Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Promoting extinction or minimizing growth? The impact of treatment on trait trajectories in evolving populations

MPG-Autoren
/persons/resource/persons131231

Raatz,  Michael
Department Theoretical Biology (Traulsen), Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56973

Traulsen,  Arne       
Department Theoretical Biology (Traulsen), Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Raatz, M., & Traulsen, A. (2023). Promoting extinction or minimizing growth? The impact of treatment on trait trajectories in evolving populations. Evolution: international journal of organic evolution, 77(6), 1408-1421. doi:10.1093/evolut/qpad042.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-A148-F
Zusammenfassung
When cancers or bacterial infections establish, small populations of cells have to free themselves from homoeostatic regulations that prevent their expansion. Trait evolution allows these populations to evade this regulation, escape stochastic extinction and climb up the fitness landscape. In this study, we analyse this complex process and investigate the fate of a cell population that underlies the basic processes of birth, death and mutation. We find that the shape of the fitness landscape dictates a circular adaptation trajectory in trait space. We show that successful adaptation is less likely for parental populations with higher turnover (higher birth and death rates). Including density- or trait-affecting treatment we find that these treatment types change the adaptation dynamics in agreement with geometrically derived hypotheses. Treatment strategies that simultaneously target birth and death rates are most effective, but also increase evolvability. By mapping physiological adaptation pathways and molecular drug mechanisms to traits and treatments with clear eco-evolutionary consequences, we can achieve a much better understanding of the adaptation dynamics and the eco-evolutionary mechanisms at play in the dynamics of cancer and bacterial infections.