Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Signature of a randomness-driven spin-liquid state in a frustrated magnet

MPG-Autoren
/persons/resource/persons126866

Strydom,  A. M.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Khatua, J., Gomilšek, M., Orain, J. C., Strydom, A. M., Jagličić, Z., Colin, C. V., et al. (2022). Signature of a randomness-driven spin-liquid state in a frustrated magnet. Communications Physics, 5(1): 99, pp. 1-10. doi:10.1038/s42005-022-00879-2.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-908C-5
Zusammenfassung
Collective behaviour of electrons, frustration induced quantum fluctuations and entanglement in quantum materials underlie some of the emergent quantum phenomena with exotic quasi-particle excitations that are highly relevant for technological applications. Herein, we present our thermodynamic and muon spin relaxation measurements, complemented by ab initio density functional theory and exact diagonalization results, on the recently synthesized frustrated antiferromagnet Li4CuTeO6, in which Cu2+ ions (S = 1/2) constitute disordered spin chains and ladders along the crystallographic [101] direction with weak random inter-chain couplings. Our thermodynamic experiments detect neither long-range magnetic ordering nor spin freezing down to 45 mK despite the presence of strong antiferromagnetic interaction between Cu2+ moments leading to a large effective Curie-Weiss temperature of - 154 K. Muon spin relaxation results are consistent with thermodynamic results. The temperature and magnetic field scaling of magnetization and specific heat reveal a data collapse pointing towards the presence of random-singlets within a disorder-driven correlated and dynamic ground-state in this frustrated antiferromagnet.
Frustrated magnetic systems are characterised by spin-spin interactions, which are mediated by strong quantum fluctuations, and can potentially lead to magnetically disordered ground states such as a quantum spin liquid. Here, the authors experimentally investigate the frustrated magnet, Li4CuTeO6 and present evidence to suggest that this material may exhibit a random-singlet ground state.