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Quantum experiments and graphs. II1. High-dimensional and multiparticle entanglement
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Quantum entanglement plays an important role in quantum information processes, such as quantum com-
putation and quantum communication. Experiments in laboratories are unquestionably crucial to increase our
understanding of quantum systems and inspire new insights into future applications. However, there are no
general recipes for the creation of arbitrary quantum states with many particles entangled in high dimensions.
Here we exploit a recent connection between quantum experiments and graph theory and answer this question for
a plethora of classes of entangled states. We find experimental setups for Greenberger-Horne-Zeilinger states, W
states, general Dicke states, and asymmetrically high-dimensional multipartite entangled states. This result sheds
light on the producibility of arbitrary quantum states using photonic technology with probabilistic pair sources
and allows us to understand the underlying technological and fundamental properties of entanglement.
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I. INTRODUCTION

Entanglement, which exhibits correlations without a clas-
sically analog [1,2], is a very peculiar property of quantum
states. It is of particular importance in understanding the foun-
dations of quantum mechanics, especially for local realism.
Nowadays it has been viewed as a prominently useful resource
for quantum information applications, such as quantum com-
putation and quantum communication.

The smallest entangled system consists of two particles,
which share one bit of information (such as the polarization
state of a photon) in a non-local-realistic way. Such a system
is a cornerstone of research in quantum entanglement theory.

More particles or high-dimensional degrees of freedom
can lead to more complex types of entanglement. A promi-
nent example of multipartite entanglement is the so-called
Greenberger-Horne-Zeilinger (GHZ) state [3,4], which offers
a new understanding in the study of our local and realistic
worldview. Another famous class of entangled states is the
Dicke state [5], with an important special case: the W state.

Increasing the number of involved degrees of freedom
in the entanglement significantly increases the number of
different possible states and the complexity of studying them.
For example, the question about all-versus-nothing violations
of high-dimensional GHZ states has only been understood in
2014 [6,7], and these states have only been experimentally
implemented in the very recent past [8]. High-dimensional
and multipartite entanglement can lead to new, asymmet-
ric types of quantum correlations which are not seen in
any qubit system [9,10]. Such a type of entanglement was
first been investigated in the laboratory in 2016 [11] and
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allows potentially different types of quantum communication
scenarios [12].

In the spirit of Richard Feynman, who once famously
said “What I cannot create, I do not understand,” here we
ask, Which quantum entangled states can be created in the
laboratories with current photonic technologies?

Using a recently uncovered bridge between quantum ex-
periments with probabilistic photon pair sources and graph
theory [13], we answer this question for many classes of
entangled states. The correspondence is listed in Table I. Our
strategy is to translate the question about the construction of
a quantum state into a question about the existence of a graph
with certain properties. All of our affirmative answers are
constructive, meaning that in these cases we show the graph
and its corresponding quantum experimental setup.

In this paper, we briefly summarize the main results from
Ref. [13] and explain the connection between quantum exper-
iments and graphs. Then we show graphs and experimental
setups for creating two-dimensional and three-dimensional
GHZ states as well as a four-particle W state. Afterwards, we
extend the applications and find a construction for W state
with arbitrary particles and its generalization: the Dicke states.
Furthermore, we present a general solution to producing high-
dimensional three-particle entangled states, which answers a
question that was raised more than three years ago.

Our investigation significantly enlarges the understanding
of currently existing experimental technology and finds sys-
tematic solutions to a question that has previously investigated
only with advanced automated search methods [14,15].

II. GENERATION OF
GREENBERGER-HORNE-ZEILINGER STATES

GHZ states form a very important class of entangled states
and are denoted as

1 d—1
IGHZ?) = — ) " )®", (1)
Vi
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TABLE 1. The analogies between graph theory and quantum
experiments.

Graph theory Quantum experiments
Undirected graph Optical setup with nonlinear crystals
Vertex Optical output path

Edge Nonlinear crystal

Colors of the edge Mode numbers

n-fold coincidence
No. (terms in quantum state)

Perfect matching
No. (perfect matchings)

where n is the number of particles and d is the dimension for
every particle.

In Fig. 1(a) we show an experimental setup to produce
a two-dimensional four-particle GHZ state |GHZ£) using
Ref. [16]. Photon pairs can be created by probabilistic photon
pair sources (such as nonlinear crystals, depicted as gray
squares) via the spontaneous parametric down-conversion
(SPDC) process. The crystals are set up in such a way that
crystals I and II produce photons with states |00), while
crystals III and IV produce photons with states |11). Here
the mode numbers 0 and 1 correspond to the polarization of
photons,1 the orbital angular momentum (OAM) [17-19], or
some other degree of freedom such as time bin [20,21] or
frequency [22].

The four crystals are pumped coherently, and the pump
power is set in such a way that two photon pairs are pro-
duced with reasonable probabilities.” In the experiment, the
final quantum state is obtained by postselection on fourfold
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FIG. 1. Experiment for producing a two-dimensional four-
particle GHZ state |GHZ§) based on Ref. [16] and the corresponding
graph [13]. (a) Four nonlinear crystals (gray squares) are pumped
coherently, and the pump laser can be set such that two photon pairs
are created with reasonable probabilities. The final quantum state
is created conditionally on simultaneous clicks in all four detectors.
(b) In the graph, every vertex stands for a photon’s path, and every
edge represents a nonlinear crystal. The color depicts the mode
number of a photon. Here black and red (dark gray) edges correspond
to a state with |00) and |11), respectively. A fourfold coincidence
in the experiment can be seen as a subset of edges that contains
every vertex only once, which is called a perfect matching in the
graph. Thus, the coherent superposition of two perfect matchings
leads to fourfold coincidences, which describes the quantum state
[¥)abea = 5(10000) + [1111)).

coincidences, which means that all four detectors click simul-
taneously. This happens only when two photon pairs origin
either from crystals I and II or from crystals III and IV. No
other event could contribute to the four-photon coincidences.
For example, if the photon pairs are produced from crystals II
and III, there will be two photons in path ¢ and no photon in
path b.

One can translate such an optical setup into a graph [13],
which is described in Fig. 1(b). There the vertices depict
the photon’s paths, and the edges represent the nonlinear
crystals. The graph contains two subsets of edges (Eyp, Ecq)
and (E,., Epg). Each subset contains all four vertices only
once, which is called as a perfect matching of the graph.
Therefore, the fourfold coincidences in the experiment are
given by the coherent superposition of perfect matchings of
the graph. The quantum state after conditioning on fourfold
coincidences can be written as

1
abed = —=(]0000) + [1111)), 2
[¥)abea \/§(| )+ I1111)) 2

where values 0 and 1 stand for the photon’s mode numbers
(such as the OAM modes of the photon), and the subscripts a,
b, c, and d represent the photon’s paths.

Now we generalize this technique to two-dimensional n-
particle GHZ states |GHZ,21). One can arbitrarily increase the
number of vertices of the graph in Fig. 1(b), which means
that the number® of particles can be arbitrarily large. We
show the general graphs and experiments for creating two-
dimensional n-particle GHZ states IGHZi) in Fig. 2. These
graphs can describe, for instance, the largest polarization GHZ
state consisting of n = 12 photons [23].#

As we have familiarized ourselves with the connection
between graphs and quantum experiments [13], we can use
it to create higher-dimensional GHZ states, such as a three-
dimensional four-particle GHZ state |GHZi). The correspond-
ing graph is described in Fig. 3(a).

It has been shown in Refs. [13,25] that such a graph
is the only graph which can be constructed where all per-
fect matchings are independent.’ That means the quantum

A photon’s mode numbers can be changed by inserting variable
mode shifters in the photon’s paths. For convenience, we neglect the
mode shifters and label the mode numbers in the nonlinear crystal.

2A higher number of photon pairs can be created in the down-
conversion process. However, one can adjust the laser power such
that these cases have a sufficiently low probability, which can be
neglected.

3A probabilistic photon pair source (such as a nonlinear crystal)
produces photon pairs, thus the number of particles n is an even
number. However, some of the photons can be seen as triggers such
that the number 7 can be an odd number.

“Interestingly, the largest GHZ state ever produced in any platform
is an 18-qubit state encoded in three degrees of freedom with six
photons [24]. It would be interesting to extend the current graph lan-
guage to cover such hyperentangled multiphotonic quantum states.

SIndependent perfect matchings (which are called disjoint perfect
matchings in graph theory) mean that every edge appears exactly
once in a perfect matching. If the perfect matchings contain common
edges, we call them nonindependent perfect matchings.
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FIG. 2. General graphs and experimental implementations for creating two-dimensional n-particle GHZ states |GHZ2). In Fig. 1(b) we have
shown a graph for a two-dimensional four-particle GHZ state |GHZ§). One can arbitrarily extend that graph, which means one can arbitrarily
increase the number of particles in the quantum state. Panels (a)—(c) show the general graphs and experiments for producing two-dimensional
six-, eight-, and n-particle GHZ states. On the right side, we also show a 3D printed graph, which corresponds to a two-dimensional 26-particle
GHZ state |GHZ§6). There the mode numbers O and 1 are represented with white and red (dark gray), and the vertices are depicted in black.

state |GHZ§) is the only high-dimensional GHZ state which
can be experimentally implemented in this way, while one
can produce arbitrary two-dimensional n-particle GHZ states
|GHZ?).

III. GENERATION OF DICKE STATES

One very large important class of states has been intro-
duced by Robert H. Dicke, Dicke states |Dﬁ) [5]. The states
are defined as

D) = —=8(0)2 " H[1®), G
k

where n and k stand for the number of particles and excita-
tions, respectively. S is the symmetrical operator that gives
summation over all distinct permutations of the n particles.
W states |W,): The special case with only one excitation
is the well-known n-particle W state (denoted as |D,1,) or
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FIG. 3. Graph and optical setup for producing a 3D four-particle
GHZ state |GHZ2). (a) We add one perfect matching of the graph in
Fig. 1(b). The black, red (dark gray), and green (light gray) edges
stand for the corresponding crystals producing the photon pairs with
states |00), |11), and |22), respectively. (b) The corresponding exper-
imental setup of the graph. All crystals are pumped coherently and
the laser power can be set such that two photon pairs are produced.
The coherent superposition of three perfect matchings leads to the
quantum state, which is |¥) gpeqd = %(|0000) + [1111) + |2222)).

W) [26,27], which is highly persistent against photon loss.
It is interesting that W states cannot be transformed into
GHZ states with local operation and classical communication
(LOCC) [28], meaning that they reside in different classes of
entangled states.

First, we start with a four-particle W state |W,), which is

|V )abea = %(IOOOI) -+ (0010) 4 |0100) + [1000)).  (4)

There are four terms in the quantum state, which corre-
spond to four perfect matchings in the graph. For a complete
graph® K, the number of perfect matchings is three. However,
we can use multiple edges to increase the number of perfect
matchings. These graphs are denoted as multigraphs.

We show such a multigraph for the W state |W,) in
Fig. 4(a). There every edge can contain two colors [black and
red (dark gray)]. For example, a red (dark gray) edge stands
for that the corresponding crystal produces photon pairs in a
state |11). Thus the edges with black-black, black-red (black-
dark gray), red-black (dark gray-black), and red-red (dark
gray-dark gray) represent the states |00), |01), |10), and |11},
respectively.

We find that every perfect matching contains only one half-
red (half dark gray) [black-red (black-dark gray) or red-black
(dark gray-black)] edge and no other red (dark gray) edges
can be involved. That means every term in the quantum state
contains exactly one excitation, and their coherent superposi-
tion describes a W state. The corresponding optical setup is
described below the graph. Therefore, one can experimentally
produce a four-particle W state |W,) [13].

Now we generalize the graph for an arbitrary n-particle W
state |W,,). We connect all the half-red (half dark gray) edges
to vertex a and describe the graphs in Fig. 4. Thereby, every
perfect matching contains exactly one half-red (half dark
gray) edge because of the fact that vertex a can be used only
once in a perfect matching. This gives exactly one excitation

SIf every pair of vertices is connected with edges exactly once in
a graph, we call such a graph a complete graph. A complete graph
with n vertices is denoted as Kj,.

032338-3



GU, CHEN, ZEILINGER, AND KRENN

PHYSICAL REVIEW A 99, 032338 (2019)

in every term of the quantum state. Thus one can construct
such graphs for producing arbitrary W states. A 3D printed
graph for a 26-particle W state W) is shown in Fig. 4(c).

Interestingly, the structure of the graph for creating an
n-particle W state |W,) can be seen as a strong product of
graphs [29,30]. The general graph for state |W,) is a special
book graph [31], which consists of n/2 — 1 complete graphs
K4 with common edges E,;, (for details see the Appendix A).
The multiple common edge E,;, is the so-called base of the
book graph, and the n/2 — 1 complete graphs form the pages
of our book graph. Hence such a graph can also be called a
(n/2-1)-page two-base K4-book graph [32]. For simplicity, we
denote such a graph as an Oliver, graph. Thus, the graph for
W state |Ws), which is shown in Fig. 4(c), is a book graph with
three pages.

Dicke states |D?/?): Another special case of Dicke states,
which has been experimentally investigated, are the states
|D"/2). By splitting probabilistically photons, experimental
implementations for Dicke states |D§) and |Dg) have been
successfully realized in laboratories [33-36]. The general
experimental scheme for symmetric Dicke states |D"/?) is
described in Fig. 5(a).

The corresponding graph for such experimental setup
is a complete graph K, which is described in Fig. 5(b).
There every pair of vertices is connected with a blue (light
gray) edge, which stands for multiple edges colored with

black-red (black-dark gray) and red-black (dark gray-black).
Therefore, every perfect matching contains n/2 half-red (half
dark gray) edges, meaning that each term in the quantum
state involves n/2 excitations. The coherent superposition
of all perfect matchings describes the symmetric Dicke
state |DZ/ 2.

General Dicke states |D)'): A natural question is whether
we can experimentally create arbitrary Dicke states |[D)') (0 <
m < n). We answer the question affirmatively, and show the
construction of a graph in Fig. 6. In general, we use two
complete graphs G| = K,,_,, and G, = K,,, where all edges of
G, are black while all edges of G, are red (dark gray). Each
vertex of G is connected to every vertex of G, with a blue
(light gray) edge, which is a double edge with red-black (dark
gray-black) and black-red (black-dark gray).

While in all constructions before, all terms of the result-
ing quantum state had the same amplitude (which we call
maximally entangled), that is not the case here anymore. In
quantum experiments, one can adjust the pump power to
make nonmaximally entangled states into maximally entan-
gled states, which means adjusting all amplitudes to be the
same values. For such quantum state, the total number of
terms in the quantum state is given by the number of perfect
matchings of the corresponding graphs, which holds for the
rest of the paper. These introduce weights in the graphs, which

© |Wg> g
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FIG. 4. General graphs and experiments for producing n-particle W states |W,). (a) A colored multigraph with four perfect matchings.
Every perfect matching contains only one half-red (half-dark gray) [black-red (black-dark gray) or red-black (dark gray-black)] edge, meaning
that every term in the quantum state has exactly one excitation. The coherent superposition of all perfect matchings leads to a four-particle W
state |W,). The corresponding experimental setup is described below the graph. (b, ¢) In an analogous way, we show the graphs and experiments
for generating six- and eight-particle W states. On the right side, we show a 3D printed graph for a 26-particle W state |Wys). There the mode
numbers 0 and 1 are represented with white and red (dark gray), and the vertices are depicted in black. We call the graph for producing an

n-photon W state an Oliver, graph.
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FIG. 5. General experimental scheme and graph for producing a symmetric Dicke state |[D"/?). (a) One can pump a nonlinear crystal to
create n/2 photon pairs. The photons of a photon pair have orthogonal mode numbers (such as horizontal and vertical polarization), which
are denoted as mode numbers 0 and 1. These photon pairs are probabilistically separated by beam splitters. The Dicke state |D"/?) is created
conditionally on a click in every detector. (b) In the general graph K,, every blue (light gray) edge stands for a double edge with coloring
black-red (black-dark gray) and red-black (dark gray-black), which corresponds to the state |01) + |10). There every perfect matching contains
exactly n/2 half-red (half dark gray) [black-red (black-dark gray) or red-black (dark gray-black)] edges, which means each term in the quantum
state includes n/2 excitations. Thus the superposition of all perfect matchings describes the Dicke state [D"/?).

have been investigated in Ref. [37]. We show some examples and c, the rank of the reduced density matrices
of maximally entangled Dicke states in the Appendix B.

A = rank[Tra(IY ) (¥ D],

IV. GENERATION OF HIGH-DIMENSIONAL B = rank[Try(|Y){¥ DI,
MULTIPARTITE ENTANGLED STATES C = rank[Tr.(|¥) (¥ )]

The generalization of high-dimensional entangled states al-
lows very rich types of nonclassical correlations. One method
to characterize these states is the so-called Schmidt-rank vec-
tor (SRV) [9,38,39]. These states give rise to asymmetrically
entangled states that exist only if both the number of particles
and the dimensions are larger than two. We study one im-
portant special case of three-particle entangled states with an
additional particle as a trigger. These states recently have been
investigated experimentally [8,11] and studied extensively in
the form of computer-designed experiments [14,15].

together form the SRV d,, = (A, B,C), where A > B > C.
The values A, B, and C stand for the dimensionality of
entanglement particles a, b, and ¢ with the other two parties.
The classification with different SRVs provides an interest-
ing insight that one can transform quantum states from higher
classes to lower classes with LOCC, and not vice versa.’

The SRV represents the rank of the reduced density matri- "The dimensionality i (i =A, B,C) cannot be increased with
ces of each particle. In the quantum state of three parties a, b, LOCC.
y[00 >
al01 >
Bl10 >
511 >
L 2 * =

al0l > + 3|10 >
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Za\l

Za
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FIG. 6. General graph for general Dicke states |[D') (0 < m < n). For better visualization, we show such a graph in a 3D viewpoint. The
graph consists of two complete graphs, K,,_,, and K,,. The first graph K,,_,, contains black edges, while the second K, (upper) involves red (dark
gray) edges. Each vertex of K, is connected to every vertex of K,,_,, with a blue (light gray) edge, which stands for a double edge consisting
of a black-red (black-dark gray) edge and a red-black (dark gray-black) edge. We call a black-red (black-dark gray) edge or red-black (dark
gray-black) edge as a half-red (half dark gray) edge. Thus a red (dark gray) edge [or red-red (dark gray-dark gray) edge] represents for
two half-red (half dark gray) edges. Because of this construction, every perfect matching contains exactly m half-red (half dark gray) edges,
meaning that each term in the quantum state has m excitations.
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Possible experimental implementations for SRV(A,B,C) states

2,2,2 32,2 422 622 722 822 922 10272
33120432 5312 732 832 932 10,32
3,33 433 533 633 10,3,3

442 542 642 942 10,42

443 543 643 743
544 644 744
5,520 6,521 7,52

553 653 7,53 85,3
6,54 7,54 854
7,55 | 85,5
6,62 7,62 862
663 7,63 863 963
7,64 864 964 | 1064
8,6,5|965| 106,5
9,6,6

possible implementations
found by Melvin

additional implementations
found using graph theory

8,82 982

10,8,2

not possible
based on graph theory

110

not possible

FIG. 7. A list of experimentally possible SRV (A, B, C) states.
Strong green (light gray) cells show that these states have been found
with the computer algorithm MELVIN [14]. For all remaining cases,
using graph theory we find the corresponding experimental setups
[light green (light gray in the solid box)] or that states cannot be
created [red (dark gray)] with probabilistic sources (without addi-
tional ancillary photons). States represented by black cells cannot
exist even theoretically, because of combinatorial reasons [9].

As an example, we show a maximally entangled state with
SRV=(4, 2, 2), which is

1V ) abe = %(IOOO) + [101) 4 1210) + [311)). ®)

There the first particle a is four-dimensionally entangled with
the other two particles bc, whereas particle b and ¢ are both
only two-dimensionally entangled with the rest.

We are interested in maximally entangled states (as before,
all amplitudes are the same). Furthermore, we want that the
quantum state with SRV (A, B, C) has A terms. Thereby, the
structure of the SRV is clearly visible in the computation
basis, which is convenient experimentally. We call such an
entangled state an SRV (A, B, C) state.

Searching experimental implementations for producing
SRV (A, B, C) states has been investigated with the computer
algorithm MELVIN [14]. In Fig. 7, for the strong green cells
(gray), MELVIN has found experimental setups after several
months of runtime. All other cases have remained open.

Now one could ask which SRV (A, B, C) states are exper-
imentally possible to create with probabilistic photon pair

sources, We apply our connection between graphs and quan-
tum experiments to answer the question. In Ref. [13] the
authors have shown that graphs with four vertices can contain
maximally three independent perfect matchings. We extend
that technique and find whether one can experimentally create
an SRV (A, B, C) state without additional particles with prob-
abilistic pair sources (for details see the Appendix C). ® This
finally answers a question that has been open for three years.

Our technique can be applied to find experimental imple-
mentations for another type of high-dimensional multipartite
quantum states such as an absolutely maximally entangled
state [40-43]. We show more interesting examples in the
Appendix D. Many related questions remain open, and are
summarized elsewhere [44].

V. CONCLUSION

We have presented a method to experimentally create large
classes of entangled quantum states that are theoretically well
studied but unexplored in laboratories, by extending recent
ideas in Ref, [16] and the bridge between quantum experi-
ments and graphs [13].

An exciting extension of our work would be a full classi-
fication of which quantum states are achievable with current
photonic technology involving probabilistic pair sources.

One particular important class of photonic entangled
states are so-called graph states, which are resources for
measurement-based quantum computation [45,46]. Despite
the similarity of names, graph states are not related to the
techniques explained here. It would be very interesting to
investigate which type of graph states can be experimentally
generated with probabilistic pair sources. A starting point
will be the introduction of complex weights, which has been
discussed in Ref. [37].

Motivated by our results, another purely physical question
raises: What does it mean physically that some entangled
quantum states cannot be created? Is the producibility or
lack thereof connected to a property of entanglement, such as
entanglement of formation [47]? While the graph theoretical
representation covers the mathematical results in an excellent
way, a physical interpretation of these results is still missing.
It would be an exciting research project to shed more light on
that question.
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FIG. 8. Graph operations for constructing the graph correspond-
ing to an n-particle W state, the Oliver, graph. The structure of
graph G for the W state |Ws) can be seen as a union of graphs
G, and G,, which is G = G, |J G,. Graph G; is a strong product
of a star graph S, and a path graph P,, which is G, = S4B P,.
Therefore, the graph for the n-particle W state |W,,) can be depicted
as G = (S; B P,) | Gy, where i = n/2.

APPENDIX A: STRONG PRODUCT OF GRAPHS

Here we explain the structure of graphs for n-particle W
states |W,,) and show a graph G for the W state |Ws) in Fig. 8.

The graph G can be seen as the result of a union operation
of graphs G| and G,. There the graph G, is a strong product’
[29,30] (S4 B P») of a star graph!® S; and a path graph!' P,
The graph G; can be seen as a special case of a book graph
[31]. The graph P, is the base of the book graph and the
number of edges of the graph S; gives the number of pages
in the book graph. Therefore, the graph for the quantum state
|Ws) is a book graph with three pages.

APPENDIX B: GRAPHS FOR GENERAL DICKE STATES

We have shown a general graph for arbitrary nonmaxi-
mally Dicke states in Fig. 6. Each term in the quantum state
corresponds to a number of perfect matchings. The number
of perfect matchings is not necessarily the same number of
the terms in the quantum state. Experimentally this leads to
different coefficients for each term of the state and thereby to
nonmaximally entanglement.

In the laboratories, one can adjust the pump power to
change the amplitudes in order to obtain the maximally entan-
gled states. This will introduce weights in the corresponding
graph [37]. We show how to make the nonmaximally Dicke

9The strong product G B H of graphs G and H is the graph with
vertex set V(G) x V(H) and u=(ul,v1) is adjacent with v=(u2,v2)
whenever (vl=v2 and ul is adjacent with u2) or (ul=u2 and vl is
adjacent with v2) or (ul is adjacent with u2 and v1 is adjacent with
v2).

10A star graph S; is a graph with i vertices, where (i — 1) vertices
are only connected, with one edge, to a single central vertex.

A path graph P; is a graph with j vertices, where j vertices and
(j — 1) edges lie on a single line.

states |D,11) and |D,%) into the maximally entangled Dicke states
in Figs. 9 and 10.

We do this by computing all perfect matchings that cor-
respond to individual terms and then require that the corre-
sponding weights lead to a constant value. This leads to an
algebraic equation system. For the example mentioned above,
that system can be solved.

APPENDIX C: RESTRICTION ON THE GENERATION
OF SRV (A, B, C) STATES

Here we apply the connection between graphs and exper-
iments to answer which maximally entangled SRV (A, B, C)
states can be created. As we have described in the main text,
for an SRV (A, B, C) state with an additional trigger ¢ (¢ stays
the same mode number), the dimensionality of particles a, b,
and c are given by the values A, B, and C. That means particles
a, b, and ¢ must contain A, B, and C different mode numbers
A>=B>0).

In the graph description, every perfect matching of the
graph corresponds to a term in the quantum state. Thus we
need to construct a graph with exactly A perfect matchings,
as this is part of our definition of maximally entanglement.
We now use the three disjoint perfect matchings that exist
in the complete graph K4 to find a possible experimental
implementation for different SRV (A, B, C) states.

The main idea is, when there is more than one term
with the same mode number for a particle a, b, or ¢, we
could combine the trigger ¢ together with the particle of the
repeated mode number to form a multiedge. That will allow us
to create more than three terms in the quantum state. (Note: we
can always create three arbitrary terms, as we have full control
of edges in the three perfect matchings.) In total we need to
create A terms.

First we consider the edge E; ,. The mode number in each
term of particle a needs to be different, thus we can only use
E, , to create one term.

Now we consider the edge E, ;. Photon b has B different
mode numbers; therefore in A — B terms, the mode numbers
can be the same. So in addition to the one term that we
always create, we have the possibility to create A — B addi-
tional terms, leading to 1 + (A — B) terms producible using
E, ,. However, in the cases when we use the same mode
number for particle b, the mode number for particle ¢ needs
to be different (otherwise it would reduce the dimension-
ality of the state, for example: |0),]0, 0)p . + [1)4]0, 0)p . =
(10)4 + 11)4)10, 0)p, .. That means there is a tradeoff between
the number of repetitions in particle b that we can use, and
the number of different modes particle ¢ has (which is C). So
in total, using edge E; ;, we can create min(1 + (A — B), C)
terms.

Finally, we apply the same argument to the terms that we
can create using E; .. We use the (A — C) repetitions to create
1 4+ (A — C) terms, again conditioned that there are enough
usable mode numbers of photon b. That usable numbers
of different modes in b is now (B — 1), because one mode
number was already used in the perfect matchings using E; 5.
Therefore we find that, using the edge E, ., we can create
min(1 4+ (A — C), B — 1) terms.
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ao a a
(a) |W4 >
- od + od + od
b COmm———o co b c ob
ay|0001 > +By[1000 > + ay|0001 > +By|0100 >+ ay|0001 > +By|0010 >
l¢ > = 3ay|0001 > + By|1000 > + By|0100 > + By|0010 >
Maximally entangled W state |W, >:3a = 8
(b) do do do

b —P e>< eo——ob \ /
of
do—oc

3ayZ (000001 > +38yZ|100000 >

— gll% i lo > = 15ay(z 1000001 > +38y &) (100000 > +]010000 > +]001000 > +]000100 > +]000010 >)

5|11>O Maximally entangled W state |Wg > : 5a¢ = f
. * —
al01 > + 4|10 > Maximally entangled W state |[W,, >:(n— Da = B

FIG. 9. Weighted graphs for n-particle W states |W,). (a) Graph for W state |W,). The weights for black-black, black-red (black-dark gray),
red-black (dark gray-black), and red-red (dark gray-dark gray) edges are 8, o, B, and y, respectively. For simplicity, we write the black-red
(black-dark gray) and red-black (dark gray-black) edges as a blue (light gray) edge, which corresponds to a state «|01) + 8|10). From Fig. 6,
we know that such a graph can be redrawn as two complete graphs K; and K3 connected with blue (light gray) edges. The coherent superposition
of all the perfect matchings in such a graph leads to the final quantum state, which is [ ). = ¥ (3|0001) + B|0010) + 8]0100) 4+ B]|1000))
(without normalization). In order to obtain the maximally entangled W state, the coefficients should be the same, meaning 3o = $. For example,
we can set the weights (@ = 1, 8 = 3, y = 1). (b) Graph for W state |W;). In an analogous way, we need to calculate all the perfect matchings
of the graph. First, we start with edge E, ;. The graph can be decomposed into the edge E,; and a graph K,,_, with vertices b, c, d, and e. In this
case, the superposition of the perfect matchings are calculated, which is 3y?(a|000001) 4+ 8|100000)). We calculate all the perfect matchings
and require that S = B. Then we obtain the W state. In general, we can obtain n-particle W states with (n — 1)a = B.

Overall we find the following condition explaining whether APPENDIX D: GENERATION OF ABSOLUTELY
the SRV (A, B, C) can be created: MAXIMALLY ENTANGLED STATES
The absolutely maximally entangled (AME) states are
1+ min(l14+(A—-B),C)+min(l1+A—-C),B—1) > A. another type of multipartite state, which give the maximally

ChH mixed states by tracing out half or more of the parties. Such
We illustrate that conditions in Fig. 11 and describe two  a state is defined as AME(n,d) with n particles of local

concrete examples in Fig. 11(c). dimension d.
(a) |D2 (b) 2 = il () ae=11 (d) EEEER
‘l F 7' 2 b 7 b a b
/ X of e /f e e f
u d oJo d c d (e
n n n
Vlgfl) > S (n)! (#PMy, _,) sy (#PM, ) (n— 3)Bay(z?) (#PMy ) 252 (22
> = n_
—lelo > Kn 2)' 22 +(#PMKH_4)(TT-—2)(71—3)(12]/(2 2)
§|11 > 5v/2 + (n —2)(n — 3)a? = constant
_l v/ ( X ) —~— maX|ma|Iy entangled
. o (n — 3)Ba = constant Dick D2 >
- /v icke state |
al01 >+ B|10 > 23 = constant

FIG. 10. Weighted graph for Dicke states |D?). (a) Graph for Dicke state [DZ). This graph can be redrawn as two complete graphs K, and
K5 connected with blue (light gray) edges. (b) First, we consider the term |000011) in the Dicke state, and we find that there are two cases in
the graph where the perfect matchings lead to that term. One is that the perfect matchings contain red (dark gray) edge E,;. The other case is
that the red-black (dark gray-black) edges connect to vertices e and f. Thereby, we find the number of perfect matchings leading to the term
of the quantum state. (c) Next we consider the terms where one of the vertices e and f and one of vertices (a, b, ¢, and d) are related to the
red (dark gray) edge. Then we enumerated the cases where two of vertices (a, b, ¢, and d) are connecting to red (dark gray) edges. Finally, by
solving these equation systems, one can create Dicke states |D?).
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@ ? Which SRV(A,B,C) states are experimentally

® possible to create?

[> = % (]000>+|101>+]210>+|320>+|421>+|522>)

[,> = Tlg (]000>+|101>+]210>+|311>+|420>+|521>)

1 Graph answer

3 different ways to create perfect matchings
X I =
- t : Y

14+ min(1+(A—-B),C)+min(l+(A—-C),B—-1) = A

co—ot

tis a trigger

|,> = SRV(6,3,3)
A=6B=3C=3
14+ min(4,3) + min(4,2) > 6

[,> = SRV(6,3,2)
A=6B=3C=2
1 + min(4,2) + min(5,2) < 6

(|320>+]421>+|522>) , | 0>+ {1000>+]101>),y, [ 0>+

[,> 000>+210>),,.|0>, + (1210>+]420>), | 0> +
_11010>,, 131205, +
[52105 ¢,

Such graph G
does not exist!

X

'Ry

FIG. 11. Restriction on the generation of three-particle maximally entangled states with different Schmidt-rank vectors (SRVs) based on
graph theory. (a) We ask which SRV (A, B, C) states can be created. (b) Each term of an SRV (A, B, C) state is given by a perfect matching of the
corresponding graph. If a graph with four vertices involving more than A perfect matchings can be constructed, a possible experimental setup for
such a state exists. Therefore, when the parameters A, B, and C fulfill the condition 1 + min(1 + (A — B),C) + min(1 + (A —C),B—1) > A,
one could experimentally produce an SRV (A, B, C) state. (c) Two examples with different SRVs. In the case of SRV (6, 3, 3), we apply the
restriction, and the parameters fulfill the condition derived in panel (b); thus such a state can be created. However, in the case of SRV (6, 3, 2),
the parameters do not fulfill the requirement, and one needs four disjoint perfect matchings of a graph with four vertices. Such a graph does
not exist. Therefore, this quantum state cannot be produced with probabilistic photon pair sources in such a way.

Here we only consider the experimentally most significant
cases with n = 3, which is written as [48]

Z lis Joi+ ),

i=0
=0

Q.

[AME3,d)) = (D1)

SH |

where sums inside kets are computed to be modulo d.
First, we consider the two-dimensional three-particle AME
state, which is

[¥)abe = 5(1000) 4 011) +[101) + [110)). (D2)

Here we apply the technique from the restriction for creat-
ing SRV (A, B, C) states in Fig. 11. Thus we can rewrite such
a state in Eq. (D2) as

[¥)aber = $(10000) + [0110) + [1010) + |1100))

= 3{(101) + [10))4|10)cs + 10000) aper + 11100) gpe }-

(D3)

We show such a graph in Fig. 12, which means that the
quantum state can be experimentally produced.

Now we consider a three-dimensional three-particle AME
state, which is

1
1Y) abe = §(IOOO) +1011) + [022) + |101) + [112)

+1120) + [202) + [210) + [221)).

In an analogous way, such a state can be rewritten as

1
W )aver = AL + 122))100)s + ([12) 4 121))100)

+(100) + [11) + 122))5c|00)ar + [1120) aper
+ |2210>abct}' (D4)

There we would need more than three independent perfect
matchings for a graph with four-vertices. However, such a
graph does not exist. Thus one cannot experimentally produce
the state |[AME(3,3)) in such a way. Similarly, the state
|AME (4, d)) with d > 2 cannot be created in this way.

w— | 00> (~ D
AME(3,2) — (01> L —)
—|10>
a [ 11>
0000 0110
7 v
Omm—O)
C t 1010 1100 )

FIG. 12. A graph for a possible experiment producing the
AME (3, 2) state with an additional trigger. There are four perfect
matchings in the graph, which are described in the solid box. The
coherent superposition of all perfect matchings leads to the quantum
state | V) aper = %(lOOO) +|011) + [101) + [110))]0).
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