Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Feasibility to Improve the Stability of Lithium-Rich Layered Oxides by Surface Doping

MPG-Autoren
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liu, Z., Liu, S., Yang, L., Zhang, C., Shen, X., Zhang, Q., et al. (2022). Feasibility to Improve the Stability of Lithium-Rich Layered Oxides by Surface Doping. ACS Applied Materials and Interfaces, 14(16), 18353-18359. doi:10.1021/acsami.2c00155.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-939E-E
Zusammenfassung
Li-rich layer-structured oxides are considered promising cathode materials for their specific capacities above 250 mAh·g-1. However, the drawbacks such as poor rate performance, fast capacity fading, and the continuous transition metal (TM) migration into the Li layer hinder their commercial applications. To address these issues, surface doping of Ti and Zr was conducted to the Li- and Mn-rich layered oxide (LMR), Li1.2Mn0.54Ni0.13Co0.13O2. The drop of the average discharge potentials of the Ti- and Zr-doped LMR was reduced by 593 and 346 mV in 100 cycles, respectively. With aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy, we clarified that Ti4+and Zr4+ions are located near the surface of the material, anchor the surface oxygen, and stabilize the LMR structure. The difference in the strengths of the Ti-O and Zr-O bonds and the doping-resultant electronic structures were determined with density functional theory (DFT) calculations and soft X-ray absorption spectroscopy (SXAS), responsible for the electrochemical performance of surface-doped materials. These findings verify our modification strategies to enhance the cycling performances of the promising LMR cathode materials. © 2022 American Chemical Society. All rights reserved.