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In this work, we investigate the nontrivial single-photon scattering properties of giant atoms cou-
pled to waveguides that can be an effective platform for realising nonreciprocal and chiral quantum
optics. For the two-level giant-atom setup, we identify the condition for nonreciprocal transmission:
the external atomic dissipation is further required other than the breaking of time-reversal symmetry
by local coupling phases. Especially, in the non-Markovian regime, unconventional revival peaks pe-
riodically appear in the reflection spectrum of such a two-level giant-atom system. To explore more
interesting scattering behaviours, we further extend the two-level giant-atom system to A-type and
V-type three-level giant atoms coupled to double waveguides without external atomic dissipation.
We analyse the different physical mechanisms for the nonreciprocal and chiral scattering proper-
ties of the A-type and V-type giant atoms. Our proposed giant-atom structures have potential
applications of high-efficient single-photon targeted router and circulator for quantum information

precessing.

INTRODUCTION

Waveguide quantum electrodynamics (QED) studies
the interactions between atoms and one-dimensional
waveguide modes, providing an excellent platform for
constructing long-range interactions and engineering
large-scale quantum networks [1-5]. In experiments, typ-
ical candidates of implementing waveguide QED systems
include quantum dots coupled to photonic crystal waveg-
uides [6, 7], superconducting qubits coupled to transmis-
sion lines [8, 9], ultracold atoms coupled to optical fibers
[10, 11], etc. To date, waveguide QED has inspired a
number of exotic phenomena, such as atom-like mirrors
[12, 13], dynamic Casimir effects [14], single-photon rout-
ing [15-17], bound states in the continuum [18].

In general, the atom can be viewed as a point when
coupled with the waveguide due to its negligible size com-
pared to the wavelength of waveguide modes. Neverthe-
less, in a recent experiment, a superconducting trans-
mon qubit was designed to interact with surface acoustic
waves (SAWSs) via multiple coupling points whose sepa-
ration distances can be much larger than the wavelength
of SAWs [19]. Instead, a generalized theory called “gi-
ant atom” has been developed to describe such situa-
tions [20]. Since the first theoretical study in 2014 [21],
the giant-atom scheme has been broadly investigated
with superconducting qubits [22-26], coupled waveguide
arrays [27], and cold atoms [28]. With such nonlocal
coupling schemes, a series of tempting quantum phe-
nomena have been demonstrated, including frequency-
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dependent relaxation rate and Lamb shift [21, 25, 29],
non-exponential atomic decay [22, 23|, decoherence-free
interatomic interaction [25, 30, 31], exotic bound states
[24, 32], and modified topological effects [33]. Giant
atoms have emerged as a new paradigm in quantum op-
tics and require more comprehensive understanding in
physics.

On the other hand, controlling the flow of photons,
especially realising asymmetric photonic propagations in
waveguide QED systems, is crucial for constructing non-
reciprocal optical element devices [34-39]. To this end,
one could break the time-reversal symmetry of the sys-
tem such that the interactions between the atoms and
the waveguide modes are direction-dependent [16, 40—
44]. Such a paradigm, also known as chiral quantum
optics [40], can be achieved via several methods, such
as the spin-momentum locking effect [45-47], inserting
circulators in superconducting circuits [48-50], applying
topological waveguides [51, 52], and synthesizing artifi-
cial gauge fields [53]. Based on the chiral interaction,
targeted photonic routers [17], single-photon circulators
[54, 55], cascaded quantum networks [56-58], and en-
hanced entanglement [59, 60] have been realised. Re-
cently, the concept of giant atom has been introduced
to chiral quantum optics, making some advanced func-
tionalities possible, such as chiral bound states [32], dark
states without coherent drives [31], and non-Markovicity
induced nonreciprocity [61]. These seminal works inspire
us to explore more intriguing effects in chiral giant-atom
setups, especially with multi-level structure [61-63].

In this paper, we investigate how external atomic
dissipations outside the waveguide and local coupling
phases affect the single-photon scattering properties of a
two-level giant atom with two atom-waveguide coupling
points. By taking account of the phase difference between
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two coupling points, we find that the giant atom behaves
like a chiral small atom in the Markovian regime but ex-
hibits peculiar giant-atom effects in the non-Markovian
regime. We physically demonstrate that the breaking of
time-reversal symmetry by local coupling phases is not
sufficient for realising nonreciprocal photon scatterings.
In fact, in the absence of the external atomic dissipation,
the scatterings are always reciprocal even if the atomic
spontaneous emission becomes chiral [63, 64]. In order
to realise asymmetric scattering for a giant atom with-
out external dissipation, we propose a V-type giant atom
coupled to two waveguides. In such way, we realise the
nonreciprocal and chiral scatterings with single V-type
atom. Targeted routing and circulation schemes can also
be realised via such scatterings with proper phases. Fi-
nally, we consider a A-type giant atom and compare its
properties with that of V-type one. We reveal that, the
nonreciprocial scatterings stem from the quantum inter-
ference effect in the closed-loop atom-level structure for
the A-type giant atom, but from the nontrivial coupling
phase difference for the V-type giant atom.

RESULTS AND DISCUSSION

A. Two-level giant atom coupled to a single
waveguide

As schematically shown in Fig. 1(a), we consider a two-
level giant atom coupled to a waveguide at two separated
points £ = 0 and « = d. The atom-waveguide coupling
coefficients are ge®t and ge'?2, respectively, with local
coupling phases #; and 6, for inducing some intriguing
interference effects to the scattering properties as will
be discussed below. With superconducting quantum de-
vices, the local coupling phases can be introduced with
Josephson loops threaded by external fluxes [64].

Under the rotating wave approximation (RWA), the
real-space Hamiltonian of the model can be written as
(h =1 hereafter)

H:Hw+Ha+HIa
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Here H,, represents the free Hamiltonian of the waveg-
uide modes with v, being the group velocity of photons

in the waveguide. ag, (a}{ ) are the bosonic annihi-
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FIG. 1. (a) Schematic configuration of a two-level giant atom
coupled to a waveguide at * = 0 and z = d, respectively,
with individual local coupling phases 61,2. (b) Two paths of
a single photon propagating from port 1 to port 2 (left) or
from port 2 to port 1 (right).

lation (creation) operators of the right-going and left-
going photons in the waveguide, respectively; wq is the
frequency around which the dispersion relation of the
waveguide mode is linearised [1, 65]. H, is for the atom,
where w, describes the transition frequency between the
ground state |g) and the excited state |e); 7. is the ex-
ternal atomic dissipation rate due to the non-waveguide
modes in the environment. Hj describes the interactions
between the atom and the waveguide, where the Dirac
delta functions é(x) and §(x — d) indicate that the atom-
waveguide couplings occur at z = 0 and = = d, respec-
tively. Besides, there is an accumulated phase ¢ = kd
of photons between two coupling points, where k is the
renormalized wave vector that satisfies the linearised dis-
persion relation E = wq+kv, (E is the eigenenergy as de-
termined later in Eq. (3)). The relevant physics discussed
in this work is valid for £ ~ w,, that is, kvgy ~ we — wo.

Considering that the total excitation number is con-
served in RWA | the eigenstate of the system can be ex-
pressed in the single-excitation subspace as
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where ®r 1. (x) are the density of probability amplitudes
of creating the right-going and left-going photons at po-
sition x, respectively; u, is the excitation amplitude of
the atom; |0, g) denotes the vacuum state of the system.
The probability amplitudes can be determined by solving



the eigenequation H|¥) = E|¥), which leads to

Edg(z) = (wo - ivg%)ég(x)

+ g[ewlé(x) + €25z — d)] Ue,
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Assuming that a single photon with wave vector k (k > 0)
is incident from port 1 of the waveguide. Then the wave
functions ®p 1 (z) can be written in the forms of

Pp(z) =™ {O(—2) + A[O(z) — O(z — d)]
+t0(z—d)}, (4)
@y (z) = e *{rO(—z) + B[O(z) — O(z — d)] },

where ©(z) is the Heaviside step function. Here, t and r
denote the single-photon transmission and reflection am-
plitudes in the regions of x > d and = < 0, respectively.
We define A and B as the probability amplitudes for the
right-going and left-going photons between the two cou-
pling points (0 < z < d), respectively.

Substituting Eq. (4) into Eq. (3), one obtain
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with A = E — w, being the detuning of frequency be-
tween the incident photon and the atomic transition fre-
quency. From the condition F ~ w., we work in the dis-
persive regime where the detuning is much smaller than
the atomic transition frequency (deducting the offset wq
in the linear dispersion) as |A/(we — wp)| < 1. Then the
transmission and reflection amplitudes can be obtained
from solving Eq. (5) as

P A +i% — 2lesing
A +i% +2i0(1 + e'Pcosh)’
[2i0(1 + e*®cost) + 2Tesing] [1 + e!0+9)]

" [A+i% + 2iT(1 + ecost)] [1 + 6=9)] (6b)
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where 6 = 05 — 61 is the phase difference between the two
atom-waveguide coupling channels and I' = g% /v, is the
rate of the atomic emission into the waveguide. Com-
pared with the setup of a two-level small atom coupled

locally to a waveguide, such giant atom shows phase-
dependent effective detuning and decay rate given by
A —2T'cosfsing and 7, /24 2T'(1+ cosfcosg), respectively
[21]. In fact, a left-incident (right-incident) photon can
propagate from z = 0 to z = d (from = = d to z = 0)
via two different paths: it can either keep on propagating
along the waveguide, or be absorbed at x = 0 (z = d)
and re-emitted at © = d (¢ = 0) by the atom, as shown
in Fig. 1(b). For the left-incident photon, the two paths
yield phase accumulations ¢ and 6, respectively, which
determine the phase-dependent interference effect jointly.

For the right-incident photon, the propagation process
is equivalent to that of the left-incident one yet with
exchanged coupling phases, i.e., 81 < 03. Therefore,
the transmission and reflection amplitudes for the right-
incident photon are expressed as

A+l - 2T'e~sing
A4 i% +2i0(1 + ePcosh)’
[2i0(1 + €'®cost) + 2Te~Psing] [1 + e~ (O =9)]
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(7b)
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which are also consistent with the results obtained by
rewriting the wave functions for the right-incident pho-
ton. For d = 0 (¢ = 0), the system is reduced to a
two-level small atom coupled to the waveguide at a sin-
gle point; consequently, the phase difference 6 is also
nonexistent. In addition, note that the accumulated
phase of the propagating photons can be written as
¢ =kd=T(we —wo+ A) = ¢o + 7A with the time delay
T =d/vg and ¢g = 7(we —wp). Thus, ¢ strongly depends
on the frequency of incident photon in the non-Markovian
regime, where the delay time 7 is nonnegligible [61]. As
we discussed above, the linearised dispersion of waveg-
uide is used and we have the condition that |TA/¢g| < 1
for the relevant physics around the atomic transition fre-
quency [61].

1. Reciprocal and nonreciprocal transmissions

We first focus on the Markovian regime of 7 <« 1/(2'+
Ye/2), where ¢ = ¢ according to the Taylor expansion
because this substitution gives correct Lamb shift and
modified emission rate in the Markovian limit [22, 27].
In Fig. 2, we plot the transmission rates Ty o = [t|?
and Tp_,; = |t’|? as functions of the detuning A and the
phase difference 6 with and without external atomic dis-
sipations. Owing to the interference between two photon
paths mentioned above, the scattering behavior changes
periodically with 6. For 7. = 0 as shown in Figs. 2(a)
and 2(b), the single-photon scattering is reciprocal, i.e.,
Ty_,o = Ts_,1, although the time-reversal symmetry is
broken due to the nontrivial phase difference 6 arising
from the interference.

This counterintuitive phenomenon can be explained by
comparing Egs. (6a) and (7a). On one hand, the trans-



FIG. 2. Transmission rates 71— and T5_.1 versus the detun-
ing A and the phase difference 6 with v. = 0 for (a) and (b);
~e/T' = 10 for (c¢) and (d). Other parameters: ¢o = 7/2 and
7' =0.01.

mission amplitudes ¢ and ¢’ share the same denominator
that is an even function of . On the other hand, the nu-
merators of t and ¢’ in Eqgs. (6a) and (7a) can be rewritten
as

A — 2T'singcosf + z(% — 2T'singsing),

A — 2T'singcost + z(% + 2T'singsind).

Equation (8) clearly shows that nonreciprocal single-
photon transmissions (|¢|? # |t'|?) can be achieved only if
a finite external atomic dissipation rate is taken into ac-
count (v > 0). This can be observed by the transmission
spectra shown in Figs. 2(c) and 2(d).

When . = 0, Fig. 3(a) depicts the transmission rates
T1_,o and T5_,; versus the detuning A with various . For
0 =mx/2, we find T1_,2 = To_,1 = 1 over the whole range
of the detuning, implying that reflections are prevented
for both directions. For § = 7, however, the transmission
spectrum exhibits the Lorentzian line shape with phase-
dependent Lamb shift and linewidth (decay rate) [21].
In both cases (6 = 7/2, ), the transmissions are recipro-
cal, yet the atomic excitation probabilities are different
as will be discussed below. When 7. # 0, as shown in
Figs. 3(b) and 3(c), the scattering becomes nonrecipro-
cal if § = 7/2; however, with § = 7, the scatterings are
still reciprocal even in the presence of the external dis-
sipation. The yellow dot-dashed, red dotted, and blue
dashed lines in Fig. 3(d) depict the contrast ratio

_ Ty 1 — T2 )
To 1+ 1150

versus the coupling phase difference 6 with different
atomic dissipation rates. It can be seen that this nonre-
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FIG. 3. Transmission rates 71— and T5_,1 versus the detun-
ing A for (a) v./T' = 0; (b) v./T = 5; (¢) 7./T" = 20 with
¢o = m/2. (d) Contrast ratios I and D versus the coupling
phase difference 6 with ¢o = 7/2. The yellow dot-dashed, red
dotted, and blue dashed lines are I with v./T" =0, 7./T" = 5,
and v./I' = 20, respectively, and the black solid one repre-
sents D independent of v.. (e) Contrast ratio D versus the
phase difference 6 and the propagating phase ¢o. Other pa-
rameters: 71" = 0.01.

ciprocal transmission behaviour is phase-dependent. In-
deed, the above behaviours are easy to be analysed with
Egs. (6a) and (7a).

Furthermore, the underlying physics of the reciprocal
and nonreciprocal scatterings can be understood via ex-
amining the atomic excitation by the single photon. To
this end, we define the contrast ratio D of the atomic
excitation probabilities for two opposite propagating di-
rections as

D= ‘uezﬁ1|2 — |u€1%2|2 (10)
‘u82_>1 |2 + |u€1—>2 |2
with
B t—1
Uey o = _ii[eiel + ei(92+¢’)]a
v (11)
t'—1
u62H1 =

—iL[eif2 4 ¢i(0149)]
Vg

According to Egs. (6a) and (7a), parameters ¢ — 1 and
t’ — 1 have the same denominator containing v, but dif-
ferent numerators without ~y.. Furthermore, because the
denominator that contains v, is eliminated when calcu-
lating Eq. (10), the contrast ratio D is independent of
dissipation rate «.. Note that the contrast ratio D can
be used to capture the difference of the atomic excitation
probabilities for opposite directions even if the eigenstate
Eq. (2) is unnormalized.
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FIG. 4. Reflection rate R versus the detuning A with § = /2
and ¢ = /2.

We plot in Fig. 3(d) the contrast ratio D (black solid
line) as a function of the phase difference 6 with ¢g =
m/2. For § = /2, D = —1 means that the atom can only
be excited by the left-incident photon, and thus the atom-
waveguide interaction becomes ideally chiral [64, 66]. In
this case, the right-incident photon is guided transpar-
ently because it does not interact with the atom. While
in the Markovian regime, the reflections are lacking for
both directions under the ideal chiral coupling [16, 43],
this is in fact not true in the non-Markovian regime as
will be discussed in Sec. IIB. For § = 37/2, D =1 corre-
sponds to the ideal chiral case where the atom can only
be excited by the right-incident photon. For other cases
of D =0and 0 < |D| < 1, the atom-waveguide couplings
are nonchiral and nonideal chiral, respectively. In fact,
the nonreciprocal scatterings arise from the different dis-
sipations into the environment, i.e., the energy loss into
the environment is proportional to the dissipation rate
Y. as well as the atomic population. In addition, we
demonstrate in Fig. 3(e) that the contrast ratio D is also
sensitive to the propagating phase. This provides an al-
ternative way to tune the chirality of the atom-waveguide
interaction and the reciprocal/nonreciprocal scattering
on demand.

The results above can also be interpreted from the as-
pect of Hermitian and non-Hermitian scattering centers
[67-69]. In our system with 7. = 0 (v, # 0), the giant
atom can be regarded as a Hermitian (non-Hermitian)
scattering center of the Aharonov-Bohm structure sup-
porting two spatial interference paths. For the Hermi-
tian case, the scattering remains reciprocal; however,
when introducing an imaginary potential, e.g., the ex-
ternal atomic dissipation, the combination of the non-
Hermiticity and the broken time-reversal symmetry gives
rise to nonreciprocal scatterings [67, 68]. It is noted
that, as discussed in the case in Figs. 3(b) and 3(c)
(0 = =), not all non-Hermitian scattering centers can

demonstrate nonreciprocal transmissions. The excep-
tions include, e.g., P-, T-, or PT-symmetric scattering
centers [67, 69]. In our model, although the giant atom
can exhibit chiral spontaneous emission corresponding to
the time-reversal symmetry breaking if § # nzw (n is an
arbitrary integer) [64], the scatterings are still reciprocal
unless the additional non-Hermiticity (such as external
dissipations) are introduced.

2. Non-Markovian regime

With nontrivial local coupling phases, as demonstrated
above, the current giant-atom model (in the Markovian
regime) is able to simulate a chiral atom-waveguide sys-
tem. However, one important characteristic of the gi-
ant atom is the peculiar scattering behaviours arising in
the non-Markovian regime, where the propagating phase
accumulation ¢ = ¢g + 7A is sensitive to the detun-
ing A due to the large enough 7 that is comparable
to or larger than the lifetime of the atom [27]. Such a
detuning-dependent phase will undoubtedly result in the
non-Markovian features in the transmission and reflec-
tion spectra [23, 61]. Here we just consider our system
in the non-Markovian regime and demonstrate the reflec-
tion with ¢g = w/2 and § = 7/2. Note that the reflection
is totally prevented in the small-atom case with an ideal
chiral coupling, which has been demonstrated in Ref. [16].

We plot in Fig. 4 the reflection rates R = |r|> for
the left-incident photon in the Markovian and non-
Markovian regimes. The yellow solid curve shows that
the reflection in the Markovian regime disappears com-
pletely. Such a reflectionless behavior occurs in the case
of D = #1, independent of the external atomic dissipa-
tion. However, in the non-Markovian regime, due to the
A-dependent propagating phase ¢, the reflection revives
with multiple peaks aligning periodically in the frequency
domain. In addition, the maximums of the reflection
peaks decrease gradually with the increasing of v.. The
underlying physics is that, in the phase accumulation ¢,
the non-Markovian contribution 7A cannot be ignored
relative to ¢g; thus, 7A and ¢ determine the scatter-
ing behaviors jointly. The reflection disappears at some
discrete A points satisfying 7A = nw.

B. Three-level giant atom coupled to double
waveguides

In this section, we extend the giant-atom model to
a multi-level version and demonstrate the possibility
of realising nonreciprocal scatterings without the addi-
tional non-Hermiticity (i.e., external atomic dissipation).
Specifically, we introduce here an additional atomic tran-
sition coupled to other waveguide modes. As shown in
Fig. 5(a), we propose a V-type giant atom coupled to
two waveguides via two different atomic transitions, re-
spectively. Each transition is coupled to the correspond-



ing waveguide at two points, and an external microwave
field is applied to drive the magnetic dipole transition
between two excited states [70]. Such system allows for,
without the help of external dissipation, high-efficiency
single-photon routing and circulating. Furthermore, at
the end of this section, we will also consider a A-type
scheme and compare the differences between these two
three-level structures.

As shown in Fig. 5(a), the atomic transition |e1) <> |g)
of frequency we, is coupled to waveguide W, with com-
plex coupling coefficient g1e?12 at two separated points
x =0 and x = d,, respectively; the transition |es) <> |g)
of we, is coupled to W}, with gg€i93*4 at x =0 and z = dp,
respectively. The excited states |ej 2) are coupled to an
external coherent field of Rabi frequency {2 and initial
phase «. The atom is initialized on the ground state |g).
The Hamiltonian of the V-type giant atom coupled to
two waveguides can be written as

H' = H,, + H, + Hj,

/ oo T 0
H, = dx [aL(x) (wg + Wy ar(x)
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400
H, = / dz{8(z) g™ [afy(x) + al, (2)]g) (e1)
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(12)

where agr /br 1 (a%7L/b%,L) annihilates (creates) right-
going and left-going photons in the waveguide W, /W5,
respectively. In the single-excitation subspace, the eigen-
state of the system can be expressed as

+oo
o) = /_ 12 [®ar(2)aly(z) + Bor(2)a ()
 Bpr(@ly(e) + B @B @] 0. ) )

+ Ue, ‘O,€1> + u62|07 €2>a

where ®yr o1 (Ppr,pr) are the probability amplitudes of
creating the right-going and left-going photons in W,
(Wy), respectively.

Assuming that a photon with wave vector k, is em-
anated from port 1 of W,, the probability amplitudes

x=0 (a) X = db
W, (port 3 port 4
g.e'% gae'% (b)
le)
/ lg2)
lg1)~—Fzip
gre' bo = kod, | 916"
W, (port 1 port 2]
x=0 X = du

FIG. 5. Schematic configuration of the three-level giant atom.
(a) V-type atom: the waveguide W, (W3) is coupled to the
transition |g) <> |e1) (lg) <> |e2)) at two separated points.
The excited states |e1) and |e2) are coupled to an coherent
field Qe'*. (b) A-type atom: W, (W) is coupled to |g1) < |e)
(lg2) <> |e)) at two separated points. Two ground states |g1)
and |g2) are coupled to an coherent field ee®”.

can be written as

Par(w) = € *{O(~z) + M[O(z) — O(z — da)]

+ 81%2@(13 — da)},
D,p(z) = e {51 ,10(—2) + N[O(2) — O(x — d,)] },
Oyr(z) = eik”z{Q [O(z) — O(z — dp)] + 51540(x — dp) },

Dy () = e F {51 ,30(—2) + W[O(z) — O(z — dp)] },
(14)

where the wave vectors k, = (E' — wp)/vy with the
eigenenergy E’ in W, and ky = ko + (We, — We, ) /v in
Wy. When excited to state |e;) by the incident photon
from port 1, the atom can either re-emit a photon with
the same frequency to W, via decaying back to state |g)
directly, or radiate a photon with frequency w,, to W via
first transferring from state |e1) to state |es) due to the
external driving and then decaying to state |g) [62, 71].
If a photon with wave vector k; is sent from port 4 of
Wy, the probability amplitudes can be written as

Dyp(z) = e*™{s4,00(x — d,) + M'[O(z) — O(x — d,)] },

D, () = e " {N'[O(z) — Oz — dy)] + $4510(—2)},

Dpp(z) = ™ {Q'[O(z) — Oz — dy)] + 5440(x — dp) },
(x)

_ e*ik)b@{@(x —dp) + W'[O(z) — O(z — dy)]
+ 84—>3@(_x)}'

(15)

By solving the stationary Schrédinger equation, one can
obtain the scattering amplitudes of V-type giant atom
for this case.



. [

-20 -10 0 10 20 -20 -10 0 10 20

5 S4~>1

A’/I‘l A//Fl

FIG. 6. Scattering probabilities (a) S1-2; (b) S2—1; (¢) S1-4;
(d) Sa—1 versus the detuning A’ and the phase difference 6.
Other parameters: ve, = Ve, = 0, Q = 5I'1, I'2/T1 = 1,
Pa0 = /2.

1. Nonreciprocal scattering

For simplicity, we start by supposing ¢, = 03 = 04, =
0, i.e., the transition |g) <> |e2) is coupled to W, at a
single point. Then, the scattering probabilities can be
calculated from Sy = [s1,2|* and Si_,304) = [s153(4) 2
with the scattering amplitudes given by

A+ Z% — Q2 f —2T"1e"sing,
A+ 2L — Q2 f 4 20T (1 + ei%acosf)’

2™ (5150 — 1)
gl(Al + i’}/ez/Q + ZFQ) [ei91 + ei(92_¢a):|

S1-2 =

(16)

$1-3(4) =

with the detuning A’ = E' — w,, and the atomic emis-
sion rates I'; o = g%yQ/vg. As discussed above, we make
the substitution ¢, = k.d, =~ ¢q0 in the Markovian
regime. Likewise, one can also obtain Sz .1 = |s21]?
and Sp_,3(1) = |$2-,3(1)|* with

A 432 — Q2 f — 2T e~ Psing,
A+ — Q2 f 4 24T (1 + ei®acosh)’

—ia(

S251 =

(17)
g2Q2e " (5951 — 1)

91 (A" + iy, /2 +iD3) [e?02 + i1 —¢a) ]’

5253(4)

which are achieved via exchanging 6; and 6 in Eq. (16).
It is found that s4_,; = so_,3 and thus Sy = |s441]2 =
Sas3.

Compared with Eq. (6a) and Eq. (7a) of the two-level
giant atom, both s;_,5 and ss_,; include an additional
coupling term Q2 f with

_ 1P 4Ty
A 4 (252 +T5)?’

f (18)

which describes the photon transfer from W, to W,. It
can be seen from Eqs. (16)-(18) that, in contrast to the
two-level giant-atom scheme, the transmission between
ports 1 and 2 in W, is nonreciprocal even if the external
dissipations are not considered. In fact, for 7., = v, =
0, the imaginary part of f describing the decay of |es) —
lg) into W, plays the role of an external dissipation for
the transition |e1) — |g).

It is worth noting that the scattering probabilities of
the V-type system are independent of the phase « of the
external coherent field €2 in spite of the closed-loop atom-
level structure. This is because the V-type atom cannot
provide the inner two-path quantum interference. For
instance, when excited to state |e;) by an incident photon
from port 1, the atom may be pumped to state |ez) by
the external field Q and then return to state |g) after
emitting a photon into W3, which is the only path for
the photon transferring from W, to Wj. This is radically
different from the A-type structure as will be discussed in
Sec. IIC. In fact, the photon cannot be routed from W, to
Wy in the absence of the field 2, implying that the V-type
three-level giant atom reduces to a two-level one. This is
also consistent with the fact that S;_,3(4) = S2_,3(4) =0
when Q2 = 0.

Figure 6 shows the single-photon scattering spectra as
functions of the detuning A’ and the phase difference
0. As discussed above, it can be seen from Figs. 6(a)
and 6(b) that the nonreciprocal scattering can still be
realised in W, (S12 # Sa—1) with W, playing the role
of the external thermal reservoir in the two-level scheme
as analysed above. According to the conclusion in Sec. 11,
for 8 # nm and ¢u9 = 7/2 + 2nm, the excitation prob-
abilities |u,|? for two opposite directions are unequal,
i.e., the effective interaction between the atom and W, is
chiral. Then, as shown in Figs. 6(c) and 6(d), the non-
reciprocal scattering between ports 1 and 4 can be led
to by the chiral coupling, since the scattering probabil-
ity S154 (S4—1) is related to the coupling between the
atomic transition |e;) < |g) and the right-going (left-
going) mode in W,. When 0 = 7/2 (37/2), S14 (S4-1)
approaches 0.5 and Sy,1 (S1-4) falls to 0. This corre-
sponds to the ideal chiral case where the atom is only
coupled to the right-going (left-going) modes effectively
in W,. When 6 = 7, the scatterings between ports 1 and
4 are reciprocal, similar to the results of the non-chiral
case in Sec. II.

2. Chiral scattering

Next, we turn to study another kind of asymmetric
scattering phenomenon proposed recently called “chiral
scattering”. Specifically, the transmission from port 1
to port 4 and that from port 2 to port 3 are different.
Quantitatively, the chiral scattering can be evaluated by
the chirality defined as [72]

O S154 — Say3

= o 19
S154 + Sos3 (19)
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Figure 7(a) shows the chirality as a sinusoidal function of
the phase difference 6. In view of this, chiral scatterings
can be observed as long as 6 # nm, where the chirality
C # 0 means S7_,4 # So_,3. This can be further verified
by the scattering spectra as shown in Figs. 7(b) and 7(c).
Note that C = 1 (C' = —1) corresponding to 6 = /2
(6 = 3w/2), implies that only the scattering from port
2 (1) to port 3 (4) is prevented, as shown in Fig. 7(b)
[Fig. 7(c)].

The underlying physics of the chiral scattering can also
be attributed to the difference between the atomic excita-
tion probabilities for two incident directions as discussed
above. The excitation probabilities |uc,|?> by the pho-
ton incident from port 1 and port 2 can be unequal, and
thus the atom is pumped from |e;) to |e2) with unequal
probabilities. This leads to different probabilities of rout-
ing photons from W, to W;. Furthermore, as shown in
Fig. 7, the chiral scattering scheme here shows the in-situ
tunability that the scattering chirality can be controlled
by tuning the phase difference 6.

3. Targeted router and circulator

In this subsection, we would like to demonstrate how
to realise a single-photon targeted router and circulator
based on the asymmetric scatterings above. Specifically,
one can send a single photon deterministically from port
1 to one of the other three ports on demand. Note that
the router and circulator can run with very high efficiency
in such a non-loss system. Here we assume the transition
le2) <> |g) coupled to W), at two separated points, i.e.,
¢y # 0, as shown in Fig. 5(a), and define §' = 6, — 05.

The mechanism of the targeted router can be under-
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FIG. 8. Scattering probabilities versus the detuning A’ for
(a) Q=0,0 =7/2; (b) Q =2I'1, 0§ =7/2, 0 = 7/2; (c)
and (d) Q = 2T, 0 = 7/2, 8 = 37/2. Other parameters:
Yer = VYeq = O, FQ/Fl = 1, and ¢a0 == ¢b0 = 7T/2.

stood from Figs. 8(a)-8(c) showing the scattering prob-
abilities from port 1 to other ports versus the detuning
A’. When turning off the external field (2 = 0), as shown
in Fig. 8(a), the incident photon from port 1 cannot be
routed to Wy; particularly for § = 7/2, the photon is
routed to port 2 totally. Next, we turn on the exter-
nal field to enable photon routing to the desired port
in W, with high efficiency. When setting ' = 7/2, as
shown in Fig. 8(b), a photon resonant with the transition
lg) <> |e1) can be routed from port 1 to port 4 totally.
Likewise, when setting ¢’ = 37/2 as shown in Fig. 8(c),
the resonant photon can be routed to port 3 totally. In
addition, both the propagating phases ¢,9 and ¢y deter-
mine the output port of photons in W}, which is a unique
feature of the giant-atom model.

More interestingly, the V-type giant atom is also a
promising candidate of realizing a single-photon circu-
lator. When turning on the external field and setting
0 = w/2 and ¢ = 37/2, the two waveguides are cou-
pled to the atom with ideal chiral couplings in opposite
manners, respectively. That is to say, the atom is only
coupled to the left-incident photons in W, yet to right-
incident photons in W,. Then, as shown in Fig. 8(d), one
has So_,1 = S3_,4 = 1 over the whole frequency range and
S1.3 = S49 = 1 around the resonance. Consequently,
for a resonant photon, directional scattering along the
direction 1 —+ 3 —+ 4 — 2 — 1 can be realised suggesting
a high-performance single-photon circulation scheme for
quantum networks [54, 55].



4. Comparison with the A-type scheme

Finally, we consider a A-type giant-atom scheme where
the V-type atom in Fig. 5(a) is replaced by a A-type
one in Fig. 5(b) and compare the single-photon scatter-
ings of these two schemes. The A-type structure is con-
structed with an external coherent filed ee?? which cou-
ples the two ground states |g1 2) of a A-type atom that
has been broadly studied to demonstrate quantum inter-
ference phenomena, such as coherent population trapping
[73] and electromagnetically induced transparency [74].

For the A-type giant-atom system, the Hamiltonians
of the atom and the atom-waveguide interaction become

Hy = (g =2 ) |92 (9] + (we =i ) le)el

2
+ (e”?|g1)(go| + H.c.),

+oo
Hi = [ de{s@imne ah(o) + al @)llon) e

— 00

+8(z — d)gre™® [aly(x) + al, ()] |g1) ]
+ () gae" [bly () + b (2)][92) (el
+ 8z — d)gae by (2) + b} (@)]lg2) (e] + Hec. .

(20)

The single-excitation eigenstate of the system takes the
form

“+oo
0= [ do{ [Bun@)ah(o) + Bar(e)al (@)][0.)
+ [@pr ()bl (2) + Bpr (2)b] (2)]10, g2) } + ue|0& €>~)

21

With the same procedure above (see APPENDIX for
more details), one can obtain the scattering probabilities
in this case.

Setting the atom on the ground state |g;) initially, we
plot in Fig. 9 the scattering spectra of 5’1%4 and 5'4H1. It
is worth noting that, even in the absence of the local cou-
pling phases, i.e., § = #’ = 0, the nonreciprocal scatter-
ings still exist. This is obviously distinct from the V-type
case. The nonreciprocity of the V-type case stems from
the effective chiral couplings owing to the nontrivial cou-
pling phase difference, and is independent of the phase of
the external field. For the A-type scheme, however, the
nonreciprocity arises from the typical which-way quan-
tum interference, i.e., the interference between the two
transition paths |g1) — |g2) and |g1) — |e) — |g2). In
this case, the optical responses are typically sensitive to
the phase of the external field encoded in the closed-loop
level structure [75]. However, the main drawback to the
A-type scheme is that one cannot switch on/off the pho-
ton transfer between the two waveguides by tuning the
external field solely.
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FIG. 9. Scattering probabilities versus the detuning A’ with

different 8. Other parameters: 74, = 7. = 0, ¢ = 30I'y,
Fz/rl = 17 and (;5a0 = (Z)b() = 7'('/2.

CONCLUSION

In summary, we have investigated step-by-step the con-
ditions of single-photon nonreciprocal and chiral scatter-
ings in the two-level and three-level giant-atom structures
with tunable local phase on each atom-waveguide cou-
pling. We found that the atomic excitation in the two-
level giant-atom structure depends on the propagation
direction of waveguide modes and can be tuned by the
nontrivial coupling phase difference. In such scenario, our
two-level giant atom in the Markovian regime is equiv-
alent to a two-level small atom chirally coupled to the
waveguide mode. However, it is worth noting that the
realisation of nonreciprocal scatterings requires the com-
bination of the time-reversal symmetry breaking induced
by the local coupling phases and the non-Hermiticity in-
duced by the external atomic dissipation due to the sur-
rounding non-waveguide modes. Moreover, in the non-
Markovian regime, the reflection spectra exhibit peculiar
non-Markovian features with multiple reflection peaks
that are absent in the chiral small-atom case.

For exploring more interesting asymmetric scatter-
ing properties and applications with such giant-atom
structures, we have extended the two-level structure to
the three-level V-type and A-type ones coupled to two
waveguides via different atomic transitions. We found
that, for the atomic transition coupled to one waveguide,
the transition coupled to the other waveguide can serve as
the external dissipation channel. Such three-level giant-
atom structures coupled to double waveguides enable the
nonreciprocal and chiral scatterings without external dis-
sipations. Based on this mechanism, the high-efficiency
single-photon targeted router and circulator can be im-
plemented. Finally, we explained the different physical
mechanisms that lead to the nonreciprocal and chiral
scatterings for the two phase-sensitive closed-loop three-
level giant-atom structures. We believe that our results
have promising applications in designing effective and ef-



ficient single-photon optical elements for quantum net-
work engineering and optical communications.
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APPENDIX: DETAILS OF SOME
CALCULATIONS

By solving the stationary Schrodinger equation with
Eq. (20) and Eq. (21), one can get the equations of the
probability amplitudes as

E&)aR(x) = ( wo —wga )+ ee ﬁ(I)bR( )

)

“915(z) + 61025( ) Ue,
)
)+

JFgl

Ed,p(x) = (wo + zvg ) + eé <I>bL(x)

taile 1915( ”z&( )] ue.

- 9N - .
Edpp(z) = (wo + wg, — wg%ybw(m) +ce ﬂq)aR(x)
+ g0 _ei935(:1c) + €5z — d)_ Ue,

. 9N - ian
Edp(x) = (wo + wy, +zvg%><bbL(z) + ee ﬁ@,“;(a:)

+ g2 _eiegé(z) + e1§(z — d)_ Ue,
Eue = wette + gie” " [®4(0) + ©4r(0)]
+g1e” "% [®ur(d) + ®ar(d)]
+ g2e7 % [ByR(0) + Py (0)]
+ goe™ 194[ br(d) + @y (d )]
(A1)

with 74, = ve = 0. Under the following ansatz

10

D,p(z) = ™" {O(—z) + M[O(z) — O(z — dq)]
+51520(x —d )}

o

o) = e L5 1 0(—2) + N[@(:c) —O(z—da)]},
fiﬁ,R(m‘) = eikbz{Q [@(m) —O(x — db)] + 51540(x — db)},
)

Dy (v) = e 75 ,30(—2) + W[O(z) — Oz — dy)] },
(A2)

equation (Al) can be solved as

0= —’L"Ug(M - 1) + glewlue + 567;5@7
0= —ivg(3152 — J\;[)eik ada 4 gler
€ g, ~
+ iew(Q +51)e 0,

. B ~ . E in, . ~
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(A3)
where A’ = E/ — w,. One can obtain Si s = |51 42
by solving Eq. (A3). Similarly, S, ,; = [341|? is ob-

tained by substituting an ansatz analogous to Eq. (15)
into Eq. (A1).
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