English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONS
  This item is discarded!Release HistoryDetailsSummary

Discarded

Journal Article

Exotic nuclear spin behavior in dendritic macromolecules

MPS-Authors
/persons/resource/persons269029

Saul,  P.
Research Group of NMR Signal Enhancement, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons220779

Mamone,  S.
Research Group of NMR Signal Enhancement, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons224498

Meyer,  A.
Research Group of Electron Paramagnetic Resonance, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons206060

Glöggler,  S.
Research Group of NMR Signal Enhancement, MPI for Biophysical Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Saul, P., Yang, S., Mamone, S., Opazo, F., Meyer, A., Rizzoli, S. O., et al. (2021). Exotic nuclear spin behavior in dendritic macromolecules. Physical Chemistry Chemical Physics, 23(46), 26349-26355. doi:10.1039/D1CP04483D.


Abstract
Dendrimers are a class of branched, highly symmetric macromolecules that have been shown to be useful for a vast number of different applications. Potential uses as fluorescence sensors, in catalysis and perhaps most importantly in medical applications as drug delivery systems or cytotoxica have been proposed. Herein we report on an exotic behaviour of the nuclear spins in a dendritic macromolecule in the presence of different paramagnetic ions. We show that the stability of the long lived nuclear singlet state, is affected by the presence of Cu(II), whereas other ions did not have any influence at all. This effect could not be observed in the case of a simple tripeptide, in which the nuclear singlet stability was influenced by all investigated paramagnetic ions, a potentially useful effect in the development of Cu(II) selective probes. By adding a fluorescent marker to our molecule we could show that the nuclear singlet multimer (NUSIMER) is taken up by living cells. Furthermore we were able to show that nuclear singlet state NMR can be used to investigate the NUSIMER in the presence of living cells, showing that an application in in vivo NMR can be feasible.