗ denoting the dual operator to B and PUad denoting the projection operator onto the
admissible control space. An a-posteriori error estimate can be derived analogously, see [3]
for more details. Using a regularization of the projection operator, it is also possible to derive
an elliptic equation for the state, see [17].
Further, we note that the procedure above can be extended to the treatment of state constraints
by e.g. adapting the approach of [16]. This is to consider the reduction to the elliptic space-
time formulation for the state obeying state constraints. However, for the proof of concept
we, in the present work, avoid the incorporation of additional constraints and other practical
relevant control operators.
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4 Time Adaptivity in MPC

In this section, we propose the use of a time-adaptive technique within MPC. In the classical
application of MPC algorithms the length of the application horizon is fixed a priori and the
prediction horizon is discretized equidistantly. This might not be ideal in practice. The choice
of the length of the application horizon in each level of MPC is known to be a difficult issue.
If one chooses a (too) long application horizon, a delayed reaction to possible disturbances
might be the consequence. If one chooses a (too) small application horizon, the progress in
the time domain is possibly (unnecessary) slow and many open-loop subproblems need to be
solved leading to high computational efforts. We also refer to e.g. [19] for a study of stability
conditions related to the length of the application horizon.
The adaptive time grid, computed using (29) within the prediction horizon, can provide a
possible choice for the application horizon length, in fact it locates the time grid points
according to the temporal dynamics of the optimal state.
In this work, we here would like to answer the following questions:

(i) How to choose a time discretization for the prediction horizon [ti , ti + T̄ ] in each level
i of the MPC?

(ii) How to choose efficiently the time discretization and length for the application horizon
[ti , ti + τi ] in each level i of the MPC to implement the feedback control?

We aim at computing the temporal discretization to identify the important dynamical
structures according to the optimization goal. We propose an adaptive strategy which avoids
unnecessary small uniform temporal discretizations and realize an efficient implementation.
The proposed approach will lead to adaptive time discretizations which are related to the
optimal state for each of the MPC subproblems.

The idea of adaptivity leads to different combinations using the error estimate (29). Here,
we will deal with an adaptive grid in each subinterval for a fixed prediction horizon where
the time discretization is computed on the fly. For a different adaptive concept based on
goal-oriented adaptivity, see the recent work [12].

Therefore, for a given prediction interval [ti , t Ni ] at each MPC iteration i , we make use
of the a-posteriori error estimation (29) for the state to compute an adaptive time grid within
the current time horizon. Note that t0 := 0 is the initial time.

We consider the use of adaptive application horizons (flag= 1 in Algorithm 1) and
compare it with the use of fixed application horizons (flag= 2 inAlgorithm1). The schemes
are visualized in Figs. 1 and 2, respectively. The numerical performances of these approaches
will be discussed in Sect. 5.

Fig. 1 Scheme of an MPC approach with adaptive application horizons, flag= 1 in Algorithm 1: The blue
dashed color refers to the grid at iteration i starting at time ti till t

N
i whereas the red color refers to the next

MPC level i + 1. The scheme visualizes the choice P = 2 in Algorithm 1. We note that the only guaranteed
overlap of the time grids is for second time instance at iteration i which corresponds to the first time instance
at iteration i + 1 (Color figure online)
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Fig. 2 Scheme of an MPC approach with fixed application horizons, flag= 2 in Algorithm 1: The blue
dashed color refers to the grid at iteration i starting at time ti till t

N
i whereas the red color refers to the next

MPC level i + 1. The application horizon length τ̄ is fixed in each MPC step. We note that the discretization
of the application horizon is formed by all adaptive time points of the prediction horizon which lie within the
application horizon and a (possibly) additional time point ti + τ̄ (in black color), which then constitutes the
first time point of the shifted prediction horizon (Color figure online)

For a given number of degrees of freedom N the algorithm distributes the time instances
within the prediction horizon [ti , t Ni ] according to the error estimation (29), where we assume
that all prediction horizons have the same length t Ni − ti = T̄ . The resulting adaptive time
grid at each time instance ti is related to the optimal state of the corresponding open-loop
subproblem of the current MPC step. Again, we assume that the heuristic assumptions of
Remark 3 hold true which enables an efficient computation. The approach is summarized in
Algorithm 1 in Sect. 1.

Remark 4 (Warm start) In order to make computations even more efficient, the information
of the previous MPC iteration can be used as a warm start for the next MPC iteration. In
particular, after a coarsening step of the previous adaptive time grid, this grid can be used
as an initial adaptive time grid for the next prediction horizon. Furthermore, to improve the
inner open-loop solver in each iteration one can use as initial control the one computed at
the previous step.

Remark 5 (Efficiency under perturbations) This approach allows to compute a suitable adap-
tive temporal grid for every iteration of the MPC method. The grid will, in general, not
result to be equidistant. This approach is particular sensitive to perturbations on the system.
Specifically, we will consider in Sect. 5 perturbations of the initial condition and right hand
side of the state equation (7) when applying the model predictive feedback value. This leads
to a perturbed initial state for the next MPC iteration level. For this perturbed initial state we
solve the elliptic system using the error indicator (30). Thus, the perturbations of the system
enter the error indicator (30) through the perturbed state. It follows from the structure of the
estimator that it is not able to distinguish whether a perturbation of the system drives the state
y away or closer to the desired state yd .

Remark 6 (Discretization of the application horizon) Once τi is computed, independently
from the choice of the flag in Algorithm 1, we take advantage of the adaptive grid already
computed for the prediction horizon. Then, we take those adaptive time points within the
application horizon as time discretization of the application horizon.

5 Numerical Example

In the following tests, we investigate numerically the time-adaptiveMPC algorithm proposed
in Sect. 4. In all numerical examples, the considered spatial domain is the open interval
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Ω = (0, 1). In order to solve the mixed form (26), we introduce a partitioning of the space-
time domain into regular rectangles and useQ1 space-time finite elements for discretization,
whereQ1 is the space of polynomials of separate degree up to 1. We solve the equation with
a direct solver using a coarse spatial resolution. We further note that in our implementations,
we do not perform a homogenization of the elliptic system, but we solve a mixed formulation
of (10) such that in the error indicator (23) the pair (ỹ, w̃) denotes the solution to (10)
and ỹd denotes the right-hand side in (10). Analogously, we proceed for the system with the
depletion term. For the solution of theMPC open-loop subproblems, we use an implicit Euler
scheme for the temporal discretization and piecewise linear and continuous finite elements
for the spatial discretization for the state, adjoint state and control. This results in piecewise
constant approximations with respect to time for the state y, the adjoint state p and the
control u within the MPC open-loop subproblems. The optimal control problem is solved
with a direct solver addressing the coupled optimality system for all time instances at once
(monolithic approach, see e.g. [20, Section 3.7]), where we take as fine spatial resolution an
equidistant discretization with Δx = 1/100. All coding is done in Matlab R2020b.

5.1 Test 1: Solution with a Layer at t = 0.5

In this numerical test, we consider the optimal control of (4) and the cost wants to track a
time-dependent reference trajectory. In this example the control horizon will be [0, 1], since
the quality of our results will not be different if dealing with a larger control horizon. The
goal is to well approximate the layer at time t = 0.5, afterwards the solution is smooth. The
setting for this test example is taken from [8, Example 5.2], with the following choices: ν = 1
in (4) and α = 1 in (3). The example is built such that the exact optimal solution (y, u) to
(6) over [0, 1] is given by

y(t, x) = sin(πx)atan((t − 1/2)/ε), u(t, x) = − sin(πx) sin(π t).

The initial condition is y◦(x) = sin(πx)atan(−1/(2ε)). The functions f and yd are chosen
accordingly as

f (t, x) = sin(πx)
(
ε/(t2 − t + ε2 + 1/4) + π2atan((t − 1/2)/(ε)) + sin(π t)

)
,

yd(t, x) = sin(πx)
(
atan((t − 1/2)/(ε)) + π cos(π t) − π2 sin(π t)

)
.

For small values of ε (we use ε = 10−3), the state y develops a very steep gradient at t = 0.5,
which can be seen in the left panel of Fig. 4.

We compare the adaptive Algorithm 1 with a standard equidistant MPC approach. To
start with, we first consider the choice flag= 1, i.e. the length of the application horizon
is chosen adaptively with P = 2. In Fig. 3, we show tracking costs for different choices of
the prediction horizon length T̄ and number N of time points in each prediction horizon. For
large enough N , the tracking costs become ‖y − yd‖L2((0,T );Ω) ≈ 5.2, where we observe
that using the adaptive approach, this value is already reached with a small number N of time
points for either of the choices for T̄ . For an exemplary visualization, we plot the tracking
term over time for the choices N = 9 and T̄ ∈ {0.2, 0.3} in Fig. 3 (middle, right).

Further, for the choices flag= 1 with P = 2 and T̄ = 0.2, N = 9, the numerical
state solutions of the controlled problem with the different MPC approaches are shown in the
middle and right panel of Fig. 4.We can see that the standardMPC algorithmwith equidistant
time grids fails whereas using Algorithm 1 it is possible to capture the layer at t = 0.5 and
the solution complies much better with the true open-loop state solution over [0, 1].
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Fig. 3 Test 1: Tracking term value ‖y− yd‖L2((0,T );Ω) (left) for increasing N for different prediction horizon

lengths T̄ comparing the adaptive approach flag= 1 with P = 2 with an equidistant approach; tracking term
value over time ‖y(t) − yd (t)‖L2(Ω) for N = 9, T̄ = 0.2 (middle) and N = 9, T̄ = 0.3 (right) comparing
the adaptive and equidistant time discretization

Fig. 4 Test 1: True optimal state solution (left), MPC state solution y using a uniform time discretization
(middle) and adaptive approach (right) with the choices flag= 1, P = 2, T̄ = 0.2, N = 9
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Fig. 5 Test 1: Uniform space-time grid with fine spatial resolution (left), adaptive grid with coarse (middle)
and fine (right) spatial resolution for flag= 1, P = 2, T̄ = 0.2, N = 9

Let us now provide more details about the temporal grids we obtained with the proposed
adaptive scheme with the choices flag= 1, P = 2, T̄ = 0.2, N = 9. The adaptive grid
with a coarse and a fine spatial resolution is shown in the middle and right panel of Fig. 5.
We observe that for this setting, the time adaptivity is very insensitive with respect to the
spatial resolution, compare Remark 3. We note that the time discretization in Fig. 5 (middle)
displays the adaptive time intervals where the MPC feedback value is applied.

Examples of adaptive prediction horizons are shown in the top panels of Fig. 6. As a
comparison, the uniform time horizons of the same lengths are shown in the bottom panels
of Fig. 6 using the same number of degrees of freedom in each interval. It is clear that the
a-posteriori error estimate (22) leads to a time grid associated with the open-loop optimal
state which benefits the accuracy of the control problem.

Moreover, we provide an error analysis for the computation of the approximate solutions
using an adaptive and an equidistant approach, for different choices of degrees of freedom in
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Fig. 6 Test 1: Adaptive prediction horizons for flag= 1, P = 2, T̄ = 0.2, N = 9 (top), uniform prediction
horizons according to the standard MPC approach (bottom), MPC iteration levels i = 13 (left), i = 15
(middle), i = 24 (right)
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Fig. 7 Test 1: L2−error (left) and computational time in seconds (right) for theMPC approachwith equidistant
and adaptive time grids with the choices flag= 1, P = 2

time and prediction horizons. For this, we compute the error between the analytical optimal
state solution to (6) on the finite time domain [0, T ] = [0, 1] and its numerical approximation
using the different MPC approaches measured in the L2((0, T );Ω)−norm, compare Fig. 7
(left). We fixed the prediction horizon T̄ and modified the choice of the instances in each sub
interval using the equidistant and adaptive method. As one can see, with this approach we
need a small prediction horizon and a large number of time instances to obtain an error of
order 10−1 with an equidistant grid whereas the adaptive method provides a more flexible
approach for our choices of T̄ ∈ {0.1, 0.2, 0.3}. Depending on whether the layer at t = 0.5
is a time discretization point or not, the approximation quality can differ strongly leading
to the illustrated zig-zag behavior in the equidistant scheme. Since the exact location of the
layer is usually not known a-priorily, an equidistant time grid approach is easy to fail.

In Fig. 7 (right) we compare the computational time in seconds of the standard MPC
algorithm using Algorithm 1 with the choices flag= 1 and P = 2 including the compu-
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Fig. 8 Test 1: Tracking term value ‖y − yd‖L2((0,T );Ω) for increasing N for different prediction horizon

lengths T̄ comparing the adaptive approach flag= 2 with an equidistant approach for fixed application
horizon lengths comparing the choices τ̄ = T̄ /(N − 1) (left), τ̄ = 0.5 · T̄ (middle), τ̄ = 0.1 · T̄ (right)

tational time needed to create the adaptive time discretization within each MPC iteration.
Clearly, to obtain a more accurate solution is computationally more expensive but we also
want to remark that theminimum error with the equidistant grid is 0.0872 computed in 25.87s
whereas, with the adaptive approach, to get an error of 0.0216 we needed 16.06s. This shows
that our method is more accurate and alsomore efficient computationally without any a-priori
knowledge of the control problem.
Further, we provide results for the choice flag= 2 in Algorithm 1, i.e. the length of the
application horizon is chosen to be fixed, whereas its time discretization is either adaptive
or equidistant. We show in Fig. 8 the tracking term values for different choices for fixed
application horizon lengths. In these settings, we make similar observations as for the results
shown in Fig. 3.

5.2 Test 2: State Equation with Depletion Term and RandomDisturbances

In this numerical test, we consider an optimal control problem where the state dynamics
are governed by (25) with μ > 0. Let us note that the Poincaré constant cp and the first
eigenvalue λ1 of the Laplace-Dirichlet operator are related by λ1 = 1/c2p (see, e.g., [4,
Proposition 8.4.3]). For the considered domain Ω = (0, 1), the first eigenvalue λ1 of the
Laplace-Dirichlet operator is given by λ1 = π2 (see, e.g., [4, Proposition 8.5.2]). Then,
since Theorem 5 is applicable if μ ≤ ν/c2p , for this setting it requires μ ≤ ν · π2. In this
example, we set ν = 0.1 and μ = 5. Thus, we consider an unstable case which goes beyond
the assumptions of Theorem 5. Nevertheless, we will see that the numerical tests under this
configuration still provide satisfactory results, very similar to a stable case with μ ≤ νπ2

as required in Theorem 5. The initial condition for the state is chosen as y◦(x) ≡ 0 and the
source term in the state equation is set to f (t, x) ≡ 0. The regularization parameter in the
cost is chosen as α = 10−3 and the desired state is given by

yd(t, x) = −10|x − 0.25| − 10|x − 0.75| + 10,

which is a stationary state and shown in Fig. 9 (left). Thus, the goal of the optimal control
problem is to steer the state y, which fulfills (25) in a weak sense, as close as possible to the
desired state yd and keep it there (for an infinite amount of time). In Fig. 9 (middle) we show
the controlled state solution using Algorithm 1 with the choices flag=1, N = 20, T̄ =
0.5, P = 2 and plot the adaptive time grid for the first prediction horizon [0, 0.5] in Fig. 9
(right).
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Fig. 9 Test 2: Desired state yd (left), controlled state (middle), adaptive time grid for prediction horizon
[0, 0.5] (right)

Finite horizon open-loop
optimal control problem

min ĴN (u, ti, yi)

State equation

yN (t) = y[φN ,ti,yi]
(t) on (ti, ti + τi]

Model predictive feed-
back value φN

Initial value
yi+1 = yN (ti+1)

Problem
data

Disturbances

Fig. 10 Scheme of MPC with disturbances

For a cheap computation of the adaptive time grid, we solve (26) with a coarse spatial
resolution of Δx = 1/4, compare Remark 3. We observe a fine temporal discretization
toward t = 0, where the initial state must be steered from y◦(x) = 0 as close as possible to
the desired state.
In realistic scenarios, however, often disturbances enter the system, see Fig. 10 for a schematic
presentation. In particular, we focus on disturbances that happen at random time points
{ωκ }Kκ=1 in the source term f and current state yi of random magnitudes {(χκ , ψκ)}Kκ=1
leading to a disturbed initial value yi+1 = yN (ti+1) for the next MPC loop. In particular,
if ωκ ∈ (ti , ti + τi ], i.e. if the current simulation window contains one of the random time
instances, we consider the following disturbed state equation for implementing the model
predictive feedback value:

⎧
⎨

⎩

yt − νΔy − μy = fdist + φN in (ti , ti + τi ] × Ω,

y = 0 on (ti , ti + τi ] × ∂Ω,

y(ti ) = yi + ydist in Ω,

(33)

where fdist (t, x) ≡ −χκ in (ti , ti + τi ] × Ω and ydist (x) = −ψκ sin(πx) in Ω . In this
example, we generate the random numbers once and run all tests for these values in order to
make the experiments comparable.We consider K = 4 random time pointsω1 = 3.51, ω2 =
4.73, ω3 = 5.85, ω4 = 8.30 and values χ1 = 75.85, χ2 = 380.44, χ3 = 567.82, χ4 =
753.72 and ψ1 = 6.78, ψ2 = 7.57, ψ3 = 7.43, ψ4 = 3.92. In Fig. 11 (left) we show the
decay of the tracking costs for an increasing number of time instances N per prediction
horizon for three examples of prediction horizon lengths (T̄ = 0.2, 0.3, 0.4) comparing the
adaptive approach of Algorithm 1 with flag= 1 and P = 2 respectively P = 4 with the
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Fig. 11 Test 2: Tracking term value ‖y − yd‖L2((0,T );Ω) (left) for increasing N for different prediction

horizons T̄ comparing the adaptive approach with flag= 1,P = 2 (top) and P = 4 (bottom) with an
equidistant approach; tracking term value over time ‖y(t) − yd (t)‖L2(Ω) (middle) for N = 15, T̄ = 0.3;
zoom-in (right)

standard uniform approach. In this example, we exemplarily run the MPC loop until ti = 10
for some i ∈ N, i.e. we cover a time domain of [0, 10]. We observe in this setting that
the adaptive approach delivers smaller tracking term values than the equidistant approach.
The greatest benefit of the adaptive approach is achieved when a small number of degrees
of freedom in a comparatively large prediction horizon is considered, where the adaptive
approach distributes the time discretization points according to the optimal state dynamics
indicated through the error estimate (29). Note that fixing N and T̄ can lead to different
lengths of the application horizon (ti , ti + τi ] in which the feedback value is applied in
Algorithm 1, and thus different number of degrees of freedom for the whole considered time
domain [0, 10]. Moreover, we note that choosing P = 2 in Algorithm 1 leads to smaller
tracking values than choosing P = 4.

The fact that in these settings the time-adaptive MPC approach leads to a closer tracking
of the desired state than an equidistant approach with the same respective choices for P, N
and T̄ comes with the price of higher control costs, compare Fig. 12. The behavior of the
adaptive control costs with increasing number N shown in Fig. 12 (left) is difficult to explain
due to the nonlinear relation between the perturbations and N and T̄ .

Finally, we provide some results using a fixed application horizon length in Fig. 13, i.e.
we choose flag= 2 in Algorithm 1. In the presented plots, both adaptive and uniform time
discretizations of the prediction and application horizon lead to similar tracking costs. In the
setting with N = 15, T̄ = 0.3, we observe that using the adaptive discretization, we detect
the disturbance earlier in time.

6 Conclusions and Outlook

In thisworkwe have proposed an approach to include time-adaptive discretization in theMPC
framework. Our approach is fully flexible and relies on a reformulation of the optimal control
problem into a second order in time and fourth order in space equation. Our approach does not
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Fig. 12 Test 2: Control costs ‖u‖L2((0,T );Ω) (left) for increasing N comparing the adaptive approach flag=
1 with P = 2 (top) and P = 4 (bottom) with an equidistant approach; control costs over time ‖u(t)‖L2(Ω)

for N = 15 and T̄ = 0.3 (middle); zoom-in (right)
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Fig. 13 Test 2: Tracking term value ‖y − yd‖L2((0,T );Ω) (left) for increasing N for different prediction

horizon lengths T̄ using a fixed application horizon length flag= 2 comparing adaptive and equidistant
discretizations with τ̄ = T̄ /(N −1); tracking term value over time ‖y(t)− yd (t)‖L2(Ω) for N = 15, T̄ = 0.3
(middle); zoom-in (right)

require further assumptions on the control problem. The use of a-posteriori error estimates to
generate the time grid in the MPC method is the important novelty of our work. Numerical
tests have shown the efficiency of the method for both accuracy and computational time. We
also want to remark that our approach is particularly suitable when a layer is shown in the
solution or the disturbances happen. Other experiments with mild temporal variations did
not always show a clear difference between equidistant and adaptive grid. The a-posteriori
error indicator delivers an appropriate adaptive time grid even providing a coarse spatial
resolution.

In the future,we plan to derive an a-posteriori error estimator for a fully space-time discrete
form and to use that indicator for a fully adaptive and automatic MPC scheme, where the
idea is to avoid an a-priori choice of the prediction horizon and/or the number of degrees of
freedom in each sub-iteration. Another goal is to extend these results to nonlinear control
problems and as soon as we increase the dimension of the problem to make use of efficient
model reduction techniques, such as POD, to decrease the computational time.
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