
RESEARCH ARTICLE

The interplay between age structure and

cultural transmission

Anne KandlerID
1*, Laurel Fogarty1, Folgert Karsdorp2

1 TICE lab, Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary

Anthropology, Leipzig, Germany, 2 Meertens Institute, The Royal Netherlands Academy of Arts and

Sciences, Amsterdam, The Netherlands

* anne_kandler@eva.mpg.de

Abstract

Empirical work has shown that human cultural transmission can be heavily influenced by

population age structure. We aim to explore the role of such age structure in shaping the cul-

tural composition of a population when cultural transmission occurs in an unbiased way. In

particular, we are interested in understanding the effect induced by the interplay between

age structure and the cultural transmission process by allowing cultural transmission from

individuals within a limited age range only. To this end we develop an age-structured cultural

transmission model and find that age-structured and non age-structured populations evolv-

ing through unbiased transmission possess very similar cultural compositions (at a single

point in time) at the population and sample level if the copy pool consists of a sufficiently

large fraction of the population. If, however, an age constraint—a structural constraint

restricting the pool of potential role models to individuals of a limited age range— exists, the

cultural compositions of age-structured and non age-structured population show stark differ-

ences. This may have drastic consequences for our ability to correctly analyse cultural data

sets. Rejections of tests of neutrality, blind to age structure and, importantly, the interaction

between age structure and cultural transmission, are only indicative of biased transmission

if it is known a priori that there are no or only weak age constraints acting on the pool of role

models. As this knowledge is rarely available for specific empirical case studies we develop

a generative inference approach based on our age-structured cultural transmission model

and machine learning techniques. We show that in some circumstances it is possible to

simultaneously infer the characteristics of the age structure, the nature of the transmission

process, and the interplay between them from observed samples of cultural variants. Our

results also point to hard limits on inference from population-level data at a single point in

time, regardless of the approach used.

Author summary

Age structure is undoubtedly a feature of human populations and empirical cultural evo-

lutionary research has shown that the specifics of age structure can heavily influence how

humans learn and transmit different cultural traits. Nevertheless, such demographic
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properties are rarely included in theoretical models of human cultural evolution. This

may present a problem, especially for model-based inferential analyses. In this paper, I

show when the population-level signatures of age-structured and non age-structured pop-

ulations—evolving through the process of unbiased transmission—show detectable differ-

ences and therefore when demographic properties must be included in models of cultural

evolution. I demonstrate that a failure to do so may lead to erroneous conclusions about

evolutionary processes, in particular processes of cultural transmission, underlying

observed patterns of cultural change. To mitigate this risk I develop a generative inference

framework combining cultural evolutionary and machine learning techniques. This

framework also provides valuable information about hard limits on inference from sparse

population-level data.

Introduction

The populations of many species exhibit age structure in the sense that they consist, at any one

time, of individuals of various ages. As such, there is a large body of theoretical literature

addressing evolution in age-structured populations focusing on various topics from age-spe-

cific birth rates [1, 2], discrete age structures [3] and the evolutionary process [1, 4], life history

evolution [5, 6], and mate choice [7] among many others (see [8], for a recent discussion of

this literature).

In contrast, the much younger field of cultural evolution understands less about the ways in

which age structure affects cultural evolutionary dynamics. Some theoretical work has shown

that age structure mediates the kinds of cultural traits that can spread in populations character-

ised by different age structures and life histories [9], the ways in which transmission processes

determine cultural diversity [10], and the evolution of cultural transmission mechanisms [11].

Work stemming from models developed by Carotenuto et. al. [12] has usefully applied age-

structured demographic models to explain the maintenance and spread of cultural traits affect-

ing human health and well-being [13].

Further, empirical work has shown that the way in which humans learn and transmit differ-

ent kinds of cultural traits appears to be heavily influenced by age structure. For example,

Hewlett and Cavalli-Sforza [14] showed that in the Central African Republic population of the

Aka, over 80% of cultural traits they examined were learned vertically from parents. For other

sets of cultural traits, learning may be from older unrelated individuals or from same-age peers

[15]. Indeed, the definitions of many cultural transmission processes explicitly reference age.

Much current theory, however, does not reflect the complexity of the relationship between

transmission mechanisms and age structure. Many if not most models of cultural evolution

assume that transmission occurs in well-mixed populations with no demographic or social

structure. However, taken together, the mounting theoretical and empirical evidence suggests

that the inclusion of age structure in modelling frameworks may be particularly important in

the context of human cultural evolution.

In this paper we develop a simulation model to investigate the potentially important effect

of age-structure on cultural evolution. We compare the cultural dynamic in age-structured

and non age-structured populations which are evolving through unbiased cultural transmis-

sion. In particular, we are interested in understanding the effect induced by the interplay

between age structure and the cultural transmission process—by allowing cultural transmis-

sion from individuals within a limited age range only. In the cultural evolutionary literature,

‘unbiased transmission’ has been defined as a process where “naive individuals randomly
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choose a model” from whom to learn [16]. In other words, we use the term ‘unbiased transmis-

sion’ (also called ‘linear transmission’ by Boyd and Richerson [16]) to describe a situation

where the probability of choosing any cultural variant to adopt is dictated only by its relative

frequency in the pool of potential role models [16], p.134. This focus on unbiased transmission

allows direct comparison with an extensive and well-developed body of theory addressing the

evolution of selectively neutral cultural and genetic traits for non age-structured populations

and facilitates quantification of the cultural differences between age-structured and non age-

structured populations. We note that the age-structured models of cultural transmission devel-

oped in this paper do not seek to replicate a specific system. Rather, they are used to under-

stand theoretically whether age structure and in particular, interactions between age structure

and an unbiased transmission process can affect the dynamic of cultural change.

Mimicking the sparse data situation in many archaeological and anthropological case stud-

ies, we use the simulation model to explore the differences in the cultural composition, for

example the numbers and frequencies of different variants of a cultural trait, of age-structured

and non age-structured populations evolving through unbiased cultural transmission, at a sin-

gle point in time. To this end we compare population- and sample-level properties of both

types of populations. This comparison of theoretical expectations provides insights into first,

the direct effect of age structure on the cultural composition and second, the compound effect

of the age structure through its interaction with cultural transmission processes.

A second focus of the paper is concerned with the question of whether and how we can

infer features of the cultural transmission process from population-level frequency data

taken at a single point in time. Due to the sparse nature of the data, researchers often focused

on the distinction between unbiased and biased transmission by using ‘tests of neutrality’—

in particular the Ewens-Watterson test (e.g. in [17–19], see below for more details). Follow-

ing from the above definition of unbiased transmission, ‘biased transmission’ is assumed to

describe situations where individuals use direct characteristics of cultural variants in order

to choose the most adaptive variant to copy, use secondary characteristics (for example suc-

cess or prestige) to choose a role model, or choose a variant disproportionately to its fre-

quency (for example favouring common variants) [16], p.135. Put differently, ‘biased

transmission’ describes any deviation from the assumption that individuals choose a cultural

variant through random copying; they may have a preference for adopting one variant over

another. We note that our conception of age-restricted pools of potential role models falls

outside of this definition of biased cultural transmission. Individuals themselves choose

through a process of random copying but from a restricted pool of role models. Nevertheless,

restricted copy pools pose a structural constraint on copying which—to avoid confusion—

we call an age constraint. Such a structural constraint, which could be, for example demo-

graphic, geographic, or normative in origin, may have the potential to influence the dynamic

of cultural change.

Where a data set fails a test of neutrality, it is often concluded that the trait or variant in

question is under some form of ‘selection’, or in other words, that the underlying transmission

process deviates from random copying. However, such conclusions are problematic for a num-

ber of reasons (e.g. [20]). Notably, neutrality tests typically assume that populations have no

significant structure or age structure and therefore cannot take into account potential interac-

tions between age structure and the unbiased transmission process. Consequently, such a test

might fail despite the fact that the process of cultural transmission remains unbiased (in the

sense that naive individuals still choose role models at random) but, instead, because of the age

constraint leading to a restriction on the copy pool. Thus, in order to confidently use such tests

on human cultural data and correctly interpret their outputs, it is necessary to quantify the

impact of violating the test’s demographic assumptions—which in turn could induce structural
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constraints. It may prove necessary, too, to develop new inferential procedures capable of

delineating the effects of structural constraints from effects of biased transmission.

In this context, strides have been made in recent years to adapt an inferential approach

developed in population genetics which goes beyond the hypothesis testing framework (e.g.

[21–25]). The generative inference framework simultaneously evaluates the consistency of a

number of cultural transmission processes with the available data while also accounting for

demographic and cultural properties of the system considered. In general, the approach con-

sists of two main steps. The first step comprises the development of a generative model, captur-

ing the main cultural and demographic dynamics of the cultural system considered, to

produce pseudo-data, in our case population-level frequencies of different variants condi-

tioned on an assumed cultural transmission process. The second step uses Bayesian techniques

to statistically compare theoretical predictions and empirical observations and to derive con-

clusions about which (mixtures of) transmission processes are consistent with the observable

frequency data (and which are not). Naturally, the accuracy of the inference results depends

on the appropriateness of the generative model, i.e. how well the model reflects the dynamic of

cultural change of the system considered. Consequently, the results of our analyses will indi-

cate whether and when demographic properties of the population such as age structure need

to be included in generative models.

We develop a generative inference approach based on our age-structured cultural transmis-

sion model and machine learning techniques (see also [26] for an application to simulated

archaeological data) and show that in some circumstances it is possible to simultaneously infer

the characteristics of the age structure, the nature of the transmission process, and the inter-

play between them from observed samples of cultural variants. This approach also allows us to

explore the hard limits to such inferential exercises, given the temporal resolution of a single

point of the data at hand.

1 Methods

1.1 Age-structured cultural transmission model

We consider a population of size N. Each individual in the population is characterised by its

age and the cultural variant it has adopted. At each time step, individuals age and may die with

probability pdeath. We assume that the population size remains constant over time which

implies that the birth and death processes are not independent, and the number of new indi-

viduals entering the population in any time step is equal to the number of deaths. On average,

this number is Npdeath. Thus, the age structure of the population is determined by the parame-

ter pdeath: the smaller pdeath the fewer newborn individuals enter the population at age 0 and

the longer the lifespan of an individual in time steps.

Each newborn individual is initially naive with respect to the cultural variant. They can

adopt a variant from a role model chosen at random from a pool of potential models. This

pool is determined by the parameter cthresh which describes the maximum age of the individu-

als it contains. In what follows, we contrast the two extreme scenarios: (i) the ‘ALL’ scenario

with cthresh = amax, where amax describes the age of the oldest individual in the population

which can change over time. In this case, the pool of potential models is the whole population

of living individuals. And (ii) the ‘1’ scenario with cthresh = 1, where naive individuals choose

role models from all individuals of age 1, or in other words copy only the most recently trans-

mitted cultural variants.

The cultural variants have no effect on the survival or reproductive capacity of the individu-

als or the variant type itself; they are selectively neutral. Under unbiased transmission, as

defined above, a cultural variant type i is chosen to be copied by a naive individual with
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probability

pi ¼
nP
i

NP
ð1 � mÞ ð1Þ

where nP
i describes the number of instances of type i in the variant pool of size NP. Any restric-

tion of the copy pool induces a structural constraint in the form of an age constraint; the ‘ALL’

scenario represents a situation without any constraints whereas the ‘1’ scenario a situation with

strong constraints. Further, the transmission process is faithful with probability (1 − μ). With

probability μ, a new, not previously seen cultural variant is introduced into the system. To allow

for consistency with the classical Wright-Fisher infinite alleles model [27, 28] we assume that

reproduction and death occur simultaneously, i.e. a naive individual can choose a role model

from all individuals in the appropriate copy pool that were present in the previous time step.

To include cultural transmission processes other than unbiased transmission we must spec-

ify an appropriate probability for choosing variant type i. Here we focus on frequency-depen-

dent transmission and alter Eq (1) to

pi ¼
ðnP

i =N
PÞ

1þb

Xk

j¼1

ðnP
j =N

PÞ
1þb

ð1 � mÞ;
ð2Þ

where k describes the number of variant types present in the population and b the strength of

the frequency-dependent bias. For b< 0 we model negative frequency-dependent bias and for

b> 0 positive frequency-dependent bias. As above, any restriction of the copy pool induces an

age constraint.

To obtain information about the cultural composition of the population, we let each sim-

ulation reach its steady state and then extract the frequencies of all variant types present in

the population as well as in samples of different sizes. Throughout the manuscript we con-

sider the following parameter ranges N = 105, μ = 5 � 10−4, pdeath = 0.02, 0.03, 0.04, 0.05, 0.1

and cthresh = 1, amax. All results shown are generated based on 100 independent simulations.

1.2 Test of neutrality

1.2.1 Ewens-Watterson test. The Ewens-Watterson test is a test for selective neutrality

developed by population geneticists Ewens and Watterson [29–31] and generalised by Slatkin

[32, 33]. The test evaluates whether an observed sample of size n could have been drawn from

a population whose composition has evolved through a Wright-Fisher dynamic. Ewens [29]

showed that under neutrality for a given number of variant types k, the probability of obtaining

a specific configuration of types, (n1, n2, . . ., nk) with
Pk

i¼1
ni ¼ n, in the sample is given by

Pðn1; n2; . . . ; nkjn; kÞ ¼
n!

jSknjk!n1 � . . . � nk
; ð3Þ

where jSknj denotes the unsigned Stirling number of first kind [29]. Ewens [29] and Watterson

[30, 31] used Eq (3) to propose a test of neutrality based on the observed diversity in the sam-

ple. In other words, this test evaluates whether the level of diversity observed in a sample of

size n could have been drawn from a population distributed according to (3).
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Slatkin [32, 33] generalised this approach based on Fisher’s exact test by calculating the tail

probability of the observed configuration n0 = (n0,1, n0,2, . . ., n0k)

PE ¼
X

fnj :Pðnjjn;kÞ�Pðn0Þg

Pðnjjn; kÞ:

The set {nj : P(nj|n, k)� P(n0)} contains all possible configurations nj = (nj,1, nj,2, . . ., nj,k) with

Pk

i¼1

nj;i ¼ n and k variant types as observed in n0 whose probabilities P(nj|n, k)—given by

Eq (3)—are smaller than the probability P(n0) of the observed data n0 being neutral. However,

for large sample sizes it is usually impractical to determine all possible configurations. In this

case, we can sample a large number of configurations from Eq (3) (see [34] and S1 Text, sec-

tion 2 for the description of the sampling algorithm). We then count the configurations with

probabilities equal or less than the probability of the observed configuration n0. This provides

a p-value suitable for a two-tailed hypothesis test with significance level α.

To summarise, by determining where the observed sample n0 is situated in the distribution

of neutral configurations generated by Eq (3), one can potentially draw conclusions about the

evolutionary forces, i.e. the presence or absence of selective forces, that shaped the composition

of sample n0. However, the neutral expectation in Eq (3) was derived based on a Wright-Fisher

dynamic and explicitly assumes a population without age structure which is in stark contrast

to real world populations generating most cultural data sets. We are interested in understand-

ing whether the Ewens-Watterson test can fail in situations where transmission is unbiased

but the population is age-structured, or put differently, whether the Ewens-Watterson test can

detect a structural constraint in form of an age constraint in the data. If this is the case,

researchers need to be careful in interpreting the test result: rejections are not per se indicative

of biased transmission, i.e. a deviation from the random copying hypothesis but can—as in

our case—point to constraints induced by demographic properties unaccounted for in the

Wright-Fisher model.

1.2.2 Machine learning approach. In this section we introduce a machine learning (ML)

approach that reformulates the neutrality test described above as a binary classification prob-

lem. This approach is based on research on supervised classification methods [35], and we

apply it here to train a system that can automatically learn how to distinguish samples taken

from populations evolving through unbiased transmission and those taken from populations

evolving through biased transmission based on simulated training material. This method has

recently been applied to study aspects of language change [36].

At the heart of this approach is the generation of appropriate training data which allow the

system to learn which properties of the data can be associated with which label, in our case

with the labels ‘unbiased’ and ‘biased’. Or in ML terminology: supervised classification systems

are trained based on pairs of features xi and corresponding labels yi. Given a data set D with n
of these pairs, D = {(x1, y1), (x2, y2), . . ., (xn, yn)}, the goal is to learn a mapping function f to

associate the features xi with the labels yi, i.e., yi = f(xi). In what follows, we will first describe

our chosen feature representation, and successively provide details about the supervised classi-

fication system.

We describe the features of our data, i.e. random samples of the cultural composition of the

population, by a family of diversity measures called Hill numbers (with q 6¼ 1) [37–40]

qDððp1; . . . ; pkÞÞ ¼
Xk

i¼1

pqi

 !ð1=1� qÞ

ð4Þ

where pi represents the relative frequency of variant type i, and q the sensitivity to the relative
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frequencies of variant types. Using simple algebraic operations, Hill numbers can be trans-

formed into well-known diversity indices. For example, 0D is equal to the richness, k, of a sam-

ple, since no weight is given to the relative frequency of variant types. Put differently, with

q = 0, maximum weight is given to rare types. With q = 1 all types are equally weighted by their

relative frequency. Note however that 1D is undefined, but the limit exists, which is equal to

the exponential of Shannon entropy (cf. [39, 40]). With q> 1, common variant types are dis-

proportionately weighted, giving less weight to rare types for increasing values of q. For

instance, the Hill number of order 2 is equal the inverse of the Gini-Simpson index (or

expected heterozygosity) which describes the probability that two variants randomly chosen

from the sample are of the same type. One advantage of Hill numbers is that they are all

expressed in units of effective number of variants: the number of equally abundant variant

types that would be needed to lead to the same value of the diversity measure. Diversity is thus

measured on the same scale, which allows us to chart “diversity profiles”, representing the

diversity at different orders q. As our feature representation, then, we compute diversity pro-

files with q in the interval [0, 3] and a step size of 0.25 (see [39, 40]).

To be able to automatically associate features of data with the two labels ‘unbiased’ and

‘biased’, we use random forest classifiers [41] as implemented in the Scikit-learn toolkit [42].

Random forest classifiers belong to the family of ensemble classifiers, that make predictions by

combining or “bagging” the output of T sub-classifiers. More specifically, random forests com-

bine a multitude of T decision tree classifiers (thus forming a “forest”) to construct a meta clas-

sifier f̂ . These decision trees are supervised learning methods that aim to infer simple “if-then-

else” decision rules from the features. These rules can either lead to subordinate decision rules

or to leaf nodes representing the class labels ‘biased’ or ‘unbiased’ (e.g., “if 1D� 1! yi = 1”,

and see the example trees in Fig 1C). Random forests are “random” in two key respects. First,

each decision tree in the ensemble is built on the basis of a random sample (with replacement)

of the training data, X0, and corresponding labels Y0. Second, when constructing trees, splits

are formed on the basis of a random selection of input features (i.e. a random selection of val-

ues from the diversity profile). These two perturbation strategies aim to prevent the tendency

of individual decision trees to overfit the training data and help decorrelating the trees. In the

binary case, then, random forest classifiers predict the label yi of a particular sample xi by tak-

ing the average of the binary predictions of the T decision trees (f̂ ðxiÞ ¼ 1

T

PT
t¼1

ftðxiÞ) and

choosing the majority class as the predicted label.

To train the random forest classifier (i.e. to approximate the mapping function f) we need

sufficient training data. For that we use the age-structured cultural transmission model

described in section 1.1 and generate 10,000 diversity profiles under unbiased and biased (i.e.

frequency-dependent) transmission as well as under different demographic and cultural sce-

narios (see Figs J,K in S1 Text for a justification of this number of training samples). In more

detail, we (i) sample parameter values for each simulation from the following distributions

b � N ð0; 10� 3Þ; m � Uð10� 5; 10� 3Þ; pdeath � Uð0:02; 0:1Þ and cmax � ½1; amax�; ð5Þ

(ii) produce the frequency distribution of cultural variant types at steady state, (iii) take ran-

dom samples of a particular size, and (iv) calculate the diversity profiles according to (4). We

train separate classifiers for different sample sizes n with n 2 {100, 500, 1000, 2000}. Impor-

tantly, for each simulated diversity profile we know its label, i.e. we know whether it has been

generated in an unbiased way with b = 0 or in a biased way with b 6¼ 0. This means we can

label all samples taken from populations—with any age constraints—where individuals choose

their role models through random copying as ‘unbiased’. For the complete pipeline of the algo-

rithm, from data generation to classification, see Fig 1. To evaluate how well this approach is
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able to detect signatures of unbiased transmission under various age structure assumptions,

we use in the next section the developed algorithm and classify diversity profiles generated

under fixed parameter constellations and calculate for each constellation the fraction of sam-

ples classified as biased.

1.2.3 Comparison between Ewens-Watterson test and the ML approach. An important

conceptual difference between the Ewens-Watterson test and the binary classification ML

setup is how ‘bias’ is formulated and defined. The Ewens-Watterson test, in the form used

here, does not test against a particular alternative hypothesis and instead uses the probability

of each sample configuration to indicate which regions of the sample space allow the rejection

of the hypothesis that the sample was taken from a population whose composition has evolved

through a Wright-Fisher dynamic [32]. By contrast, the ML classification approach aims to

distinguish between two hypotheses—unbiased and biased—but what is considered ‘biased’ is

defined by all biased processes that are used to generate the sample pool.

We compare the results of both approaches described above when applied to the same data

sets generated through a Wright-Fisher dynamic (i.e. without age structure or equivalently

pdeath = 1 in the simulation framework developed above), but with different strengths of fre-

quency-dependent bias b (see copy probability given by Eq (2)). In other words, we ask how

well both tests can distinguish between unbiased and frequency-dependent cultural transmis-

sion initially in populations without age structure. To do this we simulate 100 populations for

each value of the parameter b, then extract samples of different sizes after the steady state has

been reached, apply the neutrality tests and record how many times the hypothesis of unbiased

Fig 1. The four components of the Machine Learning approach. Panel A depicts the data generation step, in which we employ the simulation model

to generate a large number of training samples. On the basis of the generated samples, features are extracted in the second component (see panel B).

The features and corresponding labels are then used to train a supervised Machine Learning system (panel C). Finally, in D the trained system is used to

classify new, unseen samples as either ‘unbiased’ or ‘biased’.

https://doi.org/10.1371/journal.pcbi.1011297.g001
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transmission has been rejected. For the ML-approach, this amounts to counting the number of

times samples are classified as biased.

The left panel in Fig 2 shows these rejection probabilities for the Ewens-Watterson test. For

most sample sizes we see a U-shaped rejection profile where unbiased transmission is rejected

for b = 0 with a probability of roughly 0.05, the chosen significance level. With the exception of

sample size n = 100, the rejection probabilities increase the further the value of b deviates from

0. While a weak frequency-dependent bias does not generate sample compositions substan-

tially different from unbiased transmission, and, consequently, is detected only with a small

probability, a strong frequency-dependent bias is reliably detected if the sample size is suffi-

ciently large.

Interestingly, we see a difference in the rejection probabilities for negative and positive fre-

quency-dependent cultural transmission due to the fact that positive b-values affect the fre-

quency composition of the population more strongly than negative b-values of the same

magnitude (see Fig F in S1 Text showing the variant abundance distributions for b = 0; 0.005;

−0.001). The reason for this difference are the different targets of the biases: a positive fre-

quency-dependent bias selects for high frequency variants (and consequently selects against

low-frequent variants) while the opposite is true for a negative frequency-dependent bias. Con-

sequently, for a negative frequency-dependent bias to become “visible” it has to overcome the

effect of drift and keep low-frequency variants in the population at a higher rate than expected

under unbiased cultural transmission.

The inability to detect negative frequency-dependent bias for sample size n = 100 (blue line

in Fig 2, left panel) is rooted in a sampling problem: n is too small to adequately reflect the

properties of the population. We demonstrate this by comparing the shapes of Ewens sampling

distribution (3) for a fixed number of variant types, k, obtained by (i) sampling from Eq (3)

Fig 2. Rejection probability of a sample taken from an WF population with N = 105, μ = 5 � 10−4. Left: Ewens-Watterson test and right: ML approach. The different

coloured lines represent different sample sizes: 100 (blue lines), 500 (green lines), 1000 (orange lines), 2000 (red lines).

https://doi.org/10.1371/journal.pcbi.1011297.g002
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and (ii) sampling from populations undergoing Wright-Fisher dynamics with the negative fre-

quency dependent bias of b = −0.001 (b = −0.001 is the strongest bias considered and we

would expect the differences between unbiased and biased transmission to be largest). As the

normalisation terms n!=ðjSknjk!Þ are identical in both scenarios we focus on the comparison of

distributions of 1=
Qk

i¼1

ni. For n = 100 both distributions are very similar (see Fig Ga in S1 Text).

In particular, the support of the distribution generated through simulating Wright-Fisher

dynamics with b = −0.001 is a subset of the support of the distribution generated through sam-

pling from Eq (3). This is caused by the high number of variant types in the samples generated

by a negative-frequency dependent bias (k = 83 variant types were generated most frequently

for n = 100 in scenario (ii)). To replicate this number by unbiased transmission through

Eq (3), a relatively high innovation rate has to be assumed implicitly leading to very similar

sample-level statistics for samples with k = 83 and n = 100 for scenarios (i) and (ii) (see Figs

Ha-c in S1 Text). However, if the sample size increases, a large proportion of samples in sce-

nario (ii) generate values of 1=
Qk

i¼1

ni that are too small as to be generated by scenario (i) (see

Fig Gb in S1 Text). Now the frequency-dependent bias generates samples with k = 240 variant

types most frequently which leads to detectable differences in sample-level statistics (see Figs

Hd-f in S1 Text)—samples generated by negative frequency-dependent transmission are more

evenly distributed.

The right panel in Fig 2 shows the rejection probabilities (for the same data sets) of the ML

approach. The ML approach produces results similar to the Ewens-Watterson test, with the

difference that a (strong) negative frequency-dependent bias can be detected also for small

sample sizes. The reason for this difference is rooted in the fact that the ML approach is not

based on Ewens sampling distribution but the explicit comparison between samples generated

by biased—frequency-dependent—transmission and unbiased transmission. Therefore biased

and unbiased samples do not have to contain the same number of variant types and differences

in these numbers as well as in other sample-level statistics as measured by the Hill numbers qD
provide valuable information for the inference analysis even for small sample sizes. Addition-

ally, the ML approach provides the flexibility to assign different weights to different qD num-

bers as appropriate.

To probe which qD values are most predictive, we compute the ‘feature importances’ of the

trained classifiers using a permutation approach. Permutation-based importance is defined as

the decrease in prediction performance—here measured in terms of accuracy—on a held-out

development data set when the values of a single feature are randomly shuffled [41]. Thus, fea-

tures that result in a larger performance drop are taken to be more important. Fig 3 shows the

feature importance given to qD, q = 0, 0.25, 0.5, . . ., 3 for different sample sizes and it is obvious

that the importance profile for n = 100 differs from the ones for n = 500, 1000, 2000.

Lastly, we note that the ML approach does not assume a pre-defined significance level like

the Ewens-Watterson test. The probability with which an unbiased sample is rejected as incon-

sistent with the hypothesis of unbiased transmission is a reflection of the level of equifinality in

the data. In other words, it tells us how likely an unbiased transmission process is generating a

sample with a diversity profile that is indicative of a biased transmission process with b 6¼ 0.

2 Results

2.1 Influence of age structure on neutral dynamics

2.1.1 ‘ALL’ scenario. The ‘ALL’ scenario allows naive individuals to choose their role

model from the entire population of informed individuals. To understand the impact of age
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structure on the cultural composition in this scenario we first calculate the effective population

sizes of age-structured neutral populations for various pdeath-values (shown in Table 1 and see

S1 Text, section 4 for details of how to calculate effective population sizes). Those effective pop-

ulation sizes are, as expected, larger than the effective size of the Moran model (which we

obtain for pdeath! 1/N), i.e. larger than *N/2, and increase with increasing pdeath. Given the

size and relatively small differences between the effective population sizes for different pdeath-

values we do not expect large variations in the cultural composition of the age-structured pop-

ulations; the analyses below confirm this intuition.

In S1 Text, section 1.3 we show that cultural composition at the population and sample level

do not differ greatly for different values of pdeath and mostly coincide with their Wright-Fisher

approximations with population sizes N = Ne given in Table 1. While we observe very similar

distributions for age-structured populations and their Wright-Fisher approximations for the

level of cultural diversity, as measured by the heterogeneity index, and for the frequency of the

most common variant type in the population (as expected from our definition of effective popu-

lation size) we do see differences in the variant abundance distributions and the numbers of

variant types present in the population. In particular, the variant abundance distributions of the

age-structured populations considered here, i.e. with pdeath-values between 0.02 and 0.1,

Fig 3. Permutation importance of qD values for inference based on samples of size n = 100 (blue line), n = 500

(orange line), n = 1000 (green line), n = 2000 (red line).

https://doi.org/10.1371/journal.pcbi.1011297.g003

Table 1. Effective population size of the age-structured neutral models with various pdeath-values and N = 105. Details on the calculation of those effective sizes can be

found in S1 Text, section 4.

pdeath = 0.02 pdeath = 0.03 pdeath = 0.04 pdeath = 0.05 pdeath = 0.1

‘ALL’ 50392 50757 51020 51282 52632

‘1’ 2000 3000 4000 5000 10000

https://doi.org/10.1371/journal.pcbi.1011297.t001
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conform to the expectations of the Moran model and not to the expectations of the Wright-

Fisher model (see Fig Ae in S1 Text). So the presence of an age structure leads to deviations

from the Wright-Fisher model at the population level and those deviations resemble the ones

expected between the classical Wright-Fisher and Moran model. However, we see that those

deviations do not percolate to the sample level. The distributions of all sample-level statistics of

age-structured and non-age-structured populations are very similar (see Fig B in S1 Text).

The left panel in Fig 4 shows the result of applying the Ewens-Watterson test described in

Section 1.2 to 1000 samples of size n = 50; 100; 500; 1000; 2000 randomly drawn from age-

structured populations with cthresh = amax and different pdeath-values. We recorded the fractions

of populations classified as biased and the results show, again, only very few differences

between age-structured populations and their Wright-Fisher approximations at the sample

level. Around 5% of the age-structured populations, which equals the chosen significance level

α, are rejected and, consequently, considered inconsistent with Ewens sampling distribution

(3). This implies that if the copy pool consists of the whole population there is little detectable

difference in the sample-level dynamic of unbiased cultural transmission in age-structured

and non-age-structured populations.

2.1.2 ‘1’ scenario. The ‘1’ scenario allows naive individuals to choose their role models

from the last time step only, i.e. from all informed individuals of age 1. Table 1 illustrates that,

compared to the ‘ALL’ scenario, the effective population sizes are smaller and the relative dif-

ferences between pdeath-values are higher. The number of naive individuals entering the popu-

lation is, in both scenarios, on average Npdeath but while in the ‘ALL’ scenario the size of the

copy pool stays constant for all pdeath-values, it changes for the ‘1’ scenario to, on average,

Npdeath.

Fig 4. Rejection probability of the Ewens-Watterson test for samples taken from an age-structured population with N = 105, μ = 5 � 10−4, b = 0. Left: cthresh = amax;

right: cthresh = 1. The different coloured lines represent different values of pdeath: pdeath = 0.02 (blue lines), pdeath = 0.03 (green lines), pdeath = 0.04 (orange lines),

pdeath = 0.05 (red lines), pdeath = 0.1 (purple lines).

https://doi.org/10.1371/journal.pcbi.1011297.g004
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In S1 Text, section 1.4 we show that, intuitively, the cultural composition at the population

and sample level differ for different values of pdeath: the lower the pdeath-value, the lower is the

number of variant types in the population and the higher the frequency of the most common

variant type in the population. This subsequently leads to more culturally homogeneous popu-

lations. These differences arise in part because the number of innovations depends on pdeath,

on average Npdeathμ innovations per time step, and a higher amount of drift due to the smaller

size of the copy pool for lower pdeath values.

More generally, we observe a similar behaviour as in the ‘ALL’ scenario when comparing

the distributions of the population-level statistics with their Wright-Fisher approximations

with population sizes N = Ne given in Table 1. While the level of cultural diversity and the fre-

quency of the most common variant type show very similar distributions we see stark differ-

ences between age-structured and non age-structured populations in the variant abundance

distributions and the numbers of variant types present, especially for small pdeath-values.

Importantly, these differences are sufficiently large to be detectable on the sample level. Mech-

anistically they are caused by the accumulation of variants in the non-reproductive population.

In other words, individuals can only act as a role models at age 1 but they nevertheless survive,

and consequently contribute to the cultural composition of the population, for a potentially

long period of time. Fig D in S1 Text shows that the number of variant types contained in age

group 0, i.e. the group of all individuals of age 0, after cultural transmission resembles the

number of variant types contained in the Wright-Fisher approximations with N = Ne. There-

fore the differences in the variant abundance distributions and in the number of types is deter-

mined by the types that are present in the population but not in age group 0.

The right panel in Fig 4 shows the results of applying the Ewens-Watterson test to 1000

samples of size n = 50; 100; 500; 1000; 2000 randomly drawn from age-structured populations

with cthresh = 1, i.e. with a strong age constraint, and different pdeath-values. Age-structured

populations are now considered inconsistent with Ewens sampling distribution (3) and there-

fore not classified as unbiased for a good fraction of the simulations, especially if pdeath is small

and the sample size is high (We note that for smaller sample sizes we observe a sampling prob-

lem similar to the one described in section 1.2.3.).

The reason for this behaviour is partly rooted in the different number of variant types

between the age-structured populations and their Wright-Fisher approximations. Age-struc-

tured populations with a strong age constraint generate a higher number of variant types and

the samples generated by Ewens sampling distribution (3) for these numbers are characterised

by more even distributions with less probability mass given to a single variant type. So, if the

copy pool consists of informed individuals of age 1 only, there are detectable difference in the

sample-level dynamic of unbiased cultural transmission in age-structured and non-age-struc-

tured populations.

To understand the dynamic for values of cthresh in between the two extremes considered

above of 1 and amax we determined in Fig 5 the rejection probabilities of the Ewens-Watterson

test for cthresh = 5; 10; 20. The inclusion of individuals up to age 5 in the copy pool reduces

rejection probabilities. Increasing the cthresh value further results in similar patterns as seen in

the ‘ALL’ scenario described in section 2.1.1.

To summarise, the existence of an age structure per se may not influence the dynamic of

unbiased cultural transmission greatly. In our model, it depends mainly on how the trans-

mission process interacts with the age structure, i.e. whether the ‘ALL’ scenario models con-

tains individuals of a limited age range only. Such an age constraint will generate differences

in the cultural composition of age-structured and non age-structured populations. Conse-

quently, if a sample is taken from an age-structured population, rejection of the hypothesis

of unbiased transmission by the Ewens-Watterson test cannot be readily interpreted as
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indicative of biased transmission—it may, instead, be indicative of the existence of an age (or

other demographic) constraint on the copy pool. In other words, only in situations where it

is known that the copy pool consists of a large fraction of the population can we infer biased

transmission from the rejection of the Ewens-Watterson test (at least in the situation consid-

ered in this paper). As this knowledge is rarely available for specific empirical case studies,

we explore in the next section whether the Machine Learning framework introduced in sec-

tion 1.2.2 can simultaneously account for unknown demographic and cultural properties of

the population and still accurately infer underlying processes of cultural transmission from

data at a single point in time.

2.2 Accounting for a—Potentially unknown—Age structure

Here, we assume that an age structure exists but we do not have information about its depth

nor its interaction with cultural transmission processes. Our aim is still to infer whether

observed (sample-level) frequencies of cultural variants are consistent with the hypothesis of

unbiased transmission, i.e. whether individuals choose a role model at random, and to do that

we use the ML approach described in section 1.2.2.

We model the non-neutral, i.e. biased transmission condition by assuming frequency-

dependent cultural transmission with different strengths b (see Eq (2)). So, our training data

provide information about the diversity profiles (4) under a large range of cultural transmis-

sion (b, μ, cthresh) and demographic (pdeath) scenarios whereby the model parameters b, pdeath,

μ and cthresh cover the ranges described in (5).

We start by analysing the data sets used to generate Fig 5. Fig 6 shows the rejection proba-

bilities obtained from the ML approach and we clearly see that, especially for small cthresh-val-

ues, those probabilities are smaller compared to Fig 5. Further, the rejection probabilities do

not exhibit a strong dependence on sample size as seen for the Ewens-Watterson test (cf. Fig

Fig 5. Rejection probability for samples taken from an age-structured population with N = 105, μ = 5 � 10−4,

pdeath = 0.02 and cthresh = 1 (solid line), cthresh = 5 (dash-dotted line), cthresh = 10 (dashed line), cthresh = 20 (dotted

line).

https://doi.org/10.1371/journal.pcbi.1011297.g005

PLOS COMPUTATIONAL BIOLOGY The interplay between age structure and cultural transmission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011297 July 13, 2023 14 / 21

https://doi.org/10.1371/journal.pcbi.1011297.g005
https://doi.org/10.1371/journal.pcbi.1011297


5). However, we also observe that the rejection probability is slightly increased for higher

cthresh-values: the rejection probabilities are around 0.1. This reflects the level of equifinality in

the data contained in the training pool. In 10% of the cases unbiased transmission (with

ctresh� 5) generates samples with diversity profiles that are slightly uncharacteristic and match

profiles generated under frequency-dependent transmission well.

While this could be taken as evidence for better inferential properties of the ML approach

(unbiased samples are recognised as unbiased—independent of the age constraint—with a

higher probability compared to the Ewens-Watterson test) we also tested how well non-neutral

processes are detected. Fig 7 highlights that for low values of pdeath and cthresh the ML approach

cannot detect a strong signature of biased transmission: for almost all b-values samples are

considered to be neutral with a relatively high probability. However, increasing either cthresh or

pdeath increases the reliability of the test: we see a U-shaped rejection profile which gets more

pronounced for higher values of cthresh and/or pdeath.

Fig 7 highlights clearly that there are limits to inference from population-level data at a sin-

gle point in time, regardless of the approach used. Comparing this figure with Fig 2 where no

age structure was assumed we see that an (unknown) age structure in combination with low

cthresh-values can mask the signature of biased transmission greatly.

Interestingly, knowledge about the age structure, i.e. the pdeath value of the population con-

sidered, does not impact the accuracy of the inference greatly (see Fig I in S1 Text) but knowl-

edge about the cthresh does increase the accuracy substantially. This aligns with the finding,

described above, that it is the interaction between the cultural transmission process and the

age structure that mainly contributes to the potential differences between age-structured and

non-age-structured population or between age-structured populations using different trans-

mission processes.

Fig 6. Fraction of neutral samples classified as non-neutral (by the ML approach) taken from an age-structured

population with N = 105, μ = 5 � 10−4, b = 0, pdeath = 0.02 and cthresh = 1 (solid line), cthresh = 5 (dash-dotted line),

cthresh = 10 (dashed line), cthresh = 20 (dotted line).

https://doi.org/10.1371/journal.pcbi.1011297.g006
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3 Discussion

In this paper we explored the role of age structure in shaping the cultural composition of a

population when cultural transmission occurs in an unbiased way. We developed an age-struc-

tured cultural transmission model in which individuals have an average life time of 1/pdeath

and new individuals acquire their cultural variant by copying a role model. This role model is

randomly chosen from a specified copy pool determined by the parameter cthresh which

describes the maximum age of the individuals it contains. In this way we allowed for an inter-

play between the age structure and the cultural transmission process leading to a structural

constraint on the copy pool. We used this simulation model to generate population- and sam-

ple-level statistics for different age structures, as controlled by the value of pdeath, as well as dif-

ferent sizes of the copy pool, as controlled by the values of cthresh, to understand the impact of

age structure on the cultural evolutionary process.

We found that the existence of an age structure per se has little impact on the cultural com-

position of the population. The ‘ALL’ scenario—where naive individuals can adopt cultural

variants from the whole population (or from a sufficiently large fraction)—differs from the

non age-structured Wright-Fisher approximation only in the shape of the variant abundance

distribution and the number of variant types present in the populations. But these differences

on the population level do not percolate to the observed sample level, i.e. the sample-level sta-

tistics generated by the ‘ALL’ scenario and the corresponding Wright-Fisher approximations

had almost identical distributions. However, the interplay between cultural transmission and

age structure can generate drastic differences. The ‘1’ scenario—where naive individuals can

adopt cultural variants from individuals of age 1 (or more generally from individuals of small

Fig 7. Fraction of samples classified as non-neutral (by the ML approach) taken from an age-structured population with N = 105, μ = 5 � 10−4 and various pdeath

(pdeath = 0.02,pdeath = 0.1) and cthresh (cthresh = 1,cthresh = 5,cthresh = 10,cthresh = 20) values. The different coloured lines represent different sample sizes: n = 100 (blue

lines), n = 500 (green lines), n = 1000 (orange lines), n = 2000 (red lines).

https://doi.org/10.1371/journal.pcbi.1011297.g007
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ages) only—produces population- and sample-level statistics that differ substantially from

their Wright-Fisher approximation.

We note, too, that we aimed to understand the mechanics of the interactions between age

structure and cultural evolution, and so examined only a small number of simple and extreme

cases. For example, where individuals could learn from the whole population or from a small

fraction of the population. In the latter case we chose to focus on transmission of the most

recently copied cultural variants (the ‘1’ scenario) which may be consistent with, for instance,

the widely-studied example of baby name transmission [43] or transmission of archaeological

traits over long periods of time [44]. However, it is clear that the interaction between popula-

tion age structure and human cultural transmission is considerably more complex, and is itself

age-dependent [15, 45]. Such empirically driven ‘life histories of learning’ could be fruitfully

modelled in this framework, along with many other plausible ‘constraints’ on pools of poten-

tial role models.

However, the simple cases we present can help elucidate what, precisely, is causing the dif-

ferent results in situations where naive individuals can adopt cultural variants from the whole

population (or a large fraction of the population) and situations where they can adopt cultural

variants from a small fraction of the population only. It is an aggregation phenomenon: when

the copy pool is restricted to individuals of low ages then only a small fraction of the popula-

tion is contributing to the cultural dynamic. Anyone older than cthresh cannot be copied any-

more but still contributes to the cultural composition of the population until its death. This

phenomenon is known as ‘time-averaging’ in the archaeological literature (e.g. [44, 46–48]);

cultural remains deposited at different times come to be preserved together (e.g. [49, 50]).

Premo [44] demonstrated that the Ewens-Watterson test does not reliably identify unbiased

cultural transmission in moderately to severely time-averaged simulated archaeological assem-

blages of cultural variants. This kind of assemblage can be generated by our age-structured cul-

tural transmission model if the death rate is set to pdeath = 0 and the simulation, after the burn-

in period, is run for a small number of time steps. Hence the situation considered by Premo is

consistent with our ‘1’ scenario. This means our findings suggest that, in agreement with [44],

time-averaging in the sense of our ‘1’ scenario greatly impacts our ability to correctly detect

biased transmission when using standard population genetics tests such as Ewens-Watterson

test. However, we have also shown that time-averaging may not be problematic in situations

where the cultural variants generated at very different times can still be copied. Naturally, the

time horizon over which ‘real’ archaeological assemblages are constructed may differ substan-

tially from the age-structured populations considered here [51] but nevertheless the question

of whether older artefacts are available as a target of copying may determine whether time

averaging severely impacts inferential accuracy. Whether it can be established that the exca-

vated assemblage has been generated by a dynamic more closely resembling the ‘1’ scenario or

the ‘ALL’ scenario a priori seems unclear.

The findings regarding the ‘ALL’ and ‘1’ scenario described above, are mirrored in the per-

formance of the Ewens-Watterson test. This test evaluates whether an observed sample of size

n could have been drawn from a population evolving through a Wright-Fisher dynamic. If age

structure has no effect on the cultural composition of the population, we would expect that

only in a fraction α to be rejected. This is what we obtained in the ‘ALL’ scenario. In the ‘1’ sce-

nario a large fraction of samples are rejected. This means that the Ewens-Watterson test is able

to reliably detect deviations from the Wright-Fisher dynamic. However, in the case of the ‘1’

scenario those deviation are not caused by biased transmission but by the interplay between

age structure and the unbiased transmission process, which induces a strong age constraint on

the pool of potential role models. Consequently, test results need to be cautiously interpreted:

rejections of the Ewens-Watterson test only point to a deviation from the Wright-Fisher
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dynamic which—given the simplicity of the model—can be caused by a number factors,

including but not exclusively by biased transmission.

To begin to tackle this problem we explored the suitability of a generative inference

approach to simultaneously infer the interplay between an unknown age structure and cultural

transmission, and the specific nature of the cultural transmission process. We used the age-

structured cultural transmission model to generate theoretical expectations for populations

with more complex demographic properties than incorporated in the Wright-Fisher model

under unbiased and biased transmission processes. In particular, we simulated populations

with different age structures and sizes of the copy pool to obtain their diversity profiles, i.e.

Hill numbers up to order 3, under unbiased and biased (i.e. frequency-dependent) cultural

transmission. We then applied machine learning techniques to classify a given sample of size n
as consistent or inconsistent with the hypothesis of unbiased transmission. Random forest

classifiers ‘learnt’ the mapping between the shape of the diversity profiles (regardless of age

structure and size of copy pool) and unbiased and biased transmission, respectively. This map-

ping function, generated from the training data, can then be applied to observed data provid-

ing the classification of the sample as biased or unbiased.

We applied this machine learning approach to the same data sets we analysed with the

Ewens-Watterson test. Through the explicit modelling of age structure together with potential

age constraints of the copy pool we observed an overall decrease of the probability of rejecting

unbiased transmission. In sum, the machine learning approach allows us to pull apart changes

in the cultural composition caused by a structural constraint on the copy pool from changes

caused by biased transmission. Especially for higher pdeath- and ctresh-values we achieve reliable

inference results which are less strongly impacted by the size of the sample than the Ewens-

Watterson test.

Nevertheless, we also observed clear limits to inference from population-level data at a sin-

gle point in time: an unknown age structure in combination with low cthresh values can greatly

mask the signature of biased transmission. In these situations, the cultural accumulation effect

is strongest. In any given time step the cultural change induced by the adoption decisions of

naive individuals does not impact the cultural composition of the population greatly. This nat-

urally invites caution when interpreting inference results based on cultural data at a single

point in time. Although we can add demographic complexity to the generative model, the data

simply may not be detailed enough to inform on all the different processes that generated it.

In summary, we have shown that the cultural composition of age-structured human popu-

lations evolving through unbiased cultural transmission may deviate from well-known neutral

expectations in some important aspects such as the shape of the variant abundance distribu-

tion. Consequently, in many cases, modelling approaches to cultural change as well as inferen-

tial analyses must consider demographic properties of the population. Finally, our results

indicate that inferential analyses may require more than cross-sectional data on the cultural

composition of the population to allow for accurate inferences about transmission processes to

be made. For example, when available we should move from data from a single point in time

to more detailed, longitudinal data on the cultural composition of a population. Such time

series data allows inference techniques to exploit more complex feature interactions, and

potentially more accurately infer the cultural dynamics underlying them.

Supporting information

S1 Text. This supplementary material contains additional analyses of the ‘1’ and ‘ALL’ sce-

nario and further explanations of methodologies used in the paper. In particular, section 1

describes the properties of population-level and sample-level statistics, used in this paper, for
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the ‘1’ and ‘ALL’ scenario. Section 2 describes an algorithm for sampling from Ewens sampling

formula. Section 3 provides a comparison between the Ewens-Watterson test and the machine

learning approach. Section 4 contains details on how we calculate the effective population size.

Finally, section 5 provides more information about the machine learning approach.
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