English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Disparity sensitivity and binocular integration in mouse visual cortex areas

MPS-Authors
/persons/resource/persons238585

La Chioma,  Alessandro
Department: Synapses-Circuits-Plasticity / Bonhoeffer, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38769

Bonhoeffer,  Tobias
Department: Synapses-Circuits-Plasticity / Bonhoeffer, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38901

Hübener,  Mark
Department: Synapses-Circuits-Plasticity / Bonhoeffer, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

La Chioma, A., Bonhoeffer, T., & Hübener, M. (2020). Disparity sensitivity and binocular integration in mouse visual cortex areas. The Journal of Neuroscience, 40(46), 8883-8899. doi:10.1523/JNEUROSCI.1060-20.2020.


Cite as: https://hdl.handle.net/21.11116/0000-0008-C897-C
Abstract
Binocular disparity, the difference between the two eyes' images, is a powerful cue to generate the 3D depth percept known as stereopsis. In primates, binocular disparity is processed in multiple areas of the visual cortex, with distinct contributions of higher areas to specific aspects of depth perception. Mice, too, can perceive stereoscopic depth, and neurons in primary visual cortex (V1) and higher-order, lateromedial (LM) and rostrolateral (RL) areas were found to be sensitive to binocular disparity. A detailed characterization of disparity tuning across mouse visual areas is lacking, however, and acquiring such data might help clarifying the role of higher areas for disparity processing and establishing putative functional correspond-ences to primate areas. We used two-photon calcium imaging in female mice to characterize the disparity tuning properties of neurons in visual areas V1, LM, and RL in response to dichoptically presented binocular gratings, as well as random dot correlograms (RDC). In all three areas, many neurons were tuned to disparity, showing strong response facilitation or suppression at optimal or null disparity, respectively, even in neurons classified as monocular by conventional ocular dominance (OD) measurements. Neurons in higher areas exhibited broader and more asymmetric disparity tuning curves compared with V1, as observed in primate visual cortex. Finally, we probed neurons' sensitivity to true stereo correspondence by comparing responses to correlated RDC (cRDC) and anticorrelated RDC (aRDC). Area LM, akin to primate ventral visual stream areas, showed higher selectivity for correlated stimuli and reduced anticorrelated responses, indicating higher-level disparity processing in LM compared with V1 and RL.