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Using numerically exact methods we study transport in an interacting spin chain which for sufficiently
strong spatially constant electric field is expected to experience Stark many-body localization. We show that
starting from a generic initial state, a spin excitation remains localized only up to a finite delocalization time,
which depends exponentially on the size of the system and the strength of the electric field. This suggests that
bona fide Stark many-body localization occurs only in the thermodynamic limit. We also demonstrate that the
transient localization in a finite system and for electric fields stronger than the interaction strength can be well
approximated by a Magnus expansion up to times which grow with the electric field strength.
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Introduction. Statistical mechanics assumes that isolated,
interacting systems with many degrees of freedom approach
the state of thermal equilibrium. More than a decade ago,
it was argued that in the presence of a sufficiently strong
disorder, this assumption can be defied, using a mecha-
nism known as many-body localization (MBL) [1–7]. If such
systems are isolated from the environment they will never
thermalize. Perfect isolation from the environment is chal-
lenging in conventional condensed matter systems due to
inevitable presence of phonons [8,9]; however, evidence of
MBL was obtained in numerous experiments in cold atoms in
both one-dimensional [10–12] and two-dimensional systems
[13]. While coupling to an external environment or a noise
source is detrimental to MBL [14,15], it was shown to be
stable to periodic driving at sufficiently high frequencies, a
phenomenon known as Floquet MBL [16–19]. Theoretical
arguments in favor of MBL require the localization of all
the single-particle states [1,20]. For quenched disorder this
requirement is naturally satisfied in one- and two-dimensional
systems due to Anderson localization [21]. Various attempts
to relax this requirement were performed by considering mod-
els where some of the single-particle states are delocalized
[22–29] as also translationally invariant models where all
of the states are delocalized in the absence of interactions
[28,30–38]. However, the observed localization is far from
being convincing and typically suffers from severe finite-size
effects [36]. Moreover, while some of these models show
robust localization for special initial states, most initial states
are apparently delocalized [28,30].

Anderson localization is not the only mechanism which
can be used to localize the single-particle states. Single-
particle states can be localized by a periodic-in-time, spatially
uniform electric field at certain drive frequencies [39,40], and
also by a static uniform electric field and any field strength

[41]. The former is known as dynamic localization, and the
latter as Wannier-Stark localization. While it was shown that
dynamic localization is not stable to the addition of interac-
tions [42], Wannier-Stark localization was argued to be stable
to interactions for sufficiently strong electric fields [43,44],
a phenomenon dubbed Stark MBL. Via a gauge change,
constant electric field can be replaced by a time-dependent
vector potential (see Fig. 1). Therefore the Stark problem is
equivalent to a periodically driven translationally invariant
interacting model; see Eq. (3). The mechanism behind Stark
MBL is currently under debate, since many of the arguments
of Refs. [1,20] cannot be readily applied due to proliferation
of resonances, which are known to induce asymptotic delo-
calization in certain cases [45]. It was proposed that Stark
MBL follows from an approximate “shattering” of the Hilbert
space due to an almost conservation of the dipole moment
[44,46,47]. This argument is however applicable only for an
infinite electric field, γ , where jumps between sites are pro-
hibited due to energy conservation (see Fig. 1), and cannot be
easily generalized for finite and modest electric fields where
the Stark-MBL transition ostensibly occurs [43,44,48].

The dynamics in both localized and delocalized phases
was studied theoretically [43,44,49–51] and experimentally
[52–54] starting from special initial states. Two-dimensional
systems are delocalized and show subdiffusive transport
[49,52]. For one-dimensional systems and sufficiently strong
electric fields both charge density wave (CDW) [43,44,53,54]
and domain-wall initial states [51] do not appear to melt
completely. In fact in Ref. [51] it was argued that the system is
localized in the thermodynamic limit, for any nonzero electric
field, though Ref. [55] suggested that this is a special property
of domain-wall initial states.

In this Letter, we consider the nonequilibrium dynamics in
a one-dimensional Stark-MBL system starting from a generic
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FIG. 1. A schematic representation of the Stark localization
problem in two gauges. The upper panel shows the static gauge,
where particles are subject to a tilted potential. The bottom panel
shows a dynamic gauge, where the scalar potential is written as a
“vector potential,” which produces time-dependent hopping.

initial state, which corresponds to an average over all possible
initial states. We demonstrate that in both presumably delo-
calized and localized regions, a local spin excitation remains
localized for increasingly long times when the system size
is increased, suggesting that transport might be completely
suppressed only in the thermodynamic limit.

Model. The interacting Stark model is described by the
following Hamiltonian,

Ĥ =
L−1∑
j=1

Jxy

2
(Ŝ+

j Ŝ−
j+1 + H.c.) + JzŜ

z
j Ŝ

z
j+1 +

L∑
j=1

WjŜ
z
j, (1)

where L is the length of the spin chain, “H.c.” denotes the
Hermitian conjugate, Ŝ±

j , Ŝz
j are spin-1/2 operators, Jxy is

the strength of the flip-flop term, Jz is the strength of the
Ising term, and Wj = (γ j + α j2/L2) is a spatially varying
potential, where γ corresponds to an electric field; α/L2 is the
magnitude of a shallow parabolic trap that we add in order
to break some of the symmetries of the system, following
Ref. [43]. The system conserves the total magnetization, M̂ =∑

j Ŝz
j , and in the thermodynamic limit is translationally in-

variant (for α = 0). Through this work we use open boundary
conditions and set Jxy = 2, Jz = 1, and α = 0.5, verifying that
our results do not change qualitatively for other α′s and J ′

zs, as
also boundary conditions (see [48]). Via the Jordan-Wigner
transformation [56], the model is equivalent to a system of
spinless interacting fermions moving in a uniform electric
field; however for the clarity of the presentation we proceed
using the spin formalism.

A number of works show an apparent ergodicity breaking
for γ � 1.5 [43,44] (see also [48]). In this Letter, using two
numerically exact methods we study spin transport in this
model.

Methods. To assess spin transport in the system for various
electric fields, γ , we calculate the infinite-temperature spin-
spin correlation function,

Gn(t ) = 1

N Tr
[
Ŝz

n(t )Ŝz
L/2

]
, (2)

where N is the Hilbert space dimension, and Ŝz
n(t ) is

the Heisenberg evolution of Ŝz
n. This correlation function

describes the spatial spreading of an initially local spin excita-
tion on top of an infinite temperature state. The squared width
of the excitation is given by x2(t ) = ∑

n n2[Gn(t ) − Gn(0)]
and is analogous to the mean-squared displacement (MSD).
For diffusive transport, x2 ∼ 2Dt , with D coinciding with the
diffusion coefficient calculated from the corresponding Kubo
formula [57–60].

We compute Gn(t ) using two complementary numerically
exact methods. In the first method we work at a zero-
magnetization sector, with the Hilbert space dimension N =( L

L/2

)
, and utilize dynamical typicality to reduce the trace in

Eq. (2) to a unitary propagation of a random initial state taken
from the Haar distribution [59,61]. We then average over a
small number of such samples. Our initial condition there-
fore corresponds to a generic initial state with volume-law
entanglement. We would like to stress that while the gener-
ation of such a highly entangled pure state is probably close
to impossible experimentally, we could equally well take a
random product state, which can be realized experimentally.
Such a state would produce an equivalent result, though it
would require more averaging over the initial states to sample
the correlation function in Eq. (2).

The unitary evolution is performed using a Krylov sub-
space method [62]. Given the exponential scaling of the
Hilbert space dimension we are able access system sizes of
L � 24, which correspond to N � 2 704 156, though we can
propagate the system for quite long times. As a complimen-
tary method, which provides us access to large system sizes,
we use the time-dependent density matrix renormalization
group (tDMRG) [63]. In this method the wave function is
represented as a matrix product state (MPS), built of matrices
with a maximal dimension χ , called the bond dimension.
The bond dimension sets the maximum entanglement that
the MPS can accommodate. If the bond dimension is set
to be smaller than χ < dL/2, where d is the local Hilbert
space dimension, the error in the MPS representation of the
wave function is bounded by the truncation weight. In our
simulations, we set the truncation weight to 10−7 allowing the
bond dimension to grow dynamically during the propagation.
Since for ergodic systems the entanglement is typically in-
creasing linearly with time, the computational effort increases
exponentially. We checked for convergences of our results by
decreasing the truncation weight to 10−8. In tDMRG we use
all magnetization sectors, and obtain Gn(t ) by the Heisenberg
evolution of Ŝz

n(t ), using the computational method detailed
in Ref. [64]. Due to the equivalence between the ensembles of
fixed and varying magnetization, in the thermodynamic limit,
both Krylov-based and tDMRG results are expected to agree
up to some finite time when the finite-size effects become
important.

Results. We calculate the MSD for a number of electric
fields, γ = 0.75–3, and various system sizes L = 14–24 us-
ing the Krylov subspace method, and for sizes L = 20–100
using tDMRG. The results are presented in Fig. 2. For times
t � t�(γ , L) an initial growth of the MSD is followed by
a localization plateau. This plateau is visible for γ � 1,
and becomes even more pronounced for larger system sizes.
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FIG. 2. Mean-squared displacement (MSD) as a function of time
(top panels and bottom left) for L ∈ [14, 24] (Krylov-based method)
and L = 100 (tDMRG). The orange dotted line corresponds to
power-law fits, while the horizontal lines indicate the plateau of the
MSD calculated by taking the mean of the MSD between the 2nd and
the 3rd peaks. The color of the plateau lines matches the coloring
of the corresponding system size. Bottom right: Bond dimension
χ as a function of time obtained using tDMRG for L ∈ [20, 100]
and with a fixed discarded weight 10−7. All plots were obtained for
Jxy = 2, Jz = 1, and γ = 1.25.

For all the studied γ ′s, including a regime where accord-
ing to Refs. [43,44] (see also [48]) the system is expected
to be strongly localized, the late-time dynamics of a finite
system is always delocalized, which allows us to identify
the time t�(γ , L), as the delocalization time. Note that our
data suggest that for γ � 1 the system becomes localized
only in the thermodynamic limit. The observed, apparently
subdiffusive growth of the MSD for t > t�(γ , L), which is
consistent with previous experimental [52] and theoretical
works [49,55,65,66], is therefore a finite-size effect, and will
not be considered further in this Letter (see however [48]). For
γ � 1 our results are not conclusive, since the delocalization
time, if it exists here, is very short, and the plateau in the MSD
is not clearly visible. But, we do see that for γ = 0.75 the fast
growth of the MSD is pushed to later times for larger system
sizes, which hints that localization at the thermodynamic limit
might occur for all γ > 0. A similar suggestion was recently
raised in Ref. [51]. The localization-delocalization transition
at a finite time, t�(γ , L), can also be seen from the growth of
the bond dimension in tDMRG to maintain a chosen accuracy
of the results (discarded weight). For t � t�(γ , L) a modest
bond dimension is required, while for t > t�(γ , L) to keep
the same accuracy of the numerical evolution an increasingly
larger bond dimension is required. We stress that the bond
dimension is not a physical quantity and we only use it as
an indicator of delocalization to obtain t�(γ , L) [67].

To quantitatively study the dependence of t�(γ , L) on γ

and L, we extract it using two independent methods. For
the Krylov-subspace method it is extracted from the inter-
section point between two straight lines on a log-log scale:
the plateau of the MSD (see caption in Fig. 2) and the ap-
parent subdiffusive growth (dashed orange lines in Fig. 2).
For tDMRG we define t�(γ , L) as the time when the bond
dimension departs from its initial value (set to 400). While

FIG. 3. Delocalization time t � as a function of γ L for γ =
1, 1.25, 2, 2.25, as extracted from Krylov-based method (left panel;
L ∈ [14, 24]) and tDMRG (right panel; L ∈ [20, 100]). For all data
points Jz = 1.

these definitions are of course arbitrary, using different def-
initions did not result in a qualitative change. In Fig. 3 we
show the delocalization time, t�(γ , L), plotted vs γ L on a
semilog scale for various tilts of the potential γ . We find
that both Krylov-subspace and tDMRG methods suggest that
the delocalization time increases exponentially both with γ

and L, namely t� ∼ exp[γ L], such that true localization is
obtained only in the thermodynamic limit. Remarkably, the
tDMRG simulation of this system becomes easier; namely,
with the same computational resources for larger system sizes
one can go to longer times. This indicates a change in the
bulk dynamics, when the size of the system is increased, even
though the Hamiltonian is local.

Magnus expansion. In order to better understand the de-
pendence of t�(γ , L) on γ we apply a time-dependent unitary
transformation Û (t ) ≡ e−iγ t

∑
j jŜz

j to Eq. (1), which corre-
sponds to a gauge change, replacing the potential term in
Eq. (1) by a time-dependent “vector potential.” This yields the
following time-dependent Hamiltonian,

Ĥ (t ) =
L−1∑
j=1

[
Jxy

2

(
e−iγ t Ŝ+

j Ŝ−
j+1 + H.c.

) + JzŜ
z
j Ŝ

z
j+1

]
, (3)

where the electric field, γ , takes the role of a frequency.
The static part of the Hamiltonian is trivially localized and
has a spectrum composed of highly degenerate energy bands,
which differ by a number of domain walls. It takes an energy
of Jz/4 to annihilate or create a domain wall, and therefore
the bands are equally spaced. The time-dependent hopping
facilitates transport in the system by two possible processes:
either by connecting the various bands, or by higher-order,
virtual transitions from some state in a band to a different state
in the same band. For γ � Jz/4 both processes are suppressed
since multiple spin rearrangements are required to absorb the
energy of the “photon” and the system is expected to be in
a long-lived prethermal state described by the time-averaged
Hamiltonian [which here coincides with the static part of
Ĥ (t )] up to times t� ∼ exp[γ /Jz] [68–70]. A slightly different
scaling was suggested in Ref. [47]. We have checked that for
larger Jz, the apparent localization-delocalization transition
shifted to larger γ ′s [48].
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FIG. 4. Mean-squared displacement as a function of time for var-
ious electric fields. The darkest lines correspond to numerically exact
results obtained by using Eq. (3) for propagation. The colored lines
with increasing brightness correspond to evolution using effective
Hamiltonians Eq. (4), obtained from a truncated Magnus expansion.
For all panels, Jxy = 2, Jz = 1, L = 14.

The stroboscopic evolution of the system is determined
by an effective Hamiltonian, which is defined from the one-
period propagator,

Û (T ) = e−iĤeffT = T exp

[
− i

∫ T

0
dt̄Ĥ (t̄ )

]
, (4)

where T corresponds to time ordering, and T = 2π/γ is the
period. For γ � Jz/4 we can approximate Ĥeff by a Magnus
expansion in γ −1 [71]. For γ smaller than the many-body
bandwidth, this expansion is not guaranteed to converge, but
it can approximate the dynamics of the system up to some
optimal order [72]. We use a recursive formula described
in Ref. [71] to obtain Ĥeff up to order n = 10 for L = 14.
Figure 4 shows the stroboscopic evolution of the MSD com-
puted numerically using Ĥ (n)

eff , which is Ĥeff truncated to an
order n. We see that for γ � 2 the Magnus expansion fails
to approximate the dynamics even for short times, while for
γ = 3, 5, as the Magnus order n increases, the approximate
solution approaches the exact solution for longer times (it is
hard to reliably extract tMagnus from our data to obtain the
functional dependence on n, but see Ref. [73]). There is little
to no dependence of tMagnus on the system size (see [48]).
Interestingly, the long-time dynamics of Ĥ (n)

eff is diffusive with
a diffusion coefficient which decreases with n [48], even for
γ = 5, where the system is expected to be strongly localized
[43,44].

Discussion. In this Letter, using two complementary nu-
merically exact methods, we have examined the dynamics of
a spin excitation starting from a generic initial condition in

a spin chain which is expected to exhibit Stark MBL. For
γ > Jz we find strong evidence of a finite delocalization time,
t�(L, γ ), which scales exponentially with both the size of the
system and the electric field, namely t�(L, γ ) ∼ exp[γ L/Jz].
For intermittent times t < t� the spin excitation is localized,
while for t > t� it delocalizes in a manner consistent with
subdiffusion [52]. This strongly suggests that for γ � Jz,
Stark MBL strictly occurs only in the thermodynamic limit,
L → ∞, while any finite system is ultimately delocalized
for sufficiently long times. For γ � Jz and system sizes and
times accessible to us, the localization regime is not appar-
ent. Nevertheless, we do see that the dynamics is delayed
with increasing system size, which can be consistent with
a localization length larger than the system size ξ (γ ) � L.
It is therefore plausible to conjecture that Stark MBL in the
thermodynamic limit occurs for all γ > 0, which is consistent
with the conjecture in Ref. [51].

In the dynamic gauge, where the electric field is replaced
by a periodically driven flip-flop term such that γ plays
the role of the frequency, it is rigorously known that for
γ � Jz the heating time is exponential in γ /Jz [68–70]. We
show that for sufficiently large electric fields, up to time
tMagnus, the dynamics is well approximated by a static effective
Hamiltonian obtained from a Magnus expansion truncated
up to order n. This time increases with both γ /Jz and n
(cf. Ref. [73]). The first order of the expansion is given by
Ĥ (1)

eff = Jz
∑L−1

j=1 Ŝz
j Ŝ

z
j+1 + O(Jz/γ ). The spectrum of Ĥ (n)

eff is
composed of equally spaced bands, Jz/4 distance apart, with
a bandwidth of O(Jz/γ ) [48]. Therefore, for Ĥ (n)

eff the situation
is similar to models of quasi-MBL, which show asymptotic
delocalization [33,36,45]. Indeed all Ĥ (n>1)

eff show diffusion
at long times, with a diffusion constant decreasing with n
[48]. We would like to stress that the delocalization of Ĥ (n)

eff
occurs before the delocalization in Eq. (1) and Eq. (3) at
time t�, and therefore Magnus expansion does not capture the
delocalization regime of Eq. (1) and Eq. (3). It does suggest
that the localization mechanism of Stark MBL is probably
different from Floquet MBL, where the effective Hamiltonian
is expected to be nonergodic [16,18].

While the analysis we provided explains the transient lo-
calization regime, it does not explain why the delocalization
time increases with the size of the system, suggesting that
Stark MBL happens only in the thermodynamic limit. This
conclusion remains qualitatively robust for both open and pe-
riodic boundary conditions, in the static and dynamic gauges,
and with and without the parabolic potential in Eq. (1) [48]. A
possible explanation could be that the measure of delocalized
states is vanishing in the thermodynamic limit. This would
also explain why localization appears to be robust for CDW
and domain-wall initial states. We leave the exploration of this
avenue to future studies.
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