
Complex TemporalQuestion Answering on Knowledge Graphs
Zhen Jia

Southwest Jiaotong University, China
zjia@swjtu.edu.cn

Soumajit Pramanik
IIT Bhilai, India

soumajit@iitbhilai.ac.in

Rishiraj Saha Roy
Max Planck Institute for Informatics, Germany

rishiraj@mpi-inf.mpg.de

Gerhard Weikum
Max Planck Institute for Informatics, Germany

weikum@mpi-inf.mpg.de

ABSTRACT

Question answering over knowledge graphs (KG-QA) is a vital topic
in IR. Questions with temporal intent are a special class of practical
importance, but have not received much attention in research. This
work presents Exaqt, the first end-to-end system for answering
complex temporal questions that have multiple entities and predi-
cates, and associated temporal conditions. Exaqt answers natural
language questions over KGs in two stages, one geared towards
high recall, the other towards precision at top ranks. The first step
computes question-relevant compact subgraphs within the KG, and
judiciously enhances them with pertinent temporal facts, using
Group Steiner Trees and fine-tuned BERT models. The second step
constructs relational graph convolutional networks (R-GCNs) from
the first step’s output, and enhances the R-GCNs with time-aware
entity embeddings and attention over temporal relations. We eval-
uate Exaqt on TimeQuestions, a large dataset of 16𝑘 temporal
questions we compiled from a variety of general purpose KG-QA
benchmarks. Results show that Exaqt outperforms three state-of-
the-art systems for answering complex questions over KGs, thereby
justifying specialized treatment of temporal QA.

CCS CONCEPTS

• Information systems� Question answering.

KEYWORDS

Temporal question answering, Complex questions, Knowledge graphs
ACM Reference Format:

Zhen Jia, Soumajit Pramanik, Rishiraj Saha Roy, and Gerhard Weikum.
2021. Complex Temporal Question Answering on Knowledge Graphs. In
Proceedings of the 30th ACM International Conference on Information and
Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD,
Australia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3459637.3482416

1 INTRODUCTION

Motivation. Questions and queries with temporal information
needs [7, 8, 14, 20, 40] represent a substantial use case in search.
For factual questions, knowledge graphs (KGs) like Wikidata [75],

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8446-9/21/11.
https://doi.org/10.1145/3459637.3482416

Figure 1: Wikidata excerpt showing the relevant KG zone

for the question where did obama’s children study when he
became president? with answer Sidwell Friends School.

YAGO [64], or DBpedia [10], have become the go-to resource for
search engines, tapping into structured facts on entities. While
question answering over KGs [1, 12, 13, 16, 26, 55, 72, 77, 79] has
been a major topic, little attention has been paid to the case of tem-
poral questions. Such questions involve explicit or implicit notions
of constraining answers by associated timestamps in the KG. This
spans a spectrum, starting from simpler cases such as when was
obama born?, where did obama live in 2001?, and where did obama
live during 9/11? to more complex temporal questions like:

where did obama’s children study when he became president?

Complex questions must consider multi-hop constraints (Barack
Obama ↦→ child ↦→ Malia Obama, Sasha Obama ↦→ educated at ↦→
Sidwell Friends School), and reason on the overlap of the inter-
section of time points and intervals (the start of the presidency in
2009 with the study period at the school, 2009 – 2016). A simpli-
fied excerpt of the relevant zone in the Wikidata KG necessary for
answering the question, is shown in Fig. 1. This paper addresses
these challenges that arise for complex temporal questions.
Limitations of state-of-the-art. Early works on temporal QA over
unstructured text sources [5, 18, 33, 53, 56, 58, 71] involve various
forms of question and document parsing, but do not carry over
to KGs with structured facts comprised of entities and predicates.
The few works specifically geared for time-aware QA over KGs
include [23, 38, 76]. [38] uses a small set of hand-crafted rules for
question decomposition and temporal reasoning. This approach
needs human experts for the rules and does not cope with complex
questions. [23] creates a QA collection for KGs that capture events
and their timelines. A key-value memory network in [76] includes
time information from KGs for answering simple questions.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

792

https://doi.org/10.1145/3459637.3482416
https://doi.org/10.1145/3459637.3482416
https://doi.org/10.1145/3459637.3482416
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3459637.3482416&domain=pdf&date_stamp=2021-10-30

Approach. We present Exaqt: EXplainable Answering of complex
Questions with Temporal intent, a system that does not rely on
manual rules for question understanding and reasoning. Exaqt
answers complex temporal questions in two steps:
(i) Identifying a compact, tractable answer graph that contains

all cues required for answering the question, based on dense-
subgraph algorithms and fine-tuned BERT models; and

(ii) A relational graph convolutional network (R-GCN) [66] to infer
the answer in the graph, augmented with signals about time.

The two stages work as follows (partly illustrated in Fig. 1).
Stage 1: Answer graph construction. Exaqt fetches all KG facts
of entities mentioned in the question (Barack Obama, President of

the United States: dashed outline boxes), as detected by off-the-
shelf NERD systems [30, 36, 44]. The resulting noisy set of facts is
distilled into a tractable set by means of a fine-tuned BERT model
(admitting information about the children Malia and Sasha, but
not Michelle Obama). To construct a KG subgraph of all question-
relevant KG items and their interconnections from this set, Group
Steiner Trees (GST) [22, 47, 61] are computed (dark orange nodes,
terminals or keyword matches underlined: “obama”, “president”,
“child”, “educated at”) and completed (light orange nodes). The last
and decisive step at this point augments this candidate answer
graph with pertinent temporal facts, to bring in cues (potentially
multiple hops away from the question entities) about relevant dates,
events and time-related predicates. To this end, we use an analogous
BERT model for identifying question-relevant temporal facts (blue
nodes: educational affiliations of Malia and Sasha and their dates).
The resulting answer graph is the input of the second stage.
Stage 2: Answer prediction by R-GCN. Inspired by the popular
GRAFT-Net model [66] and related work [59, 65], we construct
an R-GCN that learns entity embeddings over the answer graph
and casts answer prediction into a node classification task. How-
ever, R-GCNs as used in prior works are ignorant of temporal con-
straints [6]. To overcome this obstacle, we augment the R-GCNwith
time-aware entity embeddings, attention over temporal relations,
and encodings of timestamps [80], temporal signals [60], and tem-
poral question categories [38]. In our running example, temporal
attention helps Exaqt focus on educated at as a question-relevant
relation (partly shaded nodes). The time-enhanced representation
of Barack Obama flows through the R-GCN (thick edges) and boosts
the likelihood of Sidwell Friends School as the answer (node with
thick borders), which contains 2009 (in bold) among its temporal
facts. By producing such concise KG snippets for each question (as
colored in Fig. 1), Exaqt yields explainable evidence for its answers.
Contributions. This work makes the following contributions:
• We propose Exaqt, the first end-to-end system for answering

complex temporal questions over large-scale knowledge graphs;
• Exaqt applies fine-tuned BERTmodels and convolutional graph

networks to solve the specific challenges of identifying relevant
KG facts for complex temporal questions;

• We compile and release TimeQuestions, a benchmark of about
16𝑘 temporal questions (examples in Table 1);

• Experiments over the full Wikidata KG show the superiority of
Exaqt over three state-of-the-art complex KG-QA baselines. All
resources from this project are available at https://exaqt.mpi-
inf.mpg.de/ and https://github.com/zhenjia2017/EXAQT.

Category Question

who won oscar for best actress 1986?
Explicit which movie did jaco van dormael direct in 2009?

what currency is used in germany 2012?

who was king of france during the ninth crusade?
Implicit what did thomas jefferson do before he was president?

what club did cristiano ronaldo play for after manchester united?

what was the first film julie andrews starred in?
Ordinal what was the second position held by pierre de coubertin?

who is elizabeth taylor’s last husband?

what year did lakers win their first championship?
Temp. Ans. when was james cagney’s spouse born?

when was the last time the orioles won the world series?

Table 1: Sample temporal questions from TimeQuestions.

2 CONCEPTS AND NOTATION

We now define the salient concepts that underlie Exaqt.
Knowledge graph. A knowledge graph (aka knowledge base) is
a collection of facts 𝐹 organized as a set of <subject, predicate,

object> triples. It can be stored as an RDF database of such triples,
or equivalently as a graph with nodes and edges. Examples are
Wikidata [75], YAGO [64], DBpedia [10], Freebase [17] and indus-
trial KGs. When stored as a graph, edges are directed: subject ↦→
predicate ↦→ object. Subjects and objects are always nodes, while
predicates (aka relations) often become edge labels.
Fact. A fact 𝑓 ∈ 𝐹 can either be binary, containing a subject and
an object connected by a predicate, or 𝑛-ary, combining multiple
items via main predicates and qualifier predicates. An example
of a binary fact is <Barack Obama, child, Malia Obama>, where
subjects are entities (Barack Obama), and objects may be entities
(Malia Obama), literals (constants such as dates in <Malia Obama,

date of birth, 04-07-1998>), or types aka classes (private school

in <Sidwell Friends School, type, private school>). We use the
terms predicate and relation interchangeably in this text.

An 𝑛-ary fact combines several triples that belong together, such
as <Barack Obama, position held, President of the US; start

date, 20-01-2009; end date, 20-01-2017> (see Fig. 1). position
held is the main predicate, President of the US is the main object,
while the remaining data are <qualifier predicate, qualifier object>
pairs. 𝑛-ary facts are of vital importance in temporal QA, with a
large fraction of temporal information in modern KGs being stored
as qualifiers. One way of representing qualifiers in a KG is shown in
Fig. 1, via paths from the main predicate to the qualifier predicate
and on to the qualifier object.
Temporal fact. We define a temporal fact 𝑡 𝑓 ∈ 𝐹 as one where the
main object or any of the qualifier objects is a timestamp. Examples
are <Vietnam War, end date, 30-04-1975> (binary), or, <Steven
Spielberg, award received, Academy Award for Best Director;

for work, Schindler’s List; point in time, 1993> (𝑛-ary).
Temporal predicate. We define a temporal predicate as one that
can have a timestamp as its direct object or one of its qualifier
objects. Examples are date of birth and position held.
Temporal question. A temporal question is one that contains a
temporal expression or a temporal signal, or whose answer is of tem-
poral nature [37]. Examples of temporal expressions are “in the year
1998”, “Obama’s presidency”, “New Year’s Eve”, etc. which indicate
explicit or implicit temporal scopes [41]. Temporal signals [60] are

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

793

https://exaqt.mpi-inf.mpg.de/
https://exaqt.mpi-inf.mpg.de/
https://github.com/zhenjia2017/EXAQT

Figure 2: An overview of the two-stage Exaqt pipeline.

markers of temporal relations (BEFORE, AFTER, OVERLAP, ...) [6]
and are expressed with words like “prior to, after, during, ...” that
indicate the need for temporal reasoning. In our models, a question
𝑞 is represented as a set of keywords <𝑞1, 𝑞2, . . . 𝑞 |𝑞 |>.
Temporal question categories. Temporal questions fall into four
basic categories [37]: (i) containing explicit temporal expressions
(“in 2009”), (ii) containing implicit temporal expressions (“when
Obama became president”), (iii) containing temporal ordinals (“first
president”), and (iv) having temporal answers (“When did ...”). Ta-
ble 1 gives several examples of temporal questions. A question may
belong to multiple categories. For example, what was the first film
julie andrews starred in after her divorce with tony walton? contains
both an implicit temporal expression and a temporal ordinal.
Answer. An answer to a temporal question is a (possibly singleton)
set of entities or literals, e. g., {Chicago University Lab School,

Sidwell Friends School} forWhere did Malia Obama study before
Harvard?, or {08-2017} for When did Malia start at Harvard?
Answer graph. An answer graph is a subset of the KG that contains
all the necessary facts for correctly answering the question.

3 CONSTRUCTING ANSWER GRAPHS

Fig. 2 is an overview of Exaqt, with two main stages: (i) answer
graph construction (Sec. 3), and (ii) answer prediction (Sec. 4).

3.1 Finding question-relevant KG facts

NERD for question entities. Like most QA pipelines [16, 54],
we start off by running named entity recognition and disambigua-
tion (NERD) [36, 44, 73] on the input question (where did obama’s
children study when he became president?). NERD systems identify
spans of words in the question as mentions of entities (“obama”,
“president”), and link these spans to KG items or Wikipedia articles
(which can easily be mapped to popular KGs). The facts of these
linked entities (Barack Obama, President of the United States)
provide us with a zone in the KG to start looking for the answer.
NERD is a critical cog in the QA wheel: entity linking errors leave
the main QA pipeline helpless with respect to answer detection. To
mitigate this effect, we use two different systems, TagMe and ELQ
[30, 44], to boost answer recall. Complex questions often contain
multiple entity mentions, and accounting for two NERD systems,
we could easily have 2 − 4 different entities per question. The total
number of associated facts can thus be several hundreds or more.
To reduce this large and noisy set of facts to a few question-relevant
ones, we fine-tune BERT [24] as follows.
Training a classifier for question-relevant facts. For each ques-
tion in our training set, we run NERD and retrieve all KG facts of the
detected entities. We then use a distant supervision mechanism: out
of these facts, the ones that contain the gold answer(s) are labeled

as positive instances. While several complex questions may not have
their answer in the facts of the question entities (multi-hop cases),
the ones that do, comprise a reasonable amount of training data for
our classifier for question-relevance. Note that facts with qualifiers
are also retrieved for the question entities (complete facts where
the question entity appears as a subject, object, or qualifier object):
this increases our coverage for obtaining positive examples.

For each positive instance, we randomly sample five negative
instances from the facts that do not contain the answer. Sampling
question-specific negative instances helps learn a more discrimina-
tive classifier, as all negative instances are guaranteed to contain
at least one entity from the question (say, <Barack Obama, spouse,

Michelle Obama>). Using all facts that do not contain an answer
would result in severe class imbalance, as this is much higher than
the number of positive instances.

We then pool together the <question, fact> paired positive and
negative instances for all training questions. The fact in this pair is
now verbalized as a natural language sentence by concatenating its
constituents; qualifier statements are joined using “and” [50]. For
example, the full fact for Obama’s marriage (a negative instance) is:
<Barack Obama, spouse, Michelle Obama; start date, 03-10-1992;

place of marriage, Trinity United Church of Christ>. This has
two qualifiers, and would be verbalized as “Barack Obama spouse
Michelle Obama and start date 03-10-1992 and place of marriage
Trinity United Church of Christ.”. The questions paired with the
verbalized facts, along with the binary ground-truth labels, are fed
as training input to a sequence pair classification model for BERT.
Applying the classifier. Following [24], the question and the fact
are concatenated with the special separator token [SEP] in between,
and the special classification token [CLS] is added in front of this
sequence. The final hidden vector corresponding to [CLS], denoted
by 𝑪 ∈ R

𝐻 (𝐻 is the size of the hidden state), is considered to
be the accumulated representation. Weights𝑾 of a classification
layer are the only parameters introduced during fine-tuning, where
𝑾 ∈ R

𝐾×𝐻 , where 𝐾 is the number of class labels (𝐾 = 2 here,
fact is question-relevant or not). log(softmax(𝑪𝑾𝑻)) is used as the
classification loss function. Once the classifier is trained, given a
new <question, fact> pair, it outputs the probability (and the label)
of the fact being relevant for the question. We make this prediction
for all candidate facts pertinent to a question, and sort them in
descending order of this question relevance likelihood. We pick the
top scoring facts {𝑓𝑞𝑟𝑒𝑙 } from here as our question-relevant set.

3.2 Computing compact subgraphs

The set of facts {𝑓𝑞𝑟𝑒𝑙 } contains question-relevant facts but is not
indicative as to which are a set of coherent KG items that matter
for this question, and how they are connected. To this end, we
induce a graph as shown in Fig. 1, from the above set of facts where
each KG item (entity, predicate, type, literal) becomes a node of
its own. Edges run between components of the same fact in the
direction mandated in the KG: subject ↦→ predicate ↦→ object for
the main fact, and subject ↦→ predicate ↦→ qualifier predicate

↦→ qualifier object for (optional) qualifiers.
Injecting connectivity. BERT selects {𝑓𝑞𝑟𝑒𝑙 } from the facts of a
number of entities as detected by our NERD systems. These entities
may not be connected to each other via shared KG facts. However, a
connected graph is needed so that our subsequent GST and R-GCN

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

794

algorithms can produce the desired effects. To inject connectivity
in the graph induced from BERT facts, we compute the shortest KG
path between every pair of question entities, and add these paths
to our graph. In case of multiple paths of same length between two
entities, they are scored for question-relevance as follows. A KG
path is set of facts: a path of length one is made up of one fact (Barack
Obama ↦→ position held ↦→ President of the United States), a path
of length two is made up of two facts (Barack Obama ↦→ country

↦→ United States of America ↦→ office held by head of state

↦→ President of the United States), and so on. Each candidate
path is verbalized as a set of facts (a period separating two facts)
and encoded with BERT [39], and so is the question. These BERT
encodings are stored in corresponding [CLS] tokens. We compute
the cosine similarity of [CLS](question) with [CLS](path), and add
the path with the highest cosine similarity to our answer graph.
GST model. Computing Group Steiner Trees (GST) [47, 52, 61, 67]
has been shown to be an effective mechanism in identifying query-
specific backbone structures in larger graphs, for instance, in key-
word search over database graphs [4, 27]. Given a subset of nodes
in the graph, called terminals, the Steiner Tree (ST) is the lowest-
cost tree that connects all terminals. This reduces to the minimum
spanning tree problem when all nodes of the graph are terminals,
and to the shortest path problem when there are only two terminals.
The GST models a more complex situation where the terminals are
arranged into groups or sets, and it suffices to find a Steiner Tree
that connects at least one node from each group. This scenario fits
our requirement perfectly, where each question keyword can match
multiple nodes in the graph, and naturally induces a terminal group.
Finding a tree that runs through each and every matched node is
unrealistic, hence the group model.
Edge costs. An integral part of the GST problem is how to define
edge costs. Since edges emanate from KG facts, we leverage question-
relevance scores assigned by the classifier of Sec. 3.1: 𝐵𝐸𝑅𝑇 (𝑓𝑞𝑟𝑒𝑙) ∈
[0, 1], converted to edge costs 1 − 𝐵𝐸𝑅𝑇 (𝑓𝑞𝑟𝑒𝑙) ∈ [0, 1].
GST algorithm. There are good approximation algorithms for
GSTs [45, 67], but QA needs high precision. Therefore, we adopted
the fixed-parameter-tractable exact algorithm by Ding et al. [27]. It
iteratively grows and merges smaller trees over the bigger graph to
arrive at the minimal trees. Only taking the best tree can be risky in
light of spurious connections potentially irrelevant to the question.
Thus, we used a top-𝑘 variant that is naturally supported by the
dynamic programming algorithm of [27].
GST completion. As shown in Fig. 1, the GST yields a skeleton
connecting the most relevant question nodes. To transform this
into a coherent context for the question, we need to complete it with
facts from where this skeleton was built. Nodes introduced due to
this step are shown in light orange in the figure: dates about the
presidency, Obama’s children, and the (noisy) fact about Obama’s
education. In case the graph has multiple connected components
(still possible as our previous connectivity insertions worked only
pairwise over entities), top-𝑘 GSTs are computed for each compo-
nent and the union graph is used for this fact completion step.
Example. We show a simplified example in Fig. 1, where the
node Barack Obama matches the question keyword “Obama”, child
matches “children”, educated at matches “study”, and President

of the United States matches “president”. The educated at nodes

connected to Malia and Sasha do not feature here as they are not
contained in the facts of Barack Obama, and do not yet feature
in our answer graph. We consider exact matches, although not
just in node labels but also in the set of aliases present in the KG
that list common synonyms of entities, predicates and types. This
helps us consider relaxed matches without relying on models like
word2vec [48] or GloVe [51], that need inconvenient threshold-
ing on similarity values as a noisy proxy for synonyms. The GST
is shown using dark orange nodes with the associated question
keyword matches underlined (denoting the terminal nodes). In
experiments, we only consider as terminals NERD matches for en-
tities, and keyword matches with aliases for other KG items. The
GST naturally includes the internal nodes and edges necessary to
connect the terminals. Note that the graph is considered undirected
(equivalently, bidirectional) for the purpose of GST computation.

3.3 Augmenting subgraphs with temporal facts

The final step towards the desired answer graph is to enhance it
with temporal facts. Here, we add question-relevant temporal facts
of entities in the completed GST. This pulls in temporal information
necessary for answering questions that need evidence more than
one hop away from the question entities (blue nodes in Fig. 1):
<Malia Obama, educated at, Sidwell Friends School; start date,

05-01-2009> (+ noise likeMalia’s date of birth). The rationale behind
this step is to capture facts necessary for faithfully answering the
question, where faithful refers to arriving at the answer not by
chance but after satisfying all necessary constraints in the question.
For example, the question which oscar did leonardo dicaprio win in
2016? can be answered without temporal reasoning, as he only won
one Oscar. We wish to avoid such cases in faithful answering.

To this end, we first retrieve from the KG all temporal facts of
each entity in the completed GST. We then use an analogously
fine-tuned BERT model for question-relevance of temporal facts. The
model predicts, for each temporal fact, its likelihood of containing
the answer. It is trained using temporal facts of question entities that
contain the answer as positive examples, while negative examples
are chosen at random from these temporal facts. To trap multi-hop
temporal questions in our net, we explore 2-hop facts of question
entities for ground truth answers. A larger neighborhood was not
used during the first fine-tuning as the total number of facts in
two hops of question entities is rather large, but the count of 2-hop
temporal facts is a much more tractable number. Moreover, this
is in line with our focus on complex temporal questions. Let the
likelihood score for a temporal fact 𝑡 𝑓 of an entity in the completed
GST be 𝐵𝐸𝑅𝑇 (𝑡 𝑓𝑞𝑟𝑒𝑙). As before, we take the top scoring {𝑡 𝑓𝑞𝑟𝑒𝑙 },
add them to the answer graph, that is then passed on to Stage 2.

4 PREDICTING ANSWERS WITH R-GCN

R-GCN basics. The answer prediction method of Exaqt is inspired
by the Relational Graph Convolution Network model [59], an ex-
tension of GCNs [29] tailored for handling large-scale relational
data such as knowledge graphs. Typically, a GCN convolves the
features (equivalently, representations or embedding vectors) of
nodes belonging to a local neighborhood and propagates them to
their nearest neighbors. The learned entity representations are used
in node classification. Here, this classification decision is whether
a node is an answer to the input question or not.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

795

Figure 3: Architecture of the R-GCN model in Exaqt, that includes several signals of temporal information.

In this work, we use the widely popular GRAFT-Net model [66]
that adapted R-GCNs to deal with heterogeneous QA over KGs
and text [15, 50]. In order to apply such a mechanism for answer
prediction in our setup, we convert our answer graph from the
previous step into a directed relational graph and build upon the𝐾𝐺-
only setting of GRAFT-Net. In a relational graph, entities, literals,
and types become nodes, while predicates (relations) become edge
labels. Specifically, we use the KG RDF dump that contains normal
SPO triples for binary facts by employing reification [35]. Reified
triples can then be straightforwardly represented as a directed
relational graph [66]. Exaqt introduces four major extensions over
the R-GCN in GRAFT-Net to deal with the task of temporal QA:
• we embed temporal facts to enrich representations of entity
nodes, creating time-aware entity embeddings (TEE);

• we encode temporal question categories (TC) and temporal sig-
nals (TS) to enrich question representations;

• we employ time encoding (TE) to obtain the vector representa-
tions for timestamps;

• we propose attention over temporal relations (ATR) to distinguish
the same relation but with different timestamps as objects.

In the following, we describe how we encode and update the node
representations and perform answer prediction in our extended
R-GCN architecture for handling temporal questions. Our neural
architecture is shown in Fig. 3, while Table 2 summarizes notation
for the salient concepts used in this phase.

4.1 Question representation

4.1.1 Initialization. To encode a temporal question, we first deter-
mine its temporal category and extract temporal signals (Sec. 2).
Temporal category encoding (TCE). We adopt a noisy yet ef-
fective strategy for labeling categories for temporal questions, and
leave more sophisticated (multi-label) classification as future work.
We use a four-bit multi-hot (recall that a question can belong to

multiple categories) vector where each bit indicates whether the
question falls into that category. Our tagger works as follows:
• A question is tagged with the “EXPLICIT” category if the an-
notators SUTime [21] or HeidelTime [62] detect an explicit
temporal expression inside it;

• A question is tagged with the “IMPLICIT” category if it con-
tains any of the temporal signal words (we used the dictionary
compiled by [60]), and satisfies certain part-of-speech patterns;

• A question is of type “TEMPORAL ANSWER” if it starts with
phrases like “when ...”, “in which year ...”, and “on what date ...” ;

• A question is tagged with the “ORDINAL” category if it contains
an ordinal tag as labeled by the Stanford CoreNLP system [9],
along with certain keywords and part-of-speech patterns.

Temporal signal encoding (TSE). There are 13 temporal rela-
tions defined in Allen’s interval algebra for temporal reasoning [6],
namely: “equals”, “before”, “meets”, “overlaps”, “during”, “starts”, and
“finishes”, with respective inverses for all of them except “equals”.
We simplify these relations and adapt the strategy in [37] into 7
broad classes of temporal signals:
• “before” and “meets” relations are treated as “BEFORE” signals;
• “before-inverse” and “meet-inverse” relations are collapsed into
“AFTER” signals;

• “starts” and “finishes” relations are respectively mapped to
“START” and “FINISH” signals;

• words with ordinal tags and “last” are mapped to “ORDINAL” ;
• all other relations are treated as “OVERLAP” signals;
• absence of any signal word triggers the “NO SIGNAL” case.

We map signal words to temporal signals in questions using a
dictionary. We then encode these signals using a 7-bit (a question
can contain multiple signals) vector, where each bit indicates the
presence or absence of a particular temporal signal.

Along with these temporal categories and temporal signals, we
use a Long Short-Term Memory Network (LSTM) to model the

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

796

words in the question as a sequence (see block A in Fig. 3). Overall,
we represent a question 𝑞 with |𝑞 | words as:

𝒉0𝒒 = 𝐹𝐹𝑁 (𝑻𝑪𝑬 (𝒒) ⊕ 𝑻𝑺𝑬 (𝒒) ⊕ 𝐿𝑆𝑇𝑀 (𝒘1, ...,𝒘 |𝒒 |)) (1)

Here 𝑻𝑪𝑬 (𝒒) and 𝑻𝑺𝑬 (𝒒) are multi-hot vectors encoding the tem-
poral categories and temporal signals present in 𝑞, and𝒘𝒊 represent
the pre-trained word embeddings (from Wikipedia2Vec [78]) of the
𝑖𝑡ℎ word in 𝑞. We concatenate (⊕) the 𝑻𝑪𝑬 (𝒒) and 𝑻𝑺𝑬 (𝒒) vectors
with the output vector from the final state of the LSTM. Finally,
we pass this concatenated vector through a Feed Forward Network
(FFN) and obtain the initial embedding of 𝑞, denoted as 𝒉0𝒒 .

4.1.2 Update. In subsequent layers, the embedding of the question
gets updated with the embeddings of the entities belonging to it
(i.e. the question entities obtained from NERD) as follows:

𝒉𝒍𝒒 = 𝐹𝐹𝑁 (
∑︁

𝑒∈𝑁𝐸𝑅𝐷 (𝑞)
𝒉𝒍−1𝒆) (2)

where 𝑁𝐸𝑅𝐷 (𝑞) contains the entities for question 𝑞 and 𝒉𝒍−1𝒆 de-
notes the embedding of an entity 𝑒 at layer 𝑙 − 1.

4.2 Entity representation

4.2.1 Initialization. For initializing each entity 𝑒 in the relational
graph, we use fixed-size pre-trained embeddings 𝒙𝒆 , also from
Wikipedia2Vec [78]. Along with conventional skip-gram and con-
text models, Wikipedia2Vec utilizes the Wikipedia link graph that
learns entity embeddings by predicting neighboring entities in the
Wikipedia graph, producing more reliable entity embeddings:

𝒉0𝒆 = 𝒙𝒆 (3)

4.2.2 Update. Prior to understanding the update rule for the en-
tities in subsequent layers, we need to introduce the following
concepts: (i) Time encoding (TE); (ii) Time-aware entity embed-
dings (TEE); and (iii) Attention over temporal relations (ATR).
Time encoding (TE). Time as an ordering sequence has an inherent
similarity to positions of words in text: we thus employ a sinusoidal
position encodingmethod [74, 80] to represent a timestamp 𝑡𝑠 . Here,
the 𝑘𝑡ℎ position (day, month, etc.) in 𝑡𝑠 will be encoded as:

𝑇𝐸 (𝑘, 𝑗) =
{
sin(𝑘/10000

2𝑖
𝑑), if 𝑗 = 2𝑖

cos(𝑘/10000
2𝑖
𝑑), if 𝑗 = 2𝑖 + 1

(4)

where𝑑 is the dimension of the time encoding and 𝑗 is the (even/odd)
position in the 𝑑-dimensional vector. Further, we represent 𝑻𝑬 (𝒕𝒔),
i.e. the time encoding of 𝑡𝑠 , as the summation of the encodings of
each of its corresponding positions. This time encoding method
provides an unique encoding to each timestamp and ensures sequen-
tial ordering among the timestamps [80], that is vital for reasoning
signals like before and after in temporal questions.
Time-aware entity embedding (TEE). An entity 𝑒 present in
the relational graph is associated with a number of temporal facts
𝑡 𝑓 𝑒1 , 𝑡 𝑓

𝑒
2 , ...𝑡 𝑓

𝑒
𝑛 (Sec. 2) in our answer graph. A temporal fact 𝑡 𝑓 𝑒 is

said to be associated with an entity 𝑒 if 𝑒 is present in any position
of the fact (subject, object or qualifier object). We encode each 𝑡 𝑓 𝑒
as the concatenation of its entity embeddings, relation embeddings
(averaged) and time encodings of the timestamps (as shown in block
B of Fig. 3). Further, we arrange each fact in {𝑡 𝑓 𝑒 } in a chronological
order and pass them through an LSTM network. Finally, the output

from the final state of the LSTM can be used as the time-aware
entity representation of 𝑒 , TEE(𝑒), that is vital for reasoning through
the R-GCN model:

𝒉0𝑻𝑬𝑬 (𝒆) = 𝐿𝑆𝑇𝑀 (𝒉0𝒕𝒇 𝒆1 ,𝒉
0
𝒕𝒇 𝒆2
, ...,𝒉0𝒕𝒇 𝒆𝒏

) (5)

In subsequent layers, the embedding of 𝑇𝐸𝐸 (𝑒) will be updated as
the embeddings of its constituent entities get updated.
Attention over temporal relations (ATR). In temporal QA, we
need to distinguish entities associated with the same relation but
having different timestamps (facts with same temporal predicate
but different objects, like several educated at facts for a person). We
thus introduce the concept of temporal attention here, adapting the
more general notion of attention over relations in GRAFT-Net [66].

While computing temporal attention over a relation 𝑟 connected
with entity 𝑒 , we concatenate the corresponding relation embedding
with the time encoding of its timestamp object and compute its
similarity with the question embedding at that stage:

𝐴𝑇𝑅(𝑒, 𝑟) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝒙𝒓 ⊕ 𝑻𝑬 (𝒕𝒔𝒓)
𝑇𝒉(𝒍−1)𝒒) (6)

where the softmax normalization is over all outgoing edges from
𝑒 , 𝒙𝒓 is the pre-trained relation vector embedding for relation 𝑟
(Wikipedia2Vec embeddings averaged over each word of the KG
predicate), and 𝑻𝑬 (𝒕𝒔𝒓) is the time encoding of the timestamp
associated with the relation 𝑟 . For relations not connected with any
timestamp, we use a random vector for 𝑻𝑬 (𝒕𝒔𝒓).
Putting it together. We are now in a position to specify the update
rule for entity nodes which involves a single-layer FFN over the
concatenation of the following four states (see block C of Fig. 3):

𝒉𝒍𝒆 = 𝐹𝐹𝑁

©­­­­«


𝒉𝒍−1𝒆
𝒉𝒍−1𝒒

𝒉𝒍−1
𝑻𝑬𝑬 (𝒆)∑

𝑟

∑
𝑒′∈𝑛𝑏𝑑𝑟 (𝑒) (𝐴𝑇𝑅(𝑒

′, 𝑟).𝝍𝒓 (𝒉𝒍−1𝒆′))


ª®®®®¬

(7)

Here, (i) the first term corresponds to the entity’s representation
from the previous layer; (ii) the second term denotes the ques-
tion’s representation from the previous layer; (iii) the third term
denotes the previous layer’s representation of the time-aware en-
tity representation 𝑇𝐸𝐸 (𝑒); and (iv) the fourth term aggregates
the states from the entity 𝑒’s neighbors. In the fourth term, the
relation-specific neighborhood 𝑛𝑏𝑑𝑟 corresponds to the set of enti-
ties connected to 𝑒 via relation 𝑟 , 𝐴𝑇𝑅(𝑒 ′, 𝑟) is the attention over
temporal relations, and 𝝍𝒓 (𝒉𝒍−1𝒆′) is the relation-specific transfor-
mation depending on the type and direction of an edge:

𝝍𝒓 (𝒉
𝒍−1
𝒆′) = 𝑃𝑃𝑅𝑙−1𝑒′ · 𝐹𝐹𝑁 (𝒙𝒓 ,𝒉𝒍−1𝒆′) (8)

Here 𝑃𝑃𝑅𝑙−1
𝑒′ is a Personalized PageRank [34] score obtained in

the same way as in GRAFT-Net [66] to control the propagation of
embeddings along paths starting from the question entities.

4.3 Answer prediction

The final entity representations (𝒉𝒍𝒆) obtained at layer 𝑙 , are then
used in a binary classification setup to select the answers. For each
entity 𝑒 , we define its probability to be an answer to 𝑞:

𝑃𝑟 (𝑒 ∈ {𝑎}𝑞 |𝑅𝐺𝑞, 𝑞) = 𝜎 (𝒘𝑻𝒉𝒍𝒆 + 𝒃) (9)
where {𝑎}𝑞 is the set of ground truth answers for question 𝑞, 𝑅𝐺𝑞
is the relational graph built for answering 𝑞 from its answer graph,

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

797

Notation Concept

𝒉𝒍𝒆 Representation of entity 𝑒 at layer 𝑙
𝒉𝒍𝒒 Representation of question 𝑞 at layer 𝑙
𝑻𝑪𝑬 (𝒒) Temporal category encoding for question 𝑞
𝑻𝑺𝑬 (𝒒) Temporal signal encoding for question 𝑞
𝑁𝐸𝑅𝐷 (𝑞) Question entities obtained from NERD
𝒙𝒆 , 𝒙𝒓 Pre-trained entity (𝑒) and relation (𝑟) embeddings
𝑻𝑬 (𝒕𝒔) Time encoding for timestamp 𝑡𝑠
𝑡 𝑓 𝑒1 , 𝑡 𝑓

𝑒
2 , . . . Chronologically ordered temporal facts for 𝑒

𝒉𝒍
𝒕𝒇 𝒆𝒊

Representation of the 𝑖𝑡ℎ temporal fact for 𝑒 at 𝑙
𝒉𝒍
𝑻𝑬𝑬 (𝒆)

Time-aware entity representation of 𝑒 at 𝑙
𝐴𝑇𝑅(𝑒, 𝑟) Attention over temporal relation 𝑟 connected with 𝑒
𝝍𝒓 (𝒉𝒍𝒆) Relation 𝑟 -specific transformation of ℎ𝑙𝑒
𝑃𝑃𝑅𝑙𝑒 Personalized PageRank score for entity 𝑒 at 𝑙
Table 2: Notation for concepts in the R-GCN of Exaqt.

Category Explicit Implicit Temp. Ans. Ordinal Total

Free917 [19] 44 4 76 11 135
WebQ [13] 315 77 283 113 788
ComplexQ [11] 217 131 43 33 424
GraphQ [63] 264 30 13 42 349
ComplexWebQ [68] 1356 224 595 315 2490
ComQA [2] 669 355 1180 1587 3791
LC-QuAD [69] 122 19 0 26 167
LC-QuAD 2.0 [28] 3534 636 3726 819 8715
Total 6521 1476 5916 2946 16859

Table 3: Distribution of question types by source in Time-

Questions. The sum 16859 exceeds the number of questions

16181 as some questions belong to multiple categories.

and 𝜎 is the sigmoid activation function.𝒘 and 𝒃 are respectively
the weight and bias vectors corresponding to the classifier which is
trained using binary cross-entropy loss over these 𝑃𝑟 probabilities.

5 EXPERIMENTAL SETUP

5.1 Benchmark

Previous collections on temporal questions, TempQuestions [37]
and Event-QA [23] contain only about a thousand questions each,
and are not suitable for building neural models. We leverage recent
community efforts in QA benchmarking, and we search through
eight KG-QA datasets for time-related questions. The result is a
new compilation, TimeQuestions, with 16, 181 questions, that we
release with this paper (details in Table 3). Since some of these
previous benchmarks were over Freebase or DBpedia, we used
Wikipedia links in these KGs to map them to Wikidata, the largest
and most actively growing public KG today, and the one that we use
in this work. Questions in each benchmark are tagged for temporal
expressions using SUTime [21] and HeidelTime [62], and for signal
words using a dictionary compiled by [60]. Whenever a question is
found to have at least one temporal expression or signal word, it
becomes a candidate temporal question. This candidate set (ca. 20𝑘
questions) was filtered for false positives by the authors. For each
of these questions, the authors manually verified the correctness of
the answer, and if incorrect, replaced it with the right one. More-
over, each question is manually tagged with its temporal question
category (explicit, implicit, temporal answer, or ordinal) that may
help in building automated classifiers for temporal questions, a

sub-problem interesting in its own right. We split our benchmark
in a 60 : 20 : 20 ratio for creating the training (9708 questions),
development (3236) and test (3237) sets.

5.2 Baselines

We use the following recent methods for complex KG-QA as base-
lines to compare Exaqt with. All baselines were trained and fine-
tuned using the train and dev sets of TimeQuestions, respectively.
They are the most natural choice of baselines as Exaqt is inspired
by components in these methods for building its pipeline: while
Uniqorn [52] showed the effectiveness of GSTs in complex KG-QA,
GRAFT-Net [66] and PullNet [65] showed the value of R-GCNs
for answer prediction. These techniques are designed for dealing
with heterogeneous answering sources (KGs and text), and we use
their KG-only variants:
• Uniqorn [52]: This is a method for answering complex ques-
tions using Group Steiner Trees, and is an extension of [47];

• GRAFT-Net [66]: This was the first technique to adapt R-GCNs
for QA over heterogeneous sources;

• PullNet [65]: This algorithm extended the GRAFT-Net classi-
fier to the scenario of multi-hop questions. We used a reimple-
mentation as the code is not public.

5.3 Metrics

All systems return a ranked list of answers, consisting of KG enti-
ties or literals associated with unique identifiers. We thus use the
following metrics for evaluating Exaqt and the baselines, averaged
over questions in the benchmark:
• P@1: Precision at the top rank is one if the highest ranked
answer is correct, and zero otherwise.

• MRR: This is the reciprocal of the first rank where we have a
correct answer. If the correct answer does not feature in the
ranked list, MRR is zero.

• Hit@5: This is set to one if a correct answer appears in the first
five positions, and zero otherwise.

5.4 Initialization

Configuration. We use the Wikidata KG dump (https://dumps.
wikimedia.org/wikidatawiki/entities/) in NTriples format fromApril
2020, comprising 12𝐵 triples and taking 2 TB when uncompressed
on disk. We subsequently removed language tags, external IDs,
schema labels and URLs from the dump, leaving us with about 2𝐵
triples with 340 GB disk space consumption.

For BERT fine-tuning, positive and negative instances were cre-
ated from the TimeQuestions train and dev sets in the ratio 1 : 5.
These instances were combined and split in the ratio 80 : 20 (test
set not needed), where the first split was used for training and the
second for hyperparameter selection, respectively, for BERT fine-
tuning. We use the BERT-base-cased model for sequence pair clas-
sification (https://bit.ly/3fRVqAG). Best parameters for fine-tuning
were: accumulation = 512, number of epochs = 2, dropout = 0.3,
mini-batch size = 50 and weight decay = 0.001. We use AdamW as
the optimizer with a learning rate of 3× 10−5. During answer graph
construction, we use top-25 question-relevant facts (|{𝑓𝑞𝑟𝑒𝑙 }| = 25),
top-25 GSTs (𝑘 = 25), and top-25 temporal facts (|{𝑡 𝑓𝑞𝑟𝑒𝑙 }| = 25).

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

798

https://dumps.wikimedia.org/wikidatawiki/entities/
https://dumps.wikimedia.org/wikidatawiki/entities/
https://bit.ly/3fRVqAG

R-GCNmodel training. 100-dimensional embeddings for question
words, relation (KG predicate) words and entities, are obtained
from Wikipedia2Vec [78], and learned from the Wikipedia dump
of March 2021. Dimensions of TCE, TSE, TE and TEE (Sec. 4) were
all set to 100 as well. The last hidden states of LSTMs were used
as encodings wherever applicable. This was trained on an Nvidia
Quadro RTX 8000 GPU server. Hyperparameter values were tuned
on the TimeQuestions dev set: number of GCN layers = 3, number
of epochs = 100, mini-batch size = 25, gradient clip = 1, learning
rate = 0.001, LSTM dropout = 0.3, linear dropout = 0.2, and fact
dropout = 0.1. The ReLU activation function was used.

6 KEY FINDINGS

Answering performance of Exaqt and baselines are in Table 4 (best
value in column in bold). Main observations are as follows.
Exaqt outperforms baselines. The main observation from Ta-
ble 4 is the across-the-board superiority of Exaqt over the baselines.
Statistically significant results for each category, baseline and met-
ric, indicate that general-purpose complex QA systems are not able
to deal with the challenging requirements of temporal QA, and that
temporally augmented methods are needed. Outperforming each
baseline offers individual insights, as discussed below.
GSTs are not enough. GSTs are a powerful mechanism for com-
plex QA that identify backbone skeletons in KG subsets and prune
irrelevant information from noisy graphs. While this motivated
the use of GSTs as a building block in Exaqt, outperforming the
Uniqorn [52] method shows that non-terminals (internal nodes) in
GSTs, by themselves, are not enough to answer temporal questions.
Augmenting R-GCNs with time information works well. The
fact that R-GCNs are a powerful model is clear from the fact that
GRAFT-Net, without any explicit support for temporal QA, emerges
as the strongest baseline in this challenging setup. A core contri-
bution of our work is to extend R-GCNs with different kinds of
temporal evidence. Improving over GRAFT-Net shows that our
multi-pronged mechanism (with TEE, ATR, TCE, TSE, and TE) suc-
ceeds in advancing the scope of R-GCN models to questions with
temporal intent. Ablation studies (Sec. 7) show that each of these
“prongs” play active roles in the overall performance of Exaqt.
Not every question is multi-hop. PullNet is a state-of-the-art
system for answering multi-hop chain-join questions (where was
Obama’s father born?). It may appear strange that PullNet, offered
as an improvement over GRAFT-Net, falls short in our setup. In-
specting examples makes the reason for this clear: PullNet has an
assumption that all answers are located on a 2-hop circumference
of the question entities (ideally, 𝑇 -hop, where 𝑇 is a variable that
needs to be fixed for a benchmark: 1 is an oversimplification, while
3 is intractable for a large KG, and hence our choice of 2 for Time-
Questions). When this is not the case (for instance, the slightly
tricky situation when an answer is in a qualifier of a 2-hop fact:
when did obama’s children start studying at sidwell friends school?
or the question is simple: when was obama born?), PullNet cannot
make use of this training point as it relies on shortest KG paths
between question and answer entities. This uniform𝑇 -hop assump-
tion is not always practical, and does not generalize to situations
beyond what PullNet was trained and evaluated on.
Temporal categories vary by difficulty. We use manual ground-
truth labels of question categories from our benchmark to drill down

on class-wise results (the noisy tagger from Sec. 4.1.1 has ≃ 90%
accuracy). Questions with temporal answers are clearly the easiest.
Note that this includes questions starting with “when”, that many
models tackle with dedicated lexical answer types [3, 12], analogous
to location-type answers for “where ...?” questions. Questions with
explicit temporal expressions are the next rung of the ladder: while
they do require reasoning, explicit years often make this matching
easier (who became president of south africa in 1989?). Questions
with implicit expressions are more challenging: we believe that this
is where the power of R-GCNs truly shine, as GST-based Uniqorn
clearly falls short. Finally, questions with temporal ordinals seem
to be beyond what implicit reasoning in graph neural networks can
handle: with P@1 < 0.5, they pose the biggest research challenge.
We believe that this calls for revisiting symbolic reasoning, ideally
plugged into neural GCN architectures.

7 IN-DEPTH ANALYSIS

NERD variants. We experimented with TagMe [30], AIDA [36],
and ELQ [44], going by the most popular to the most recent choices.
Effects of various choices are in Table 5. Our best configuration is
TagMe + ELQ. TagMe (used without threshold on pruning entities)
and ELQ (run with default parameters) nicely complement each
other, since one is recall-oriented (TagMe) and the other precision-
biased (ELQ). Answer recall measures the fraction of questions for
which at least one gold answer was present in the final answer
graph (test set). AIDA + ELQ detects a similar number of entities
per question, but is slightly worse w.r.t. answer recall.
Understanding Stage 1. Traversing over the steps in the recall-
oriented graph construction phase of Exaqt, we try to understand
where we gain (and lose) answers to temporal questions (Table 6,
test set). First, we see that even two NERD systems cannot guar-
antee perfect answer recall (75.8%). The fall from Row 1 to 2 is
expected, as one cannot compute graph algorithms efficiently over
such large graphs as induced by all facts from Row 1. Adding short-
est paths (Row 3), while making the answer graph more connected
(before: 1.58 connected components per question, after: 1.16), also
marginally helps in bringing correct answers into the graph. From
Rows 4 and 5, we see that taking a union of top-𝑘 (𝑘 = 25) GSTs from
each connected component proves worthwhile (increase from 0.613
to 0.640), and so does completing the GSTs (further rise to 0.671).
Finally, adding temporal facts provides a critical boost, taking the
answer recall at the end of Stage 1 to a respectable 72.4%. This
translates to 2343 questions having answers in the graph passed on
to the R-GCN (cf. 1989 answers are present in the PPR-based answer
graph of GRAFT-Net), out of which 1830 are answered correctly
at the end. The second column, that counts the average number
of entities and literals in the answer graph (answer candidates) is
highly insightful to get an idea of the graph size at each step, and
its potential trade-off with respect to answer recall.
Understanding Stage 2. We performed ablation studies to under-
stand the relative influence of the individual temporal components
in the precision-oriented Stage 2 of Exaqt: the R-GCN answer
classifier. Table 7 shows P@1 results on the test set, where the
full model achieves the best results overall and also for each cat-
egory. The amount of drop from the full model (Row 1) indicates
the degree of importance of a particular component. The most vital
enhancement is the attention over temporal relations (ATR). All

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

799

Category Overall Explicit Implicit Temp. Ans. Ordinal

Method P@1 MRR Hit@5 P@1 MRR Hit@5 P@1 MRR Hit@5 P@1 MRR Hit@5 P@1 MRR Hit@5

Uniqorn [52] 0.331 0.409 0.538 0.318 0.406 0.536 0.316 0.415 0.545 0.392 0.472 0.597 0.202 0.236 0.356
GRAFT-Net [66] 0.452 0.485 0.554 0.445 0.478 0.531 0.428 0.465 0.525 0.515 0.568 0.660 0.322 0.313 0.371
PullNet [65] 0.105 0.136 0.186 0.022 0.043 0.075 0.081 0.123 0.192 0.234 0.277 0.349 0.029 0.049 0.083

Exaqt 0.565* 0.599* 0.664* 0.568* 0.594* 0.636* 0.508* 0.567* 0.633* 0.623* 0.672* 0.756* 0.420* 0.432* 0.508*
Statistical significance of Exaqt over the strongest baseline (GRAFT-Net), under the 2-tailed paired 𝑡 -test, is marked with an asterisk (*) (𝑝 < 0.05).

Table 4: Performance comparison of Exaqt with three complex QA baselines over the TimeQuestions test set.

NERD Recall #Question entities

TagMe 0.682 2.9
ELQ 0.716 1.7
AIDA 0.541 2.8

TagMe + ELQ 0.758 3.5
AIDA + ELQ 0.729 3.5
TagMe + AIDA 0.701 4.3

Table 5: Comparing various NERD methods on the test set.

Step in Exaqt pipeline Recall #Candidates

All KG facts of NERD entities 0.758 2491
Facts selected by BERT 0.719 48
Shortest paths injected for connectivity 0.720 49
GSTs on largest component 0.613 13
Union of GSTs from all components 0.640 14
Completed GSTs from all components 0.671 21
Temporal facts added by BERT 0.724 67

Table 6: Understanding the recall-oriented Stage 1 of Exaqt.

Category Overall Explicit Implicit Temp. Ans. Ordinal

Exaqt (Full) 0.565 0.568 0.508 0.623 0.420

Exaqt - TCE 0.545 0.556 0.481 0.590 0.406
Exaqt - TSE 0.543 0.545 0.465 0.598 0.411
Exaqt - TEE 0.556 0.564 0.475 0.614 0.413
Exaqt - TE 0.553 0.556 0.495 0.613 0.398
Exaqt - ATR 0.534 0.527 0.465 0.594 0.411

Table 7: Inspecting the precision-oriented Stage 2 of Exaqt.

what did abraham lincoln do before he was president?
who was the king of troy when the trojan war was going on?
what films are nominated for the oscar for best picture in 2009?
where did harriet tubman live after the civil war?
when did owner bill neukom’s sports team last win the world series?

Table 8: Anecdotal examples that Exaqt answered correctly.

other factors offer varying degrees of assistance. An interesting
observation is that TCE, while playing a moderate role in most
categories, is of the highest importance for questions with temporal
answers: even knowing that a question belongs to this category
helps the model.
Anecdotal examples. Table 8 shows samples of test questions that
are successfully processed by Exaqt but none of the baselines.

8 RELATEDWORK

Temporal QA in IR. Supporting temporal intent in query and
document processing has been a long-standing research topic in
IR [8, 14, 20, 40, 49, 60]. This includes work inside the specific use
case of QA over text [5, 33, 46, 56]. Most of these efforts require
significant preprocessing and markup of documents. There is also

onus on questions to be formulated in specific ways so as to con-
form to carefully crafted parsers. These directions often fall short of
realistic settings on the Web, where documents and questions are
both formulated ad hoc. Moreover, such corpus markup unfortu-
nately does not play a role in structured knowledge graphs. Notable
effort in temporal QA includes work of [56], which decompose
complex questions into simpler components, and recompose an-
swer fragments into responses that satisfy the original intent. Such
approaches have bottlenecks from parsing issues. Exaqt makes no
assumptions on how questions are formulated.
Temporal QA over KGs. Questions with temporal conditions
have not received much attention in the KG-QA literature. The
few works that specifically address temporal questions include
[23, 38, 76]. Among these, [38] relies on hand-crafted rules with
limited generalization, whereas Exaqt is automatically trained with
distant supervision and covers a much wider territory of questions.
[23] introduces the task of event-centric QA, which overlaps with
our notion of temporal questions, and introduces a benchmark
collection. [76] presents a key-value memory network to include
KG information about time into a QA pipeline. Themethod is geared
for simple questions, as present in the WebQuestions benchmark.
Temporal KGs. Of late, understanding large KGs as a dynamic
body of knowledge has gained attention, giving rise to the notion
of temporal knowledge graphs or temporal knowledge bases [25,
70]. Here, each edge (corresponding to a fact) is associated with a
temporal scope or validity [43], with current efforts mostly focusing
on the topic of temporal KG completion [31, 32, 42]. A very recent
approach has explored QA over such temporal KGs, along with the
creation of an associated benchmark [57].

9 CONCLUSIONS

Temporal questions have been underexplored in QA, and so has tem-
poral information in KGs, despite their importance for knowledge
workers like analysts or journalists as well as advanced information
needs of lay users. This work on the Exaqt method has presented
a complete pipeline for filling this gap, based on a judicious combi-
nation of BERT-based classifiers and graph convolutional networks.
Most crucially, we devised new methods for augmenting these com-
ponents with temporal signals. Experimental results with a large
collection of complex temporal questions demonstrate the superi-
ority of Exaqt over state-of-the-art general-purpose methods for
QA over knowledge graphs.

Acknowledgements. We thank Philipp Christmann and Jesujoba
Alabi from the MPI for Informatics for useful inputs at various
stages of this work. Zhen Jia was supported by (i) China Academy of
Railway Sciences Corporation Limited (2019YJ106); and (ii) Sichuan
Science and Technology Program (2020YFG0035).

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

800

REFERENCES

[1] Abdalghani Abujabal, Rishiraj Saha Roy, Mohamed Yahya, and Gerhard Weikum.
2018. Never-ending learning for open-domain question answering over knowl-
edge bases. InWWW.

[2] Abdalghani Abujabal, Rishiraj Saha Roy, Mohamed Yahya, and Gerhard Weikum.
2019. ComQA: A Community-sourced Dataset for Complex Factoid Question
Answering with Paraphrase Clusters. In NAACL-HLT.

[3] Abdalghani Abujabal, Mohamed Yahya, Mirek Riedewald, and Gerhard Weikum.
2017. Automated template generation for question answering over knowledge
graphs. InWWW.

[4] B Aditya, Gaurav Bhalotia, Soumen Chakrabarti, Arvind Hulgeri, Charuta Nakhe,
S Sudarshanxe, et al. 2002. BANKS: Browsing and keyword searching in relational
databases. In VLDB.

[5] David Ahn, Steven Schockaert, Martine De Cock, and Etienne Kerre. 2006. Sup-
porting temporal question answering: Strategies for offline data collection. In
ICoS-5.

[6] James F Allen. 1983. Maintaining knowledge about temporal intervals. CACM
26, 11 (1983).

[7] Omar Alonso, Michael Gertz, and Ricardo Baeza-Yates. 2007. On the value of
temporal information in information retrieval. In SIGIR Forum.

[8] Omar Alonso, Jannik Strötgen, Ricardo Baeza-Yates, and Michael Gertz. 2011.
Temporal Information Retrieval: Challenges and Opportunities. TWAW 11 (2011).

[9] Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D. Manning.
2015. Leveraging linguistic structure for open domain information extraction. In
ACL.

[10] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,
and Zachary Ives. 2007. DBpedia: A nucleus for a Web of open data. In ISWC.

[11] Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. 2016. Constraint-
based question answering with knowledge graph. In COLING.

[12] Hannah Bast and Elmar Haussmann. 2015. More accurate question answering
on Freebase. In CIKM.

[13] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. 2013. Semantic
parsing on freebase from question-answer pairs. In EMNLP.

[14] Klaus Berberich, Srikanta Bedathur, Omar Alonso, and Gerhard Weikum. 2010.
A language modeling approach for temporal information needs. In ECIR.

[15] Nikita Bhutani and H. V. Jagadish. 2019. Online Schemaless Querying of Hetero-
geneous Open Knowledge Bases. In CIKM.

[16] Nikita Bhutani, Xinyi Zheng, and HV Jagadish. 2019. Learning to Answer Com-
plex Questions over Knowledge Bases with Query Composition. In CIKM.

[17] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: A collaboratively created graph database for structuring human
knowledge. In SIGMOD.

[18] Bertram C Bruce. 1972. A model for temporal references and its application in a
question answering program. Artificial intelligence 3 (1972).

[19] Qingqing Cai and Alexander Yates. 2013. Large-scale semantic parsing via schema
matching and lexicon extension. In ACL.

[20] Ricardo Campos, Gaël Dias, Alípio M Jorge, and Adam Jatowt. 2014. Survey of
temporal information retrieval and related applications. CSUR 47, 2 (2014).

[21] Angel X. Chang and Christopher D Manning. 2012. SUTime: A library for
recognizing and normalizing time expressions. In LREC.

[22] Camille Chanial, Rédouane Dziri, Helena Galhardas, Julien Leblay, Minh-Huong
Le Nguyen, and Ioana Manolescu. 2018. ConnectionLens: Finding Connections
Across Heterogeneous Data Sources. In VLDB.

[23] Tarcísio Souza Costa, Simon Gottschalk, and Elena Demidova. 2020. Event-QA:
A Dataset for Event-Centric Question Answering over Knowledge Graphs. In
CIKM.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL-HLT.

[25] Bhuwan Dhingra, Jeremy R Cole, Julian Martin Eisenschlos, Daniel Gillick, Jacob
Eisenstein, and William W Cohen. 2021. Time-Aware Language Models as
Temporal Knowledge Bases. In arXiv.

[26] Dennis Diefenbach, Pedro Henrique Migliatti, Omar Qawasmeh, Vincent Lully,
Kamal Singh, and Pierre Maret. 2019. QAnswer: A Question Answering prototype
bridging the gap between a considerable part of the LOD cloud and end-users. In
WWW.

[27] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin.
2007. Finding top-k min-cost connected trees in databases. In ICDE.

[28] Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens Lehmann.
2019. LC-QuAD 2.0: A large dataset for complex question answering over Wiki-
data and DBpedia. In ISWC.

[29] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. 2015. Con-
volutional networks on graphs for learning molecular fingerprints. In NIPS.

[30] Paolo Ferragina and Ugo Scaiella. 2010. TAGME: On-the-fly annotation of short
text fragments (by Wikipedia entities). In CIKM.

[31] Alberto Garcia-Duran, Sebastijan Dumančić, and Mathias Niepert. 2018. Learning
Sequence Encoders for Temporal Knowledge Graph Completion. In EMNLP.

[32] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. 2020.
Diachronic embedding for temporal knowledge graph completion. In AAAI.

[33] Sanda Harabagiu and Cosmin Adrian Bejan. 2005. Question answering based on
temporal inference. InAAAIWorkshop on inference for textual question answering.

[34] Taher H Haveliwala. 2003. Topic-sensitive pagerank: A context-sensitive ranking
algorithm for Web search. TKDE 15, 4 (2003).

[35] Daniel Hernández, Aidan Hogan, and Markus Krötzsch. 2015. Reifying RDF:
What works well with Wikidata?. In SSWS@ISWC.

[36] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Man-
fred Pinkal, Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum.
2011. Robust disambiguation of named entities in text. In EMNLP.

[37] Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jannik Strötgen, and Gerhard
Weikum. 2018. TempQuestions: A benchmark for temporal question answering.
In HQA.

[38] Zhen Jia, Abdalghani Abujabal, Rishiraj Saha Roy, Jannik Strötgen, and Gerhard
Weikum. 2018. TEQUILA: Temporal Question Answering over Knowledge Bases.
In CIKM.

[39] Magdalena Kaiser, Rishiraj Saha Roy, and Gerhard Weikum. 2021. Reinforce-
ment Learning from Reformulations in Conversational Question Answering over
Knowledge Graphs. In SIGIR.

[40] Nattiya Kanhabua and Avishek Anand. 2016. Temporal information retrieval. In
SIGIR.

[41] Erdal Kuzey, Vinay Setty, Jannik Strötgen, and Gerhard Weikum. 2016. As time
goes by: Comprehensive tagging of textual phrases with temporal scopes. In
WWW.

[42] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. 2020. Tensor
Decompositions for temporal knowledge base completion. In ICLR.

[43] Julien Leblay and Melisachew Wudage Chekol. 2018. Deriving validity time in
knowledge graph. In TempWeb.

[44] Belinda Z. Li, Sewon Min, Srinivasan Iyer, Yashar Mehdad, and Wen-tau Yih.
2020. Efficient One-Pass End-to-End Entity Linking for Questions. In EMNLP.

[45] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2016. Efficient and progressive
group steiner tree search. In SIGMOD.

[46] Elena Lloret, Hector Llorens, PalomaMoreda, Estela Saquete, andManuel Palomar.
2011. Text summarization contribution to semantic question answering: New
approaches for finding answers on the web. International Journal of Intelligent
Systems 26, 12 (2011), 1125–1152.

[47] Xiaolu Lu, Soumajit Pramanik, Rishiraj Saha Roy, Abdalghani Abujabal, Yafang
Wang, and Gerhard Weikum. 2019. Answering complex questions by joining
multi-document evidence with quasi knowledge graphs. In SIGIR.

[48] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS.

[49] Borja Navarro-Colorado and Estela Saquete. 2015. Combining temporal informa-
tion and topic modeling for cross-document event ordering. In arXiv.

[50] Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan Peshterliev, Dmytro Okhonko,
Michael Schlichtkrull, Sonal Gupta, Yashar Mehdad, and Scott Yih. 2021. UniK-
QA: Unified Representations of Structured and Unstructured Knowledge for
Open-Domain Question Answering. In arXiv.

[51] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:
Global vectors for word representation. In EMNLP.

[52] Soumajit Pramanik, Jesujoba Alabi, Rishiraj Saha Roy, and Gerhard Weikum.
2021. UNIQORN: Unified Question Answering over RDF Knowledge Graphs and
Natural Language Text. In arXiv.

[53] James Pustejovsky, Janyce Wiebe, and Mark Maybury. 2002. Multiple-perspective
and temporal question answering. In Question Answering: Strategy and Resources
Workshop Program.

[54] Yunqi Qiu, Yuanzhuo Wang, Xiaolong Jin, and Kun Zhang. 2020. Stepwise
Reasoning for Multi-Relation Question Answering over Knowledge Graph with
Weak Supervision. InWSDM.

[55] Rishiraj Saha Roy and Avishek Anand. 2020. Question Answering over Curated
and Open Web Sources. In SIGIR.

[56] Estela Saquete, J Luis Vicedo, Patricio Martínez-Barco, Rafael Munoz, and Hector
Llorens. 2009. Enhancing QA systemswith complex temporal question processing
capabilities. JAIR 35 (2009).

[57] Apoorv Saxena, Soumen Chakrabarti, and Partha Talukdar. 2021. Question
Answering Over Temporal Knowledge Graphs. In ACL.

[58] Frank Schilder and Christopher Habel. 2003. Temporal Information Extraction for
Temporal Question Answering. In New Directions in Question Answering, AAAI
Technical Report.

[59] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In ESWC.

[60] Andrea Setzer. 2002. Temporal information in newswire articles: An annotation
scheme and corpus study. Ph.D. Dissertation. University of Sheffield.

[61] Yuxuan Shi, Gong Cheng, and Evgeny Kharlamov. 2020. Keyword Search over
Knowledge Graphs via Static and Dynamic Hub Labelings. InWWW.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

801

[62] Jannik Strötgen and Michael Gertz. 2010. HeidelTime: High quality rule-based
extraction and normalization of temporal expressions. In SemEval.

[63] Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa, Izzeddin Gür, Zenghui Yan,
and Xifeng Yan. 2016. On generating characteristic-rich question sets for QA
evaluation. In EMNLP.

[64] Fabian Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. YAGO: A core of
semantic knowledge. InWWW.

[65] Haitian Sun, Tania Bedrax-Weiss, and William Cohen. 2019. PullNet: Open
Domain Question Answering with Iterative Retrieval on Knowledge Bases and
Text. In EMNLP-IJCNLP.

[66] Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, KathrynMazaitis, Ruslan Salakhut-
dinov, and William Cohen. 2018. Open Domain Question Answering Using Early
Fusion of Knowledge Bases and Text. In EMNLP.

[67] Yahui Sun, Xiaokui Xiao, Bin Cui, Saman Halgamuge, Theodoros Lappas, and
Jun Luo. 2021. Finding group Steiner trees in graphs with both vertex and edge
weights. In VLDB.

[68] Alon Talmor and Jonathan Berant. 2018. The Web as a Knowledge-Base for
Answering Complex Questions. In NAACL-HLT.

[69] Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann. 2017.
LC-QuAD: A corpus for complex question answering over knowledge graphs. In
ISWC.

[70] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-Evolve:
Deep temporal reasoning for dynamic knowledge graphs. In ICML.

[71] Naushad Uzaaman, Hector Llorens, and James Allen. 2012. Evaluating temporal
information understanding with temporal question answering. In ICSC.

[72] Svitlana Vakulenko, Javier David Fernandez Garcia, Axel Polleres, Maarten de
Rijke, and Michael Cochez. 2019. Message Passing for Complex Question An-
swering over Knowledge Graphs. In CIKM.

[73] Johannes M. van Hulst, Faegheh Hasibi, Koen Dercksen, Krisztian Balog, and
Arjen P. de Vries. 2020. REL: An entity linker standing on the shoulders of giants.
In SIGIR.

[74] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS.

[75] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A free collaborative
knowledge base. CACM 57, 10 (2014).

[76] Wenqing Wu, Zhenfang Zhu, Qiang Lu, Dianyuan Zhang, and Qiangqiang Guo.
2020. Introducing External Knowledge to Answer Questions with Implicit Tem-
poral Constraints over Knowledge Base. Future Internet 12, 3 (2020), 45.

[77] Mohamed Yahya, Klaus Berberich, Shady Elbassuoni, and Gerhard Weikum. 2013.
Robust question answering over the web of linked data. In CIKM.

[78] Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda,
Yoshiyasu Takefuji, and Yuji Matsumoto. 2020. Wikipedia2Vec: An Efficient
Toolkit for Learning and Visualizing the Embeddings of Words and Entities from
Wikipedia. In EMNLP.

[79] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. 2015. Semantic
Parsing via Staged Query Graph Generation: Question Answering with Knowl-
edge Base. In ACL-IJCNLP.

[80] Xuchao Zhang, Wei Cheng, Bo Zong, Yuncong Chen, Jianwu Xu, Ding Li, and
Haifeng Chen. 2020. Temporal Context-Aware Representation Learning for
Question Routing. InWSDM.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

802

	Abstract
	1 Introduction
	2 Concepts and notation
	3 Constructing answer graphs
	3.1 Finding question-relevant KG facts
	3.2 Computing compact subgraphs
	3.3 Augmenting subgraphs with temporal facts

	4 Predicting answers with R-GCN
	4.1 Question representation
	4.2 Entity representation
	4.3 Answer prediction

	5 Experimental Setup
	5.1 Benchmark
	5.2 Baselines
	5.3 Metrics
	5.4 Initialization

	6 Key findings
	7 In-depth analysis
	8 Related Work
	9 Conclusions
	References

