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Abstract

In a recent issue of the Journal of Language Evolution, Syrjänen et al. (2021) investigate the suitability

of computing Cummins and McInerney’s (2011) TIGER rates for estimating the tree-likeness of linguis-

tic datasets compiled for phylogenetic reconstruction. The authors test the TIGER rates on a diverse

sample of simulated data, which by and large confirms the usefulness of TIGER rates as an analytic

tool for investigating linguistic data, but they test them only on one real-world dataset of Uralic lan-

guages which turns out to behave quite differently from the simulated data. When testing the TIGER

rates on additional datasets, I detected a bias in the computation which leads to an unnatural increase

in those cases where a dataset contains many characters with invariant or singleton states. To over-

come this problem, I suggest a modified variant of TIGER rates, which is provided in the form of a

freely available Python package. Testing the modified TIGER scores on the simulated data of Syrjänen

et al. shows that the corrected TIGER rates still readily distinguish between different degrees of tree-

likeness. Testing them on a dataset in which the number of singletons and invariants was artificially

increased further shows that the corrected TIGER rates are not influenced by the bias. A final tests on

seven linguistic datasets show the usefulness of the corrected TIGER rates on a larger variety of lin-

guistic datasets and illustrate the importance to take specific aspects of linguistic data into account

when using biological methods in the domain of language evolution.
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1. Introduction

When I saw the recent study by Syrjänen et al. (2021), in

which the authors presented how the TIGER scores—a

way to score the compatibility of phylogenetic charac-

ters in order to assess their tree-likeness originally

introduced by Cummins and McInerney (2011)—can be

applied to linguistic data, I was very intrigued by this

approach, since it was very straightforward both regard-

ing the conceptualization and the implementation.

Assuming that the computation of TIGER scores would

be very useful for my own work, I immediately checked

how they could be applied to additional linguistic data-

sets, which we had compiled in past research that aimed

at unifying cross-linguistic datasets (List et al. 2021).

Since the implementation of the authors did not offer

the possibility to analyse a given dataset directly from

within a Python script, I decided to follow the instruc-

tions by both Syrjänen et al. (2021) and Cummins and
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McInerney (2011) to write a very short Python package

that would allow to compute the TIGER scores and also

provide full coverage with respect to unit tests. This

package, which is curated on GitHub at https://github.

com/pylogeny/tiger and archived with PyPi (https://pypi.

org/projects/pylotiger) in Version 1.0 and Zenodo

(https://doi.org/10.5281/zenodo.5812242) is freely

available and published under a permissive license and

was tested to yield identical scores with the implementa-

tion by Syrjänen et al. (2021).

When testing this package on additional datasets,

however, I realized that the original TIGER scores show

a certain bias that makes them very vulnerable when

cognate sets are sparsely or densely distributed across a

given set of words. TIGER scores estimate how well the

multi-states of one character conform in their structure

with the multi-states in another character by comparing

the number of sets of identical character states in the se-

cond character that are contained in the sets of identical

character states in the first character. Since no pruning

of characters is carried out before computing the TIGER

scores, the current computation yields a direct bias to-

wards those cases in which one character is represented

by a single state across all taxonomic units (so-called

‘invariants’) and towards those cases in which all taxo-

nomic units show distinct character states for a given

character (so-called ‘singletons’). Both invariants and

singletons are classical examples for parsimony-

uninformative characters, and while it makes sense to

include them in Bayesian phylogenetic analyses, their

role is at least dubious when it comes to computing the

tree-likeness of the characters in a dataset.

2. Original TIGER rates

As a concrete example, consider the case of five

language varieties A, B, C, D, and E, which have all the

same character state a for a character X and states a, b,

c, d, and e for a character Y. In order to compare the

TIGER scores of character X against character Y, we

first determine the sets of language varieties (so-called

set partitions) defined by both characters. The character

X yields one set fA, B, C, D, Eg while character Y yields

five sets containing one variety each fAg fBg fCg fDg
fEg. If we now compute the partition agreement score,

which is the crucial component of the TIGER scores, we

iterate over each partition in character Y and check if

this partition is contained in any partition in our charac-

ter X. Since the set partitions for character Y consists of

five sets with one variety each, while character X con-

sists of one sole partition, all five set partitions appear as

subsets of the set partition in character X. The resulting

partition agreement score is therefore 1, since we count

the number of partitions that appear as subsets (includ-

ing identical partitions) and divide it by the total number

of partitions in character Y, which yields 5/5¼ 1. If we

compare character Y against character Z, however, we

can see that there is only one partition in character X

which does not appear as subset of any partition in char-

acter Y, and as a result, the partition agreement score

will be 0/1¼ 0.

Adding a third character Z with states a, a, a, b, and

b for our five varieties shows that the scores of 1 and 0

are no coincidence. In all cases in which we compare

any character against our character Y, we will receive a

partition agreement score of 0 (which would indicate

full tree-likeness). In the same way, in all cases in which

we compare our character X against any other charac-

ter, we will receive a score of 0 as well. As a result,

any dataset that contains many invariant or singleton

characters will necessarily give the impression of having

a high number of compatible characters that suggest a

high tree-likeness of the underlying data. Since neither

character X nor character Y yield any phylogenetically

interesting information, this behaviour of the TIGER

scores points to a bias in those cases where the density

of cognates is either high or low. If there are many sin-

gletons in a dataset, TIGER scores will increase overall,

since every other character in the data is compatible

with these singletons. Similarly, if there are many invari-

ant cognate sets, they will be compatible with all other

characters and add a ‘bubble’ on the top of the violin

plots that Syrjänen et al. (2021) used to visualize the

distributions of the TIGER rates.

An additional bias that we can observe in the TIGER

rates are those cases in which we have partially overlap-

ping set partitions. As an example, consider the charac-

ter L with states a, a, a, b, b and the character M with

states d, d, c, c, c. The partition agreement score based

on the TIGER rates would yield 0.5 for both cases, since

we divide the number of sets in one partition (two in

both cases) by the number of compatible characters (1 in

both cases, state b when comparing L with M and state

d when comparing M with L). This result seems unsatis-

fying, it would be the same if we compared a character J

with states e, e, e, f, g with our character L, where we

have again two sets in L and one of them being compat-

ible with J, although intuitively, one would assume that

the compatibility of J with L should be higher. The rea-

son for this problem is that the TIGER scores do not

take intersections in partitions into account. When com-

paring L with M, we find three sets in M which share at

least one taxonomic unit with sets in L (state d in M

with taxonomic units AB shares the units AB with state
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a in L with its taxonomic units ABC, state c in L with its

taxonomic units ABC shares unit C with state a in M

and units BC with state b in M). To count the compati-

bility of L compared with M, it would therefore be more

consequent to divide by the number of sets in M that

share at least one taxonomic unit with a set in L, which

would be three in our case, yielding the score 0.33 (one-

third) both for L compared with M and for M compared

with L .

3. Corrected TIGER rates

We can avoid the bias by means of an extended, cor-

rected calculation for the partition agreement score.

This corrected partition agreement score accounts for

the intersection bias mentioned in the previous para-

graph and additionally ignores singleton and invariant

cognate sets. Since characters can have states that are

polymorphic, resulting from synonymous word forms,

the correction for invariants and singletons is limited to

characters with identical cognate sets for all words in a

given meaning slot, but has to be calculated by checking

the set partitions for each character, excluding either

those which comprise only one taxonomic unit, or those

which comprise the full set of taxa in a given sample.

The corrected partition agreement scores are also avail-

able from the new Python implementation of the TIGER

rates and can be invoked by changing the function that

computes the partition agreement scores.

4. Experiments

4.1 Testing corrected TIGER rates on simulated
data

The benefits of the corrected TIGER rates can be illus-

trated in three experiments. In the first experiment, we

look at the simulated data provided by Syrjänen et al.

(2021) and contrast the original TIGER rates with the

corrected TIGER rates to see if the major discrimination

between different data types (many borrowings, dialect

chains, etc.) can be preserved. In order to do so, I first

ran the code by Syrjänen et al. (2021) to compute the

simulations for different types of phylogenies, ranging

from a pure tree via different degrees of borrowings up

to dialect chains, since the authors themselves have not

shared the actual simulations in their supplement. I then

computed the TIGER rates both in the original and the

corrected version in order to check that the corrected

TIGER rates preserve the rough discriminative function

reported by Syrjänen et al. (2021).

From the results in Table 1, we can see that the cor-

rected TIGER rates preserve the distinctive function of

the original TIGER rates, while at the same time leading

to larger differences between the individual subsets. This

experiment thus illustrates that the key function of the

TIGER scores that Syrjänen et al. (2021) reported based

on their simulated data is preserved with the corrected

TIGER rates.

4.2 Testing corrected TIGER rates on artificially
modified data

In the second experiment, we look at the degree by which

TIGER rates and corrected TIGER rates can be influ-

enced by singleton and invariant character states. Since—

as I have shown before—singletons and invariants will

both lead to an increase of TIGER rates, it is interesting

to investigate how far this influence can go if we artifi-

cially increase the number of singletons and invariants in

a dataset. In a first run, we thus test what happens if we

turn a certain proportion of the characters in a linguistic

datasets into singleton cognate sets. Using the Uralex

data presented by Syrjänen et al. (2021), I designed an

experiment which starts from 20% and then proceeds in

steps of 20% until 80% is reached, turning the respective

proportion of characters into singleton cognates and

measuring the TIGER rates both in their original and

their corrected version. For each run, 100 trials were car-

ried out. The results are shown in Table 2. As can be

seen from this table, the original TIGER values tend to

increase as the amount of singletons in the data increases,

while the corrected TIER values remain stable, although

the number of valid characters that are considered in the

computation shrinks (as expected).

We can test the influence of invariant cognate sets in

the same way by systematically turning certain propor-

tions of cognate sets in our data into invariants. The

results for this test are shown in Table 3. As can be seen

from the table, the invariants do not lead to an increase

of the classical TIGER scores at first. On the opposite,

the scores decrease at first, reaching their lowest point at

a proportion of 0.6, before they grow again with

Table 1.Comparing original and corrected TIGER rates on

simulated data.

Datasets TIGER C-TIGER

pure_tree 0.80 6 0.02 0.58 6 0.06

borrowing_05 0.78 6 0.02 0.50 6 0.05

borrowing_10 0.76 6 0.02 0.44 6 0.05

borrowing_15 0.75 6 0.01 0.40 6 0.04

borrowing_20 0.73 6 0.01 0.37 6 0.04

Dialect 0.65 6 0.02 0.19 6 0.04

swamp 0.58 6 0.01 0.07 6 0.01
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proportion 0.8. The reason for this behaviour can be

found in the fact that the Uralex data have already a

large proportion of singleton character states, which

are—of course—highly compatible among themselves,

but will be successively deleted, when being replaced by

invariants. This shows—what should not be surpris-

ing—that the influence of high amounts of singletons

and invariants on the original TIGER scores also

depends on the peculiarities of the overall distribution of

cognate sets over concepts.

4.3 Testing corrected TIGER rates on linguistic
data

In the last experiment, we look into ‘real’ linguistic data

and the consequences of invariants and singletons for

TIGER rates. For this purpose, I have compiled a collec-

tion of seven phylogenetic datasets of different cognate

density, taken from the Lexibank repository (List et al.

2021), where lexical dataset suitable for phylogenetic

analyses are collected and offered in the form of Cross-

Linguistic Data Formats (CLDF), a format specification

that increases the comparability and interoperability of

cross-linguistic datasets (Forkel et al. 2018). These seven

datasets include the Uralex data by Syrjänen et al.

(2021), as well as data from Dravidian languages

(Kolipakam et al. 2018), Mixe-Zoquean languages

(Cysouw et al. 2006), Aslian languages (Dunn et al.

2013), Semitic languages (Feleke 2021), Japonic

languages (Hattori 1973), and Palaungic languages

(Deepadung et al. 2015). These datasets differ with

respect to the number of languages, the number of

concepts, and also with respect to the density of cog-

nates, as reflected by the diversity index which I pro-

posed earlier (List 2014, 188), and which divides the

number of cognate sets minus the number of concepts

by the number of words minus the number of concepts.

For all datasets, I computed the classical TIGER rates,

the corrected TIGER rates, the Delta Scores (Holland

et al. 2002) in the implementation by Greenhill (2016),

and the distribution of cognate set sizes.

The results of this test are shown in Table 4. As can

be seen from this table, the corrected TIGER rates differ

from the original TIGER rates in some important

respects. While both rates rank the Uralic data highest

with respect to tree-likeness, the Dravidian data receive

a remarkably high score in the original TIGER rates,

while the dataset is ranked last in the corrected TIGER

rates, which corresponds well to the fact that the

Dravidian data also receive the highest Delta scores in

the sample.

In Fig. 1, the original and corrected TIGER rates

were plotted along with the cognate set size distribu-

tions. As can be seen from this figure, comparing the

high rates of singletons in the first five datasets and the

extremely relatively high rates of invariants in Japonic

and Palaungic, as shown in Table 4, finds a direct

Table 3.Comparing original and corrected TIGER rates on data with artificially increased proportions of invariants.

Proportion Characters CS-Size TIGER C-TIGER

0 313/308 11.73 6 5.40 0.71 6 0.09 0.27 6 0.19

0.2 313/245.17 9.06 6 6.17 0.60 6 0.17 0.30 6 0.20

0.4 313/184.42 7.04 6 6.36 0.55 6 0.24 0.30 6 0.20

0.6 313/122.51 5.01 6 5.92 0.53 6 0.31 0.30 6 0.20

0.8 313/61.87 3.04 6 4.68 0.53 6 0.36 0.30 6 0.20

Note: For details on the columns, see Table 2.

Table 2.Comparing original and corrected TIGER rates on data with artificially increased proportions of singletons.

Proportion Characters CS-Size TIGER C-TIGER

0 313/307 11.09 6 5.18 0.68 6 0.13 0.30 6 0.20

0.2 313/246.00 13.75 6 7.42 0.71 6 0.13 0.30 6 0.20

0.4 313/186.50 17.08 6 8.10 0.76 6 0.11 0.29 6 0.20

0.6 313/121.50 19.63 6 8.01 0.81 6 0.10 0.29 6 0.19

0.8 313/60.50 22.65 6 6.49 0.87 6 0.10 0.28 6 0.19

Notes: Column ‘Proportion’ points to the amount of singletons added in the respective run. Column ‘Characters’ shows the number of characters considered,

which is stable for the original TIGER rates but decreases when using the corrected ones. Column ‘CS-Size’ refers to the average size of the cognate sets in the data

along with the standard deviation. Columns ‘TIGER’ and ‘C-TIGER’ provide the original and corrected TIGER rates along with the standard deviation.
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reflection in the distribution of the original TIGER

rates, which is successfully handled in the corrected

TIGER rates.

5. Summary

While the TIGER scores as presented by Syrjänen et al.

(2021) already gave the impression of an intriguingly

useful way to assess the tree-likeness of linguistic

datasets, their value can even be increased more by cor-

recting systematically for singletons and invariants. This

does not mean that the last word on TIGER rates and

other methods for assessing the tree-likeness of linguistic

data has been spoken, and it is quite likely that scholars

will find better solutions than the one proposed here in

the future. What I think is important with respect to

what I have outlined here is the role which the

Table 4.Comparing original and corrected TIGER rates on seven linguistic datasets.

Dataset Languages Concepts Diversity Chars Singletons Invariants TIGER C-TIGER Delta

Uralic 27 313 0.37 313/307 0.64 0.00 0.68 6 0.13 0.30 6 0.20 0.17 6 0.03

Dravidian 20 100 0.33 100/97 0.64 0.00 0.65 6 0.10 0.20 6 0.17 0.30 6 0.04

Mixe-Zoquean 10 110 0.23 110/89 0.41 0.06 0.55 6 0.24 0.28 6 0.16 0.18 6 0.03

Aslian 32 146 0.19 146/146 0.40 0.00 0.55 6 0.10 0.20 6 0.16 0.24 6 0.02

Semitic 21 150 0.18 150/144 0.47 0.01 0.58 6 0.13 0.21 6 0.21 0.26 6 0.03

Japonic 10 200 0.15 200/124 0.40 0.17 0.60 6 0.32 0.26 6 0.17 0.27 6 0.07

Palaung 16 100 0.08 100/68 0.16 0.15 0.53 6 0.34 0.28 6 0.16 0.20 6 0.02

Figure 1.Comparing original and corrected TIGER rates on linguistic datasets. Blue violins reflect the original TIGER rates, red vio-

lins reflect the corrected TIGER rates, and dark gray violins reflect the proportion of cognate set sizes, which are calculated by divid-

ing the size of a cognate set by the number of languages in the sample. Note that the minimal score for the cognate set size is 1/n,

where n is the number of languages in the sample. For this reason, datasets with fewer languages have higher minimal values in

the plots. The black dots reflect the calculated diversity indices described in the main text.
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peculiarities of linguistic data play when applying meth-

ods originally designed for biological data in the linguis-

tic domain. Since typical datasets in biology do not seem

to suffer that much from singleton and invariant charac-

ters, it is quite likely that the TIGER rates as proposed

by Cummins and McInerney (2011) are still the best

choice. For the case of linguistics, however, I think my

analyses show that—as long as no better methods will

be proposed—the corrected TIGER rates are a more reli-

able choice to assess the tree-likeness of a given dataset.
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Supplementary material

The supplementary material accompanying this study

consists in the new Python package for the computation

of TIGER rates and corrected TIGER rates and the data

and code needed to replicate the three experiments

reported here. The material is curated on GitHub at

https://github.com/pylogeny/tiger (Version 1.0.0) and

archived with Zenodo (https://doi.org/10.5281/zenodo.

5812242). The Python package has also been uploaded

tothe Python Package Index at https://pypi.org/project/

pylotiger/. The experiments can be found in the folder

examples along with instructions for replication.
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