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Abstract

The generalization with respect to domain shifts, as they
[frequently appear in applications such as autonomous driv-
ing, is one of the remaining big challenges for deep learning
models. Therefore, we propose an intra-source style aug-
mentation (ISSA) method to improve domain generaliza-
tion in semantic segmentation. Our method is based on a
novel masked noise encoder for StyleGAN2 inversion. The
model learns to faithfully reconstruct the image preserving
its semantic layout through noise prediction. Random mask-
ing of the estimated noise enables the style mixing capabil-
ity of our model, i.e. it allows to alter the global appear-
ance without affecting the semantic layout of an image. Us-
ing the proposed masked noise encoder to randomize style
and content combinations in the training set, ISSA effec-
tively increases the diversity of training data and reduces
spurious correlation. As a result, we achieve up to 12.4%
mloU improvements on driving-scene semantic segmenta-
tion under different types of data shifts, i.e., changing geo-
graphic locations, adverse weather conditions, and day to
night. ISSA is model-agnostic and straightforwardly ap-
plicable with CNNs and Transformers. It is also comple-
mentary to other domain generalization techniques, e.g., it
improves the recent state-of-the-art solution RobustNet by
3% mloU in Cityscapes to Dark Ziirich.

1. Introduction

The varying environment with potentially diverse illu-
mination and adverse weather conditions makes challeng-
ing the deployment of deep learning models in an open-
world [60, 82]. Therefore, improving the generalization
capability of neural networks is crucial for safety-critical
applications such as autonomous driving (see for example
Fig. 1). While generally the target domains can be inac-
cessible or unpredictable at training time, it is important to
train a generalizable model, based on the known (source)
domain, which may offer only a limited or biased view of
the real world [7, 61].

Diversity of the training data is considered to play an
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Figure 1. Semantic segmentation results of HRNet [69] on un-
seen domain (snow), trained on Cityscapes [14] and tested on
ACDC [60]. The model trained with our ISSA can successfully
segment the truck, while the baseline model fails completely.

important role for domain generalization, including natu-
ral distribution shifts [63]. Many existing works assume
that multiple source domains are accessible during train-
ing [4, 30, 34, 44, 46, 47, 85]. For instance, Li et al. [44]
divide source domains into meta-source and meta-target
to simulate domain shift for learning; Hu et al. [30] pro-
pose multi-domain discriminant analysis to learn a domain-
invariant feature transformation. However, for pixel-level
prediction tasks such as semantic segmentation, collecting
diverse training data involves a tedious and costly annota-
tion process [8]. Therefore, improving generalization from
a single source domain is exceptionally compelling, partic-
ularly for semantic segmentation.

One pragmatic way to improve data diversity is by ap-
plying data augmentation. It has been widely adopted in
solving different tasks, such as image classification [26, 28,
67, 80, 86], GAN training with limited data [33, 37], or
pose estimation [0, 55, 68]. One line of data augmenta-
tion techniques focuses on increasing the content diversity
in the training set, such as geometric transformation (e.g.,
cropping or flipping), CutOut [17], and CutMix [79]. How-
ever, CutOut and CutMix are ineffective on natural domain
shifts as reported in [63]. Style augmentation, on the other
hand, only modifies the style - the non-semantic appearance
such as texture and color of the image [20] - while preserv-
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ing the semantic content. By diversifying the style and con-
tent combinations, style augmentation can reduce overfit-
ting to the style-content correlation in the training set, im-
proving robustness against domain shifts. Hendrycks cor-
ruptions [25] provide a wide range of synthetic styles, in-
cluding weather conditions. However, they are not always
realistic looking, thus being still far from resembling nat-
ural data shifts. In this work, we propose an intra-source
style augmentation (ISSA) strategy for semantic segmenta-
tion, aiming to improve the style diversity in the training set
without extra labeling effort or using extra data sources.

Our augmentation technique is based on the inversion
of StyleGAN2 [39], which is the state-of-the-art uncondi-
tional Generative Adversarial Network (GAN) and thus en-
sures high quality and realism of synthetic samples. GAN
inversion allows to encode a given image to latent variables,
and thus facilitates faithful reconstruction with style mixing
capability. To realize ISSA, we learn to separate semantic
content from style information based on a single source do-
main. This allows to alter the style of an image while leav-
ing the content unchanged. Specifically, we make use of the
styles extracted within the source domain and mix them up.
Thus, we can increase the data diversity and alleviate the
spurious correlation in the given training data.

The faithful reconstruction of images with complex
structures such as driving scenes is non-trivial. Prior meth-
ods [3, 18, 57, 58, 76] are mainly tested on simple single-
object-centric datasets, e.g., CelebA-HQ [36], FFHQ [38],
or LSUN [78]. As shown in [2], extending the native latent
space of StyleGAN2 with a stochastic noise space can lead
to improved inversion quality. However, all style and con-
tent information will be embedded in the noise map, leav-
ing the latent codes inactive in this setting. Therefore, to
enable the precise reconstruction of complex driving scenes
as well as style mixing, we propose a masked noise encoder
for StyleGAN?2. The proposed random masking regulariza-
tion on the noise map encourages the generator to rely on
the latent prediction for reconstruction. Thus, it allows to
effectively separate content and style information and facil-
itates realistic style mixing, as shown in Fig. 2.

In summary, we make the following contributions:

* We propose a masked noise encoder for GAN inver-
sion, which enables high quality reconstruction and
style mixing of complex scene-centric datasets.

* We explore GAN inversion for intra-source data aug-
mentation, which can improve generalization under
natural distribution shifts on semantic segmentation.

» Extensive experiments demonstrate that our proposed
augmentation method ISSA consistently promotes do-
main generalization performance on driving-scene se-
mantic segmentation across different network architec-
tures, achieving up to 12.4% mloU improvement, even

with limited diversity in the source data and without
access to the target domain.

2. Related Work

Domain Generalization. Domain generalization concerns
the generalization ability of neural networks on a target do-
main that follows a different distribution than the source do-
main, and is inaccessible at training. Various approaches
have been proposed, which employ data augmentation [31,

, 48,62, 86], domain alignment [30, 34, 46, 47, 85], meta-
learning [4, 44, 45, 83], or ensemble learning [19, 52, 72].
While the majority focuses on image-level tasks, e.g., im-
age classification or person re-identification, a few recent
works [12, ] investigate pixel-level prediction tasks
such as semantic segmentation. RobustNet [ 12] proposes an
instance selective whitening loss to the instance normaliza-
tion, aiming to selectively remove information that causes
a domain shift while maintaining discriminative features.
[41] introduces a memory-guided meta-learning framework
to capture co-occurring categorical knowledge across do-
mains. [42, 43] make use of extra data in the wild.

Another line of work explores feature-level augmenta-
tion [48, 86]. MixStyle [86] and DSU [48] add perturba-
tion at the normalization layer to simulate domain shifts at
test time. However, this perturbation can potentially cause
a distortion of the image content, which can be harmful
for semantic segmentation (see Sec. 4.2). Moreover, these
methods require a careful adaptation to the specific network
architecture. In contrast, ISSA performs style mixing on
the image-level, thus being model-agnostic, and can be ap-
plied as a complement to other methods in order to further
increase the generalization performance.

Data Augmentation. Data augmentation techniques can
diversify training samples by altering their style, content, or
both, thus preventing overfitting and improving generaliza-
tion. Mixup augmentations [16, 67, 80] linearly interpolate
between two training samples and their labels, regulariz-
ing both style and content. Despite effectiveness shown on
image-level classification tasks, they are not well suited for
dense pixel-level prediction tasks. CutMix [79] cuts and
pastes a random rectangular region of the input image into
another image, thus increasing the content diversity. Geo-
metric transformation, e.g., random scaling and horizontal
flipping, can also serve this purpose. In contrast, Hendrycks
corruptions [25] only affect the image appearance without
modifying the content. Their generated images look artifi-
cial, being far from resembling natural data, and thus offer
limited help against natural distribution shifts [63].
StyleMix [28] is conceptually closer to our method,
which aims to decompose training images into content and
style representations and then mix them up to generate more
samples. Nonetheless, their AdaIN [32] based style mix-
ing method cannot fulfill the pixel-wise label-preserving re-
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Figure 2. Qualitative results (best view in color and zoom in) of StyleGAN2 inversion methods on Cityscapes, i.e., pSp, Feature-Style
encoder [76] and our masked noise encoder. Note, pSp' is an improved version of pSp [57] introduced by us. pSp' can reconstruct the
rough layout of the scene but still struggles to preserve details. The Feature-Style encoder shows a better reconstruction quality, yet it
cannot faithfully reconstruct small objects (e.g. pedestrian), and some objects (e.g. the vehicle, bicycle) are rather blurry. Our masked
noise encoder has highest image fidelity, preserving finer details in the inverted image. More visual examples, including the original pSp

results, can be found in Fig. S.2 in the supp. material.

quirement (see Fig. 7). Our ISSA is also a style-based data
augmentation technique. Benefiting from the usage of a
state-of-the-art GAN, it can generate natural looking sam-
ples, altering only the style of the original images while pre-
serving their content and, thus, enabling the re-use of the
ground truth label maps.

GAN Inversion. Showing good results, GAN inversion
has been explored for many applications such as face edit-
ing [I, 2, 87], image restoration [54], and data augmen-
tation [21, 53]. StyleGANs [37-39] are commonly used
for inversion, as they demonstrate high synthesis quality
and appealing editing capabilities. Nevertheless, there is
a known distortion-editability trade-off [64]. Thus, it is cru-
cial to achieve a curated performance for a specific use case.

GAN inversion approaches can be classified into three
groups: optimization based methods [1, 2, 13, 15, 23, 35],
encoder based models [5, 57, 64, 71, 76] methods, and hy-
brid approaches [3, 9, 18, 58]. Optimization methods gen-
erally have worse editability and need exhaustive optimiza-
tion for each input. Thus, in this paper, we use an encoder
based method for our style mixing purpose. The representa-
tive encoder based work pSp encoder [57] embeds the input
image in the extended latent space W of StyleGAN. The
ede encoder [64] improves editability of pSp while trading
off detail preservation. To improve reconstruction quality
the Feature-Style encoder [76] further replaces the lower la-
tent code prediction with a feature map prediction. Despite
much progress, most prior work only showcases applica-
tions on single object-centric datasets, such as FFHQ [38],
LSUN [78]. They still fail on more complex scenes, thus

restricting their application in practice. Our masked noise
encoder can fulfil both the fidelity and the style mixing ca-
pability requirements, rendering itself well-suited for data
augmentation for semantic segmentation. To the best of our
knowledge, our approach is the first GAN inversion method
which can be effectively applied as data augmentation for
the semantic segmentation of complex scenes.

3. Method

We introduce our intra-source style augmentation
(ISSA) in Sec. 3.1, which relies on GAN inversion that can
offer faithful reconstruction and style mixing of images. To
enable better style-content disentanglement, we propose a
masked noise encoder for GAN inversion in Sec. 3.2. Its
detailed training loss is described in Sec. 3.3.

3.1. Intra-Source Style Augmentation (ISSA)

The lack of data diversity and the existence of spuri-
ous correlation in the training set often lead to poor domain
generalization. To mitigate them, ISSA aims at modifying
styles of the training samples while preserving their seman-
tic content. It employs GAN inversion to randomize the
style-content combinations in the training set. In doing so,
it diversifies the source training set and reduces spurious
style-content correlations. Because the content of images is
preserved and only the style is changed, the ground truth la-
bel maps can be re-used for training, without requiring any
further annotation effort.

ISSA is built on top of an encoder-based GAN inver-
sion pipeline given its fast inference. GANs, such as Style-
GANSs [37-39], have shown the capability of encoding rich
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Figure 3. Method overview. Our encoder is built on top of the pSp encoder [57], shown in the blue area (A). It maps the input image to
the extended latent space W of the pre-trained StyleGAN?2 generator. To promote the reconstruction quality on complex scene-centric

dataset, e.g., Cityscapes, our encoder additionally predicts the noise map at an intermediate scale, illustrated in the orange area (B).
stands for random noise masking, regularization for the encoder training. Without it, the noise map overtakes the latent codes in encoding
the image style, so that the latter cannot make any perceivable changes on the reconstructed image, thus making style mixing impossible.

semantic and style information in intermediate features and
latent spaces. For encoder-based GAN inversion, an en-
coder is trained to invert an input image back into the latent
space of a pre-trained GAN generator. ISSA needs an en-
coder that can separately encode the style and content infor-
mation of the input image. With such an encoder, it can syn-
thesize new training samples with new style-content combi-
nations, i.e., it can take the content and style codes from dif-
ferent training samples within the source domain and feed
them to the pre-trained generator. Since ISSA modifies only
the image style with this encoder, the new synthesized train-
ing samples already have a ground truth label map in place.

StyleGAN2 can synthesize scene-centric datasets like
Cityscapes [14] and BDD100K [77]. However, existing
GAN inversion encoders cannot provide the desired fidelity
to enable ISSA to improve domain generalization of seman-
tic segmentation via data augmentation. Loss of fine details
or inauthentic reconstruction of small-scale objects would
harm the model’s generalization ability. Therefore, we pro-
pose a novel encoder design to invert StyleGAN2, termed
masked noise encoder (see Fig. 3).

3.2. Masked Noise Encoder

We build our encoder upon the pSp encoder [57]. It em-
ploys a feature pyramid [50] to extract multi-scale features
from a given image, see Fig. 3-(A). We improve over pSp
by identifying in which latent space to embed the input im-
age for the high-quality reconstruction of the images with
complex street scenes. Further, we propose a novel training
scheme to enable the style-content disentanglement of the

encoder, thus improving its style mixing capability.

Extended Latent Space. The StyleGAN?2 generator takes
the latent code w € W generated by an MLP network and
randomly sampled additive Gaussian noise maps {€} as in-
puts for image synthesis. As pointed out in [1], it is subop-
timal to embed a real image into the original latent space VW
of StyleGAN?2, due to the gap between the real and synthetic
data distributions. A common practice is to map the input
image into the extended latent space W. The multi-scale
features of the pSp feature pyramid are respectively mapped
to the latent codes {w*} at the corresponding scales of the
StyleGAN2 generator, i.e., map2latent in Fig. 3-(A).

Additive Noise Map. The latent codes {w"} from the ex-
tended latent space W alone are not expressive enough
to reconstruct images with diverse semantic layouts such
as Cityscapes [14] as shown in Fig. 2-(pSp'). The latent
codes of StyleGAN?2 are one-dimensional vectors that mod-
ulate the feature vectors at different spatial positions iden-
tically. Therefore, they cannot precisely encode the seman-
tic layout information, which is spatially varying. To ad-
dress this issue, our encoder additionally predicts the addi-
tive noise map ¢ of the StyleGAN?2 at an intermediate scale,
i.e., map2noise in Fig. 3-(B).

Random Noise Masking. While offering high-quality re-
construction, the additive noise map can be too expressive
so that it encodes nearly all perceivable details of the input
image. This results in a poor style-content disentanglement
and can damage the style mixing capability of the encoder
(see Fig. 4). To avoid this undesired effect, we propose to
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Figure 4. Style mixing effect enabled by random noise masking
(best view in color). Despite the good reconstruction quality, the
encoder trained without masking cannot change the style of the
given Content image. In contrast, the encoder trained with mask-
ing can modify it using the style from the given Style image.

Figure 5. Noise map visualization of our masked noise encoder.
The noise map encodes the semantic content of the image.

regularize the noise prediction of the encoder by random
masking of the noise map. Note that the random masking as
a regularization technique has also been successfully used
in reconstruction-based self-supervised learning [24, 74].
In particular, we spatially divide the noise map into non-
overlapping P x P patches, see in Fig. 3-(B). Based
on a pre-defined ratio p, a subset of patches is randomly
selected and replaced by patches of unit Gaussian random
variables € ~ N (0, 1) of the same size. N(0, 1) is the prior
distribution of the noise map at training the StyleGAN2
generator. We call this encoder masked noise encoder as
it is trained with random masking to predict the noise map.

The proposed random masking reduces the encoding ca-
pacity of the noise map, hence encouraging the encoder
to jointly exploit the latent codes {w*} for reconstruction.
Fig. 4 visualizes the style mixing effect. The encoder takes
the noise map ¢, and latent codes {w*} from the content
image and style image, respectively. Then, they are fed into
StyleGAN?2 to synthesize a new image, i.e., G(w¥,e.). If
the encoder is not trained with random masking, the new
image does not have any perceptible difference with the
content image. This means the latent codes {w"} encode
negligible information of the image. In contrast, when be-
ing trained with masking, the encoder creates a novel image
that takes the content and style from two different images.
This observation confirms the enabling role of masking for
content and style disentanglement, and thus the improved

style mixing capability. The noise map no longer encodes
all perceptible information of the image, including style and
content. In effect, the latent codes {w"} play a more active
role in controlling the style. In Fig. 5, we further visualize
the noise map of the masked noise encoder and observe that
it captures well the semantic content of the scene.

3.3. Encoder Training Loss

Mathematically, the proposed StyleGAN?2 inversion with
the masked noised encoder EM can be formulated as

{w',... . w" e} = EM(2); (1)

¥ =GoEM(z) = G(w',...,w",e).
The masked noise encoder £ maps the given image x
onto the latent codes {w*} and the noise map ¢. The Style-
GAN2 generator G takes both {w*} and ¢ as the input and
generates x*. Ideally, * should be identical to =z, i.e., a
perfect reconstruction.

When training the masked noise encoder £ to recon-
struct x, the original noise map ¢ is masked before being
fed into the pre-trained G

EM = (1 - Mnoise) © €+ Mpoise O, 2
=G, ..., w" en), 3)

where M,,,ise 1s the random binary mask, ® indicates the
Hadamard product, and & denotes the reconstructed image

with the masked noise € ;. The training loss for the encoder
is given as

L= ﬁmse + /\1£lpips + >\2£adv + >\3£rega “4)

where {\;} are weighting factors. The first three terms are
the pixel-wise MSE loss, learned perceptual image patch
similarity (LPIPS) [81] loss and adversarial loss [22],

Linse = (1 = Mimg) © (x = )5, )
Lipips = (1 = Mear) © (VGG (2) = VGG(Z))], (6)
Ladv = — IOgD(G(EM(I))) @)

which are the common reconstruction losses for encoder
training [57, 87]. Note that masking removes the informa-
tion of the given image x at certain spatial positions, the
reconstruction requirement on these positions should then
be relaxed. M, and My, are obtained by up- and down-
sampling the noise mask M,,,;se to the image size and the
feature size of the VGG-based feature extractor. The adver-
sarial loss is obtained by formulating the encoder training as
an adversarial game with a discriminator D that is trained
to distinguish between reconstructed and real images.
The last regularization term is defined as

Lreg = llelly + [|BY (Gwgr, ) = wgel,. ®
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Figure 6. Visual examples of style mixing on BDD100K (best view in color) enabled by our masked noise encoder. By combining the latent
codes {w"} of I and the noise map e. of I., the synthesized images G(w”, e..) preserve the content of I, with a new style resembling I.

The L1 norm helps to induce sparse noise prediction. It
is complementary to random masking, reducing the capac-
ity of the noise map. The second term is obtained by us-
ing the ground truth latent codes wg; of synthesized images
G(wygt, €) to train the latent code prediction EM (-) [76]. Tt
guides the encoder to stay close to the original latent space
of the generator, speeding up the convergence.

4. Experiments

Sec. 4.1 and Sec. 4.2 respectively report our experiments
on the StyleGAN?2 inversion and domain generalization of
semantic segmentation.

Datasets. We conduct extensive experiments using the
following driving scene datasets: Cityscapes (CS) [14],
BDD100K (BDD) [77], ACDC [60] and Dark
Zirich (DarkZ) [59]. Cityscapes is collected from
different cities primarily in Germany, under good/medium
weather conditions during daytime. BDDIOOK is a
driving-scene dataset collected in the US, representing a
geographic location shift from Cityscapes. Besides, it also
includes more diverse scenes (e.g., city streets, residential
areas, and highways) and different weather conditions
captured at different times of the day. Both ACDC and
Dark Ziirich are collected in Switzerland. ACDC contains
four adverse weather conditions (rain, fog, snow, night)
and Dark Ziirich contains night scenes. The default setting
is to use Cityscapes as the source training data, whereas the
validation sets of the other datasets represent unseen target
domains with different types of natural shifts, i.e., used
only for testing. In the supp. material, we also report the
numbers where BDD100K is used as the source set and the
remaining datasets are treated as unseen domains. In both
cases, we consider a single source domain for training.

Training details. We experiment with two image resolu-

= S~ [

tions: 128 x 256 and 256 x 512. The StyleGAN2 [37]
model is first trained to unconditionally synthesize images
and then fixed during the encoder training. To invert the pre-
trained StyleGAN2 generator, the masked noise encoder
predicts both latent codes in the extended W' space and
the additive noise map. In accordance with the StyleGAN2
generator, W space consists of 14 and 16 latent code vec-
tors for the input resolution 128 x 256 and 256 x 512, re-
spectively. The additive noise map is always at the inter-
mediate feature space with one fourth of the input resolu-
tion. We use the same encoder architecture, optimizer, and
learning rate scheduling as pSp [57]. Our encoder is trained
with the loss function defined in Eq. (4) with A\; = 10 and
A2 = A3 = 0.1. For our random noise masking, we use
a patch size P of 4 with a masking ratio p = 25%. A de-
tailed ablation study on the noise map and a computational
complexity analysis of the encoder can be found in S.1.

We use the trained masked noise encoder to perform
ISSA as described in Sec. 3.1. We experiment with several
architectures for semantic segmentation, i.e., HRNet [69],
SegFormer [73], and DeepLab v2/v3+ [10, 11]. The base-
line segmentation models are trained with their default con-
figurations and using the standard augmentation, i.e., ran-
dom scaling and horizontal flipping.

4.1. Masked Noise Encoder

Reconstruction quality. Table 1 shows that our
masked noise encoder considerably outperforms two strong
StyleGAN?2 inversion baselines pSp [57] and Feature-Style
encoder [76] in all three evaluation metrics. The achieved
low values of MSE, LPIPS [81] and FID [27] indicate its
high-quality reconstruction. Both the masked noise en-
coder and the Feature-Style encoder adopt the adversarial
loss L4, and regularization using synthesized images with
ground truth latent codes wg;. Therefore, we also add them
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Method ‘ MSE| LPIPS| FIDJ|
pSp [57] 0.078 0.348 130.62
pSp‘L [57] 0.049 0.339 14.60
Feature-Style [76] | 0.025 0.220 7.14
Ours 0.011 0.124 3.94

Table 1. Reconstruction quality on Cityscapes at the resolution
128 x 256. MSE, LPIPS [81] and FID [27] respectively measure
the pixel-wise reconstruction difference, perceptual difference,
and distribution difference between the real and reconstructed im-
ages. The proposed masked noise encoder (Ours) consistently out-
performs pSp, pSp' and the feature-style encoder. Note, pSp' is
introduced by us, by training pSp with an additional discriminator
and incorporating synthesized images for better initialization.

to train pSp and note this version as pSpT. While pSpT
improves over pSp in MSE and FID, it still underperforms
compared to the others. This confirms that inverting into the
extended latent space W+ only allows limited reconstruc-
tion quality on Cityscapes. The Feature-Style encoder [76]
replaces the prediction of the low level latent codes with
feature prediction, which results in better reconstruction
without severely harming style editability. However, its re-
construction on Cityscapes is still not satisfying and under-
performs to our masked noise encoder. As noted in [76], the
feature size of the Feature-Style encoder is restricted. Using
a larger feature map to improve reconstruction quality can
only be done as a replacement of more latent code predic-
tions. Consequently, it largely reduces the expressiveness of
the latent embedding and leads to extremely poor editabil-
ity, being no longer suitable for downstream applications,
e.g., style mixing data augmentation.

The visual comparison across pSpT, the Feature-Style
encoder and our masked noise encoder is shown in Fig. 2
and is aligned with the quantitative results in Table 1. pSpT
has overall poor reconstruction quality. The Feature-Style
encoder cannot faithfully reconstruct small objects and re-
store fine details. In comparison, our masked noise encoder
offers high-quality reconstruction, preserving the semantic
layout and fine details of each class. Having a high-quality
reconstruction is an important requirement for using the en-
coder for data augmentation. Unfortunately, neither pSpT
nor the Feature-Style encoder achieve satisfactory recon-
struction quality. For instance, they both fail at captur-
ing the red traffic light in Fig. 2. Using such images for
data augmentation can confuse the semantic segmentation
model, leading to performance degradation.

Ablation on the masking effect. In Fig. 4 and Fig. 6, we
visually observe that random masking offers a stronger per-
ceivable style mixing effect compared to the model trained
without masking. Next, we test the effect of masking
on improving the domain generalization for the seman-
tic segmentation task. In particular, we employ the en-
coder that is trained with and without masking to perform

Method | CS | ACDC BDD DarkZ

Baseline 70.47 | 4148 45,66 15.25
ISSA w/o masking | 69.68 | 44.63 4645 17.36
ISSA w/- masking | 69.48 | 4743 47.87 26.10

Table 2. The effect of random noise masking on improving do-
main generalization via ISSA. We report the mean Intersection
over Union (mloU) of HRNet [69] trained on Cityscapes at the
resolution 256 x 512. BDD100K (BDD), ACDC, and Dark Ziirich
(DarkZ) represent different domain shifts from Cityscapes.

Content Style

Figure 7. Comparison of StyleMix [28] and ISSA. StyleMix has
rather low fidelity, while ISSA can preserve more details.

ISSA. In Table 2, while slightly degrading the source do-
main performance of the baseline model on Cityscapes,
ISSA improves the domain generalization performance on
BDDI100K, ACDC and Dark Ziirich. As ISSA with masked
noise encoder is more effective at diversifying the training
set and reducing the style-content correlation, it achieves
more pronounced gains in Table 2, e.g., more than 10% im-
provement in mloU from Cityscapes to Dark Ziirich.

4.2. Domain Generalization

Comparison with data augmentation methods. Table 3
reports the mloU scores of Cityscapes to ACDC domain
generalization using two semantic segmentation models,
i.e., HRNet [69] and SegFormer [73]. ISSA is compared
with three representative data augmentations methods, i.e.,
CutMix [79], Hendrycks’s weather corruptions [25], and
StyleMix [28]. Remarkably, our ISSA is the top perform-
ing method, consistently improving mloU in both models
and across all four different scenarios of ACDC, i.e., rain,
fog, snow and night. Compared to HRNet, SegFormer is
more robust against the considered domain shifts.

In contrast to the others, CutMix mixes up the content
rather than the style. It improves the in-distribution perfor-
mance on Cityscapes, but this gain does not extend to do-
main generalization. Hendrycks’s weather corruptions can
be seen as the synthetic version of Cityscapes under the rain,
fog, and snow weather conditions. While already mimick-
ing ACDC at training, it can still degrade ACDC-snow by
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HRNet [69] SegFormer [73]
Method CS ‘ Rain Fog  Snow Night Avg. CS ‘ Rain Fog  Snow Night Avg.
Baseline | 7047 | 4415 5868 4420 1890 4148 || 67.90 | 5022 60.52 48.86 28.56 47.04
CutMix [79] | 72.68 | 4248 58.63 4450 17.07 40.67 || 69.23 | 49.53 61.58 4742 27.77 46.57
Weather [25] | 69.25 | 50.78 60.82 3834 2282 43.19 || 6741 | 5402 6474 4957 2850 4921
StyleMix [28] | 57.40 | 40.59 49.11 39.14 1934 37.04 || 6530 | 53.54 63.86 49.98 28.93 49.08
ISSA (Ours) | 70.30 | 50.62 66.09 53.30 30.18 50.05 || 67.52 | 5591 6746 53.19 3323 5245
Oracle | 7029 | 6567 7522 7234 5039 6590 || 6824 | 63.67 7410 6797 4879 63.56

Table 3. Comparison of data augmentation for improving domain generalization, i.e., from Cityscapes (train) to ACDC (unseen). The
mean Intersection over Union (mloU) is reported on Cityscapes (CS), four individual scenarios of ACDC (Rain, Fog, Snow and Night) and
the whole ACDC (Avg.). Oracle indicates the supervised training on both Cityscapes and ACDC, serving as an upper bound on ACDC
for the other methods. Note, it is not supposed to be an upper bound on Cityscapes. Underline denotes worse results than the baseline on
ACDC. ISSA performs the best and consistently improves the mIoU in all four scenarios of ACDC using both HRNet and SegFormer.

Method | CS | ACDC BDD DarkZ
Baseline [10] | 61.73 | 30.86 3430 11.62
MixStyle [£6] 59.01 | 3697 3627 9.38
DSU [48] 59.59 | 3831 3553 1229
ISSA (Ours) 62.20 | 4321 42,60 21.56
MixStyle [86] + ISSA | 60.17 | 41.81 4217  20.56
DSU [48] +ISSA 6020 | 4331 4224 2463

Table 4. Comparison with feature-level augmentation methods on
domain generalization performance of Cityscapes as the source.
Following DSU [48], we conduct experiments using DeepLab
v2 [10] as the baseline for fair comparison.

more than 5.8% in mIoU using HRNet. More results on the
other corruption types can be found in the supp. material.
StyleMix [28] also seeks to mix up styles. However, it does
not work well for scene-centric datasets, such as Cityscapes.
Its poor synthetic image quality (see Fig. 7) leads to the per-
formance drop over the HRNet baseline in many cases, e.g.,
on Cityscapes to ACDC-fog from 58.68% to 49.11% mloU.

Comparison with domain generalization techniques. We
further compare ISSA with two advanced feature space
style mixing methods designed to improve domain gener-
alization performance: MixStyle [86] and DSU [48]. Both
extract the style information at certain normalization layers
of CNNs. MixStyle [86] mixes up styles by linearly inter-
polating the feature statistics, i.e., mean and variance, of
different images, while DSU [48] models the feature statis-
tics as a distribution and randomly draws samples from it.
We adopt the experimental setting of DSU with default
hyperparameters, using DeepLab v2 [10] segmentation net-
work with ResNet101 backbone. Table 4 shows that ISSA
outperforms both MixStyle and DSU by a large margin. We
also observe that there is a slight performance drop on the
source domain (CS) when applying DSU and MixStyle. As
they operate at the feature-level, there is no guarantee that
the semantic content stays unchanged after the random per-
turbation of feature statistics. Thus, the changes in feature

Method | CS | ACDC BDD DarkZ
Bascline 69.01 | 4423 4327 16.03
RobustNet [12] | 69.47 | 4725 4694 20.11
+ISSA 69.45 | 4755 4844  23.09

Table 5. Combination of ISSA and RobustNet [12]. We adopt
the experimental setting of RobustNet and use DeepLab v3+ [11]
as the baseline. Our ISSA is complementary to RobustNet and
further improves its generalization performance.

statistics might negatively affect the performance, as also
indicated in [48]. Note that, in contrast, ISSA operates on
the image space. Combining ISSA with MixStyle and DSU
leads to a strong boost in performance of these methods.
Being model-agnostic, ISSA can be combined with other
networks designed specifically for the domain generaliza-
tion of semantic segmentation. To showcase its comple-
mentary nature, we add ISSA on top of RobustNet [12],
which proposed a novel instance whitening loss to selec-
tively remove domain-specific style information. Although
color transformation has already been used for augmenta-
tion in RobustNet, ISSA can introduce more natural style
shifts, thus helping to further remove style-specific biases.
Table 5 verifies the effectiveness of ISSA. It brings extra
gains for RobustNet, especially in the challenging day to
night scenario, i.e., Cityscapes to Dark Ziirich, boosting the
performance from 20.11% to 23.09% in mlIoU.

5. Conclusion

In this paper, we propose a GAN inversion based data
augmentation method ISSA for learning domain general-
ized semantic segmentation using restricted training data
from a single source domain. The key enabler for ISSA
is the masked noise encoder, which is capable of preserv-
ing fine-grained content details and allows style mixing be-
tween images without affecting the semantic content. Ex-
tensive experimental results demonstrate the effectiveness
of ISSA on domain generalization across different datasets
and network architectures.
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