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Abstract

In the unpredictable Anthropocene, a particularly pressing open question is how certain
species invade urban environments. Sex-biased dispersal and learning arguably influence
movement ecology, but their joint influence remains unexplored empirically, and might vary
by space and time. We assayed reinforcement learning in wild-caught, temporarily-captive
core, middle- or edge-range great-tailed grackles—a bird species undergoing urban-tracking
rapid range expansion, led by dispersing males. We show: across populations, both sexes
initially perform similarly when learning stimulus-reward pairings, but, when reward
contingencies reverse, male—versus female—grackles finish ‘relearning’ faster, making
fewer choice-option switches. How do male grackles do this? Bayesian cognitive modelling
revealed male grackles’ choice behaviour is governed more strongly by the ‘weight’ of
relative differences in recent foraging returns—i.e., they show more pronounced reward-
payoff sensitivity. Confirming this mechanism, agent-based forward simulations of
reinforcement learning—where we simulate ‘birds’ based on empirical estimates of our
grackles’ reinforcement learning—replicate our sex-difference behavioural data. Finally,
evolutionary modelling revealed natural selection should favour risk-sensitive learning in
characteristically urban-like environments: stable but stochastic settings. Together, these
results imply risk-sensitive learning is a winning strategy for urban-invasion leaders,
underscoring the potential for life history and cognition to shape invasion success in human-
modified environments.
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This study uses a multi-pronged empirical and theoretical approach to advance our
understanding of how differences in learning relate to differences in the ways that
male versus female animals cope with urban environments, and more generally how
reversal learning may benefit animals in urban habitats. The work makes an
important contribution and parts of the data and analyses are solid, although
several of the main claims are only partially supported or overstated and require
additional support.
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Introduction

Dispersal and range expansion go ‘hand in hand’; movement by individuals away from a
population’s core is a pivotal precondition of witnessed growth in species’ geographic limits
(Ronce, 2007     ; Chuang and Peterson, 2016     ). Because ‘who’ disperses—in terms of sex—varies
both within and across taxa (for example, male-biased dispersal is dominant among fish and
mammals, whereas female-biased dispersal is dominant among birds; see Table 1      in Trochet et
al., 2016     ), skewed sex ratios are apt to arise at expanding range fronts, and, in turn,
differentially drive invasion dynamics (Miller et al., 2011     ). Female-biased dispersal, for
instance, can ‘speed up’ staged invertebrate invasions by increasing offspring production (Miller
and Inouye, 2013     ). Alongside sex-biased dispersal, learning is also argued to contribute to
species’ colonisation capacity, as novel environments inevitably present novel (foraging,
predation, shelter, and social) challenges that newcomers need to surmount in order to settle
successfully (Wright et al., 2010     ; Sol et al., 2013     ; Barrett et al., 2019     ).

Indeed, a growing number of studies show support for this supposition (as recently reviewed in
Lee and Thornton, 2021     ). Carefully controlled choice tests, for example, show urban-dwelling
individuals—that is, the invaders—will learn novel stimulus-reward pairings more readily than do
rural-dwelling counterparts, supporting the idea that urban invasion selects for learning
phenotypes at the dispersal and/or settlement stage(s) (Batabyal and Thaker, 2019     ). Given the
independent influence of sex-biased dispersal and learning on range expansion, it is perhaps
surprising, then, that their potential interactive influence on movement ecology remains
unexamined empirically (but not theoretically: Liedtke and Fromhage, 2021a,b), particularly in
light of concerns over (in)vertebrates’ resilience to ever-increasing urbanisation (Eisenhauer and
Hines, 2021     ; Li et al., 2022     ).

Great-tailed grackles (Quiscalus mexicanus; henceforth, grackles) are an excellent model for
empirical examination of the interplay between sex-biased dispersal, learning, and ongoing
urban-targeted rapid range expansion: over the past ∼150 years, they have seemingly shifted their
historically urban niche to include more variable urban environments (e.g., arid habitat; Summers
et al., 2023     ), moving from their native range in Central America into much of the United States,
with several first-sightings spanning as far north as Canada (Dinsmore and Dinsmore, 1993     ;
Wehtje, 2003     ; Fink et al., 2020     ). Notably, the record of this urban invasion is heavily peppered
with first-sightings involving a single or multiple male(s) (41 of 63 recorded cases spanning most
of the twentieth century; Dinsmore and Dinsmore, 1993     ). Moreover, recent genetic data show,
when comparing grackles within a population, average relatedness: (i) is higher among females
than among males; and (ii) decreases with increasing geographic distance among females; but (iii)
is unrelated to geographic distance among males; hence, confirming urban invasion in grackles is
male-led via sex-biased dispersal (Sevchik et al., 2022     ). Considering these life history and
genetic data in conjunction with data on grackle wildlife management efforts (e.g., pesticides,
pyrotechnics, and sonic booms; Luscier, 2018     ), it seems plausible that urban invasion might
drive differential learning between male and female grackles, potentially resulting in a spatial
sorting of the magnitude of this sex difference with respect to population establishment age (i.e.,
sex-effect: newer population > older population; Phillips et al., 2010     ). In range-expanding
western bluebirds (Sialia mexicana), for example, more aggressive males disperse towards the
invasion front; however, in as little as three years, the sons of these colonisers show reduced
aggression as the invasion front moves on (Duckworth and Badyaev, 2007     ). Whether sex-biased
dispersal and learning similarly interact in urban-invading grackles, remains an open and timely
question.

https://doi.org/10.7554/eLife.89315.1
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Here, for the first time (to our knowledge), we examine whether, and, if so, how sex mediates
learning across 32 male and 17 female wild-caught, temporarily-captive grackles either inhabiting
a core (17 males, 5 females), middle (4 males, 4 females) or edge (11 males, 8 females) population
of their North American range (based on year-since-first-breeding: 1951, 1996, and 2004,
respectively; details in Materials and methods; Figure 1     ). Collating, cleaning, and curating
existing reinforcement learning data (Logan, 2016c; Logan et al., 2022a, 2023b)—wherein novel
stimulus-reward pairings are presented (i.e., initial learning), and, once successfully learned, these
reward contingencies are reversed (i.e., reversal learning)—we test the hypothesis that sex
differences in learning are related to sex differences in dispersal. As range expansion should
disfavour slow, error-prone learning strategies, we expect male and female grackles to differ
across at least two reinforcement learning behaviours: speed and choice-option switches.
Specifically, as documented in our preregistration (see Supplementary file 1), we expect male—
versus female—grackles: (prediction 1 and 2) to be faster to, firstly, learn a novel colour-reward
pairing, and secondly, reverse their colour preference when the colour-reward pairing is
swapped; and (prediction 3) to make fewer choice option-switches during their colour-reward
learning; if learning and dispersal relate. Finally, we further expect (prediction 4) such sex-
mediated differences in learning to be more pronounced in grackles living at the edge, rather than
the intermediate and/or core region of their range.

To comprehensively examine links between sex-biased dispersal and learning in urban-invading
grackles, we employ a combination of Bayesian computational and cognitive modelling methods,
and both agent-based and evolutionary simulation techniques. Specifically, our paper proceeds as
follows: (i) we begin by describing grackles’ reinforcement learning and testing our predictions
using multi-level Bayesian Poisson models; (ii) we next ‘unblackbox’ candidate learning
mechanisms generating grackles’ reinforcement learning, using a multi-level Bayesian
reinforcement learning model; (iii) we then try to replicate our behavioural data via agent-based
forward simulations, to determine if our detected learning mechanisms underpin our grackles’
reinforcement learning; (iv) and we conclude by examining the evolutionary implications of
variation in these learning mechanisms under urban-like (or not) settings via algorithmic
optimisation.

Results

Reinforcement learning behaviour
We observe robust reinforcement learning dynamics across populations (full between- and across-
population model outputs in Supplementary file 2). As such, we compare male and female
grackles’ reinforcement learning across populations. Both sexes start out as similar learners,
finishing initial learning in comparable trial numbers (median trials-to-finish: males, 32; females,
35; Figure 2     A and Supplementary file 2a), and with comparable counts of choice-option
switches (median switches-at-finish: males, 10.5; females, 15; Figure 2      and Supplementary file
2b). Indeed, the male-female (M-F) posterior contrasts for both behaviours centre around zero,
evidencing no sex-effect (Figure 2     C). Once reward contingencies reverse, however, male—
versus female—grackles finish this ‘relearning’ faster: they take fewer trials (median trials-to-
finish: males, 64; females, 81; Figure 2     B and Supplementary file 2a), and make fewer choice-
option switches (median switches-at-finish: males, 25; females, 35; Figure 2     B and
Supplementary file 2b). The M-F posterior contrasts, which lie almost entirely below zero, clearly
capture this sex-effect (Figure 2     F and Supplementary file 2a and b). Environmental
unpredictability, then, dependably directs disparate reinforcement learning trajectories between
male and female grackles (faster versus slower finishers, respectively), sup-porting our overall
expectation of sex-mediated differential learning in urban-invading grackles.

https://doi.org/10.7554/eLife.89315.1
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Figure 1.

Participants and experimental protocol. Thirty-two male and 17 female wild-caught, temporarily-captive great-tailed grackles
either inhabiting a core (17 males, 5 females), middle (4 males, 4 females) or edge (11 males, 8 females) population of their
North American breeding range (establishment year: 1951, 1996, and 2004, respectively), are participants in the current study
(grackle images: Wikimedia Commons). Each grackle is individually tested on a two-phase reinforcement learning paradigm:
initial learning, two colour-distinct tubes are presented, but only one coloured tube (e.g., dark grey) contains a food reward
(F+ versus F-); reversal learning, the stimulus-reward tube-pairings are swapped. The learning criterion is identical in both
learning phases: 17 F+ choices out of the last 20 choices, with trial 17 being the earliest a grackle can successfully finish (for
details, see Materials and methods).

https://doi.org/10.7554/eLife.89315.1
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Reinforcement learning mechanisms
Because (dis)similar behaviour can result from multiple latent processes (McElreath, 2018     ), we
next employ computational methods to delimit reinforcement learning mechanisms. Specifically,
we adapt a multi-level Bayesian reinforcement learning model (from Deffner et al., 2020     ),
which we validate apriori via agent-based simulation (see Materials and methods and
Supplementary file 1), to estimate the contribution of two core latent learning parameters to
grackles’ reinforcement learning: the information-updating rate φ (How rapidly do learners ‘revise’
knowledge?) and the risk-sensitivity rate λ (How strongly do learners ‘weight’ knowledge?). Both
learning parameters capture individual-level internal response to incurred reward-payoffs (full
mathematical details in Materials and methods). Specifically, as φ0→1, information-updating
increases; as λ0→∞, risk-sensitivity strengthens. In other words, by formulating our scientific
model as a statistical model, we can reverse engineer which values of our learning parameters
most likely produce grackles’ choice behaviour—an analytical advantage over less mechanistic
methods (McElreath, 2018     ).

Looking at our reinforcement learning model’s estimates between populations to determine
replicability, we observe: in initial learning, the information-updating rate φ of core- and edge-
inhabiting male grackles is largely lower than that of female counterparts (M-F posterior contrasts
lie more below zero; Figure 2     G and Supplementary file 2c), with smaller sample size likely
explaining the middle population’s more uncertain estimates (M-F posterior contrasts centre
widely around zero; Figure 2     G and Supplementary file 2c); while in reversal learning, the
information-updating rate φ of both sexes is nearly identical irrespective of population
membership, with females dropping to the reduced level of males (M-F posterior contrasts centre
closely around zero; Figure 2     H and Supplementary file 2c). Therefore, the information-updating
rate φ across male and female grackles is initially different (males < females), but converges
downwards over reinforcement learning phases (across-population M-F posterior contrasts lie
mostly below, and then, tightly bound zero; Figure 2     G and H and Supplementary file 2c).

These primary mechanistic findings are, at first glance, perplexing: if male grackles generally
outperform female grackles in reversal learning (Figure 2     D-F), why do all grackles ultimately
update information at matched, dampened pace? This apparent conundrum, however, in fact
highlights the potential for multiple latent processes to direct behaviour. Case in point: the risk-
sensitivity rate λ is distinctly higher in male grackles, compared to female counterparts, regardless
of population membership and learning phase (M-F posterior contrasts lie more, if not mostly,
above zero; Figure 2     I and J and Supplementary file 2d), outwith the middle population in initial
learning likely due to sample size (M-F posterior contrasts centre broadly around zero; Figure 2     I
and Supplementary file 2d). In other words, choice behaviour in male grackles is more strongly
governed by relative differences in predicted reward-payoffs, as spotlighted by across-population
M-F posterior contrasts that lie almost entirely above zero (Figure 2     I and J and Supplementary
file 2d). Thus, these combined mechanistic data reveal, when reward contingencies reverse, male
— versus female—grackles ‘relearn’ faster via pronounced reward-payoff sensitivity, a
persistence-based risk-sensitive learning strategy.

Agent-based simulations and replication of reinforcement learning
To determine definitively whether our learning parameters are sufficient to generate grackles’
observed reinforcement learning, we conduct agent-based forward simulations; that is, we
simulate ‘birds’ informed by the grackles in our data set. Specifically, whilst maintaining the
correlation structure among learning parameters, we randomly assign 5000 ‘males’ and 5000
‘females’ information-updating rate φ and risk-sensitivity rate λ estimates from the full across-
population posterior distribution of our reinforcement learning model, and we track synthetic
reinforcement learning trajectories. By comparing these synthetic data to our real data, we gain
valuable insight into the learning and choice behaviour implied by our reinforcement learning

https://doi.org/10.7554/eLife.89315.1


Alexis J Breen et al., 2023 eLife. https://doi.org/10.7554/eLife.89315.1 6 of 49

Figure 2

Grackle reinforcement learning. Behaviour. Across-population learning speed and choice-option switches in (A-B) initial (M,
32; F, 17) and (D-E) reversal learning (M, 29; F, 17), with (C,F) respective posterior estimates and M-F contrasts. Mechanisms.
Within- and across-population estimates and contrasts of information-updating rate φ and risk-sensitivity rate λ in (G,I) initial
and (H,J) reversal learning. In (G-J) open circles show 100 random posterior draws; red filled circles and vertical lines show
posterior means and 89% HPDI, respectively. Simulations. Learning speed and choice-option switches by: 10,000 full posterior-
informed ‘birds’ (n = 5,000 per sex) in (K-L) initial and (N-O) reversal learning; and six average posterior-informed ‘birds’ (n =
3 per sex) in (M) initial and (P) reversal learning. In (K,N) the full simulation sample is plotted; in (L,O) open circles show 100
random simulant draws. Note (K,N) x-axes are cut to match (A,D) x-axes. Medians are plotted/labelled in (A,B,D,E,K,L,N,O).
Figure 2—figure supplement 1     . Excluding extra learning trials.

https://doi.org/10.7554/eLife.89315.1
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model results. Specifically, a close mapping between the two data sets would indicate our
information-updating rate φ and risk-sensitivity rate λ estimates can account for our grackles’
differential reinforcement learning; whereas a poor mapping would indicate some important
mechanism(s) are missing (e.g., Deffner et al., 2020     ).

Ten thousand synthetic reinforcement learning trajectories, together, compellingly show our
‘birds’ behave just like our grackles: ‘males’ outpace ‘females’ in reversal but not in initial learning
(median trials-to-finish initial and reversal learning: ‘males’, 31 and 62; ‘females’, 32 and 79;
respectively; Figure 2     K and N); and ‘males’ make fewer choice-option switches in initial but not
in reversal learning, compared to ‘females’ (median switches-at-finish in initial and reversal
learning: ‘males’, 11 and 20; ‘females’, 11 and 29; respectively; Figure 2     L and O). Figure 2     M
and P show, respectively, synthetic initial and reversal learning trajectories by three average
‘males’ and three average ‘females’ (i.e., simulants informed via learning parameter estimates that
average over our posterior distribution), for the reader interested in representative individual-
level reinforcement learning dynamics. Such quantitative replication proves our reinforcement
learning model results fully explain our behavioural sex-difference data.

Selection and benefit of reinforcement learning mechanisms
under urban-like environments
Learning mechanisms in grackles obviously did not evolve to be successful in the current study;
instead, they likely reflect selection pressures and/or adaptive phenotypic plasticity imposed by
urban environments (Blackburn et al., 2009     ; Sol et al., 2013     ; Lee and Thornton, 2021     ;
Vinton et al., 2022     ; Caspi et al., 2022     ). Applying an evolutionary algorithm model (Figure
3     A), we conclude by examining how urban environments might favour different information-
updating rate φ and risk-sensitivity rate λ values, by estimating optimal learning strategies in
settings that differ along two key ecological axes: environmental stability u (How often does
optimal behaviour change?) and environmental stochasticity s (How often does optimal behaviour
fail to payoff?). Urban environments are generally characterised as both stable (lower u) and
stochastic (higher s): more specifically, urbanisation routinely leads to stabilised biotic structure,
including predation pressure, thermal habitat, and resource availability, and to enhanced abiotic
disruption, such as anthropogenic noise and light pollution (reviews in Shochat et al., 2006     ;
Francis and Barber, 2013     ; Gaston et al., 2013     ). Seasonal survey data from (sub)urban British
neighborhoods show, for example, 40-75% of house-holds provide supplemental feeding resources
for birds (e.g., seed, bread, and peanuts; Cowie and Hinsley, 1988     ; Davies et al., 2009     ), the
density of which can positively relate to avian abundance within an urban area (Fuller et al.,
2008     ). But such supplemental feeding opportunities are necessarily traded off against increased
vigilance due to unpredictable predator-like anthropogenic disturbances (e.g., automobile and
airplane traffic; as outlined in Frid and Dill, 2002     ).

Strikingly, under characteristically urban-like (i.e., stable but stochastic) conditions, our
evolutionary model shows the learning parameter constellation robustly exhibited by males
grackles in our study—that is, low information-updating rate φ and high risk-sensitivity rate λ—
should be favoured by natural selection (darker and lighter squares in, respectively the left and
right plots in Figure 3     B). These results imply, in urban and other statistically similar
environments, learners benefit by averaging over prior experience (i.e., gradually updating
‘beliefs’), and by informing behaviour based on this experiential history (i.e., proceeding with
‘caution’), highlighting the adaptive value of strategising risk-sensitive learning in urban-like
environments.

https://doi.org/10.7554/eLife.89315.1
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Figure 3.

Evolutionary optimality of strategising risk-sensitive learning. (A) Illustration of our evolutionary algorithm model to estimate
optimal learning parameters that evolve under systematically varied pairings of two key (urban) ecology axes: environmental
stability u. and environmental stochasticity s. Specifically, 300-member populations run for 10 independent 7000-generation
simulations per pairing, using ‘roulette wheel’ selection (parents are chosen for reproduction with a probability proportional
to collected F+ rewards out of 1000 choices) and random mutation (offspring inherit learning genotypes with a small
deviation in random direction). (B) Mean optimal learning parameter values discovered by our evolutionary model (averaged
over the last 5000 generations). As the statistical environment becomes more urban-like (lower u and higher s values),
selection should favour lower information-updating rate φ and higher risk-sensitivity rate λ (darker and lighter squares in left
and right plot, respectively). We note arrows are intended as illustrative aids and do not correspond to a linear scale of
‘urbanness’

https://doi.org/10.7554/eLife.89315.1
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Discussion

Mapping a full pathway from behaviour to mechanisms through to selection and adaptation, we
show risk-sensitive learning is a viable strategy to help explain how male grackles—the dispersing
sex—currently lead their species’ remarkable North American urban invasion. Specifically, in
wild-caught, temporarily-captive core-, middle- or edge-range grackles, we show: (i) irrespective of
population membership, male grackles outperform female counterparts on stimulus-reward
reversal reinforcement learning, finishing faster and making fewer choice-option switches; (ii)
they achieve their speedier reversal learning performance via pronounced reward-payoff
sensitivity (low φ and high λ), as ‘unblackboxed’ by our mechanistic model; (iii) these learning
mechanisms indeed explain our sex-difference behavioural data: because we replicate our results
using agent-based forward simulations; and (iv) risk-sensitive learning—i.e., low φ and high λ—
appears advantageous in characteristically urban-like environments (stable but stochastic
settings), according to our evolutionary model. These results set the scene for future comparative
research.

The term ‘behavioural flexibility’—broadly defined as some ‘attribute’, ‘cognition’, ‘characteristic’,
‘feature’, ‘trait’ and/or ‘quality’ that enables animals to adapt behaviour to changing circumstances
(Coppens et al., 2010     ; Audet and Lefebvre, 2017     ; Barrett et al., 2019     ; Lea et al., 2020     )—
has previously been hypothesised to explain invasion success (Wright et al., 2010     ), including
that of grackles (Summers et al., 2023     ). But as eloquently argued elsewhere (Audet and Lefebvre,
2017     ), this term is conceptually uninformative, given the many ways in which it is applied and
assessed. Of these approaches, reversal learning and serial—multiple back-to-back—reversal
learning tasks are the most common experimental assays of behavioural flexibility (non-
exhaustive examples of each assay in bees; Strang and Sherry 2014     ; Raine and Chittka 2012     ;
birds; Bond et al. 2007     ; Morand-Ferron et al. 2022     ; fish; Lucon-Xiccato and Bisazza 2014     ;
Bensky and Bell 2020     ; frogs; Liu et al. 2016     ; Burmeister 2022     ; reptiles; Batabyal and Thaker
2019     ; Gaalema 2011     ; primates; Cantwell et al. 2022     ; Lacreuse et al. 2018     ; and rodents;
Rochais et al. 2021     ; Boulougouris et al. 2007     ). We have shown, however, at least for our
grackles, faster reversal learning is governed primarily by pronounced reward-payoff sensitivity,
so: firstly, these go-to experimental assays do not necessarily measure the unit they claim to
measure (a point similarly highlighted in: Aljadeff and Lotem, 2021     ); and secondly, formal
models based on the false premise that variation in learning speed relates to variation in
behavioural flexibility require reassessment (Lea et al., 2020     ; Blaisdell et al., 2021     ; Logan et
al., 2022b; Lukas et al., 2023     ; Logan et al., 2023a,c). Heeding previous calls (Dukas, 1998     ;
McNamara and Houston, 2009     ; Fawcett et al., 2013     ), our study provides an analytical solution
to facilitate productive research on proximate and ultimate explanations of seemingly flexible (or
not) behaviour: because we publicly provide step-by-step code to examine individual decision
making, two core underlying learning mechanisms, and their theoretical selection and benefit (see
https://github.com/alexisbreen/Sex-differences-in-grackles-learning     ), which can be tailored to
specific research questions. The reinforcement learning model, for example, generalises to, in
theory, a variety of choice-option paradigms (Barrett, 2022     ), and these learning models can be
extended to estimate asocial and social influence on individual decision making (e.g., McElreath et
al., 2005     ; Aplin et al., 2017     ; Barrett et al., 2017     ; Deffner et al., 2020     ; Chimento et al.,
2022     ), facilitating insight into the multi-faceted feedback process between individual cognition
and social systems (Trump et al., 2023     ). Our open-access analytical resource thus allows
researchers to dispense with the umbrella term behavioural flexibility, and to biologically inform
and interpret their science—only then can we begin to meaningfully examine the functional basis
of behavioural variation across taxa and/or contexts.

https://doi.org/10.7554/eLife.89315.1
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Ideas and speculation
Related to this final point, it is useful to outline how additional drivers outwith sex-biased risk-
sensitive learning might contribute towards urban invasion success in grackles, too. Grackles
exhibit a polygynous mating system, with territorial males attracting multiple female nesters
(Johnson et al., 2000     ). Recent learning ‘style’ simulations show the sex with high reproductive
skew approaches pure individual learning, while the other sex approaches pure social learning
(Smolla et al., 2019     ). During population establishment, then, later-arriving female grackles
could rely heavily on vetted information provided by male grackles on ‘what to do’ (Wright et al.,
2010     ), as both sexes ultimately face the same urban-related challenges. Moreover, risk-sensitive
learning in male grackles should help reduce the elevated risk associated with any skew towards
acquiring knowledge through individual learning. And as the dispersing sex this process would
operate independently of their proximity to a range front—a pattern suggestively supported by
our mechanistic data (i.e., risk-sensitivity: males > females; Figure 2     G and H). As such, future
research on potential sex differences in social learning propensity in grackles seem particularly
prudent, alongside systematic surveying of population-level environmental and fitness
components across spatially (dis)similar populations; for this, our annotated and readily available
analytical approach should prove useful, as highlighted above.

The lack of spatial replicates in the existing data set used herein inherently poses limitations on
inference. But it is worth noting that phenotypic filtering by invasion stage is not a compulsory
signature of successful (urban) invasion; instead, phenotypic plasticity and/or inherent species
trait(s) may be facilitators (Blackburn et al., 2009     ; Sol et al., 2013     ; Lee and Thornton, 2021     ;
Vinton et al., 2022     ; Caspi et al., 2022     ). For urban-invading grackles, both of these biological
explanations seem strongly plausible, given: firstly, grackles’ highly plastic foraging and nesting
ecology (Selander and Giller, 1961     ; Davis and Arnold, 1972     ; Wehtje, 2003     ); secondly,
grackles’ apparent historic and current realised niche being—albeit in present day more variable
—urban environments, a consistent habit preference that cannot be explained by changes in
habitat availability or habitat connectivity (Summers et al., 2023     ); and finally, our combined
behavioural, mechanistic, and evolutionary modelling results showing environments approaching
grackles’ general species niche—urban environments—select for particular traits that exist across
grackle populations (here, sex-biased risk-sensitive learning). Admittedly, our evolutionary model
is not a complete representation of urban ecology dynamics. Relevant factors—e.g., spatial
dynamics and realistic life histories—are missed out. These omissions are tactical ones. Our
evolutionary model solely focuses on the response of reinforcement learning parameters to two
core urban-like (or not) environmental statistics, providing a baseline for future study to build on;
for example, it would be interesting to investigate such selection on learning parameters of ‘true’
invaders and not their descendants, a logistically tricky but nonetheless feasible research
possibility (e.g., Duckworth and Badyaev, 2007     ).

Conclusions
By revealing robust interactive links between the dispersing sex and risk-sensitive learning in an
urban invader (grackles), these fully replicable insights, coupled with our finding that urban-like
environments favour pronounced risk-sensitivity, imply risk-sensitive learning is a winning
strategy for urban-invasion leaders. Our modelling methods, which we document in-depth and
make freely available, can now be comparatively applied, establishing a biologically meaningful
analytical approach for much-needed study on (shared or divergent) drivers of geographic and
phenotypic distributions (Somveille et al., 2018     ; Bro-Jørgensen et al., 2019     ; Lee and Thornton,
2021     ; Breen et al., 2021     ; Breen, 2021     ; Deffner et al., 2022     ).

https://doi.org/10.7554/eLife.89315.1
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Methods and Materials

Data provenance
The current study uses data from two types of sources: publicly archived data at the Knowledge
Network for Biocomplexity (Logan, 2016c; Logan et al., 2022a); or privately permissed access to
A.J.B. of (at the time) unpublished data by Grackle Project principal investigator Corina Logan,
who declined participation on this study. We note these shared data are now also available at the
Knowledge Network for Biocomplexity (Logan et al., 2023b).

Data contents
The data used herein chart colour-reward reinforcement learning performance from 32 male and
17 female wild-caught, temporarily-captive grackles inhabiting one of three study sites that differ
in their range-expansion demographics; that is, defined as a core, middle or edge population
(based on time-since-settlement population growth dynamics, as outlined in Chuang and Peterson,
2016     ). Specifically: (i) Tempe, Arizona (17 males and five females)—herein, the core population
(estimated to be breeding since 1951, by adding the average time between first sighting and first
breeding to the year first sighted; Wehtje, 2003     , 2004     ); (ii) Santa Barbara, California (four
males and four females)—herein, the middle population (known to be breeding since 1996;
Lehman, 2020     ); and (iii) Greater Sacramento, California (eleven males and eight females)—
herein, the edge population (known to be breeding since 2004; Hampton, 2004     ).

Experimental protocol
Below we detail the protocol for the colour-reward reinforcement learning test that we analysed
herein.

Reinforcement learning test

The reinforcement learning test consists of two experimental phases (Figure 1     ): (i) stimulus-
reward initial learning and (ii) stimulus-reward reversal learning. In both experimental phases,
two different coloured tubes are used: for Santa Barbara grackles, gold and grey; for all other
grackles, light and dark grey. Each tube consists of an outer and inner diameter of 26 mm and 19
mm, respectively; and each is mounted to two pieces of plywood attached at a right angle (entire
apparatus: 50 mm wide × 50 mm tall × 67 mm deep); thus resulting in only one end of each
coloured tube being accessible (Figure 1     ).

In initial learning, grackles are required to learn that only one of the two coloured tubes contains
a food reward (e.g., dark grey); this colour-reward pairing is counterbalanced across grackles
within each study site. Specifically, the rewarded and unrewarded coloured tubes are placed—
either on a table or on the floor—in the centre of the aviary run (distance apart: table, 2 feet; floor,
3 feet), with the open tube-ends facing, and perpendicular to, their respective aviary side-wall.
Which coloured tube is placed on which side of the aviary run (left or right) is pseudorandomised
across trials. A trial begins at tube-placement, and ends when a grackle has either made a tube-
choice or the maximum trial time has elapsed (eight minutes). A tube-choice is defined as a grackle
bending down to examine the contents (or lack thereof) of a tube. If the chosen tube contains food,
the grackle is allowed to retrieve and eat the food, before both tubes are removed and the
rewarded coloured tube is rebaited out of sight (for the grackle). If a chosen tube does not contain
food, both tubes are immediately removed. Each grackle is given, first, up to three minutes to
make a tube-choice, after which a piece of food is placed equidistant between the tubes to entice
participation; and then, if no choice has been made, an additional five minutes maximum, before
both tubes are removed. All trials are recorded as either correct (choosing the rewarded coloured
tube), incorrect (choosing the unrewarded coloured tube), or incomplete (no choice made). To
successfully finish initial learning, a grackle must meet the learning criterion, detailed below.

https://doi.org/10.7554/eLife.89315.1
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In reversal learning, grackles are required to learn that the colour-reward pairing has been
swapped; that is, the previously unrewarded coloured tube (e.g., light grey) now contains a food
reward (Figure 1     ). The protocol for this second and final experimental phase is identical to that,
described above, of initial learning.

Reinforcement learning criterion

For all grackles in the current study, we apply the following learning criterion: to successfully
finish their respective learning phase, grackles must make a correct choice in 17 of the most recent
20 trials. Therefore, the earliest a grackle can successfully finish initial or reversal learning in the
current study is at trail 17. This applied learning criterion is the most compatible with respect to
previous learning criteria used by the original experimenters. Specifically, Logan (Logan, 2016c)
and Logan et al. (Logan et al., 2022a) used a fixed-window learning criterion for core- and
middle-population grackles, in which grackles were required to make 17 out of the last 20 choices
correctly, with a minimum of eight and nine correct choices across the last two sets of 10 trials,
assessed at the end of each set. If a core- or middle-population grackle successfully satisfied the
fixed-window learning criterion, the grackle was assigned by Logan or colleagues the final trial
number for that set (e.g., 20, 30, 40), which is problematic because this trial did not always
coincide with the true passing trial (by a maximum of two additional trials; see below).

For edge-population grackles, Logan and colleagues (Logan et al., 2023b) used a sliding-window
learning criterion, in which grackles were required to again make 17 out of the last 20 choices
correctly, with the same minimum correct-choice counts for the previous two 10-trial sets, except
that this criterion was assessed at every trial (from 20 onward) rather than at the end of discrete
sets. This second method is also problematic because a grackle can successfully reach criterion via
a shift in the sliding window before making a choice. For example, a grackle could make three
wrong choices followed by 17 correct choices (i.e., 7/10 correct and 10/10 correct in the last two
sets of 10 trials), and at the start of the next trial, the grackle will reach criterion because the
summed choices now consist of 8/10 correct and at least 9/10 correct in the last two sets of 10 trials
no matter their subsequent choice—see initial learning performance by bird ‘Kel’ for a real
example (row 1816 in https://github.com/alexisbreen/Sex-differences-in-grackles-learning     ; as well as
in Logan et al., 2023b). Moreover, the use of different learning criteria (fixed- and sliding-
window) by Logan and colleagues in different populations represents a confound when
populations are compared. Thus, our applied 17/20 learning criterion ensures our assessment of
grackles’ reinforcement learning is informative, straightforward, and consistent.

As a consequence of applying our 17/20 learning criterion, grackles can remain in initial and/or
reversal learning beyond reaching criterion. These extra learning trials, however, already exist for
some core- and middle-population grackles originally assessed via the fixed-window learning
criterion (N = 18 in initial [range: 1-2 extra trials]; N = 13 in reversal [range: 1-2 extra trials]), as
explained above. And our cleaning of the original data (see our Data_Processing.R script at https://
github.com/alexisbreen/Sex-differences-in-grackles-learning     ) detected additional cases where
grackles remained in-test despite meeting the applied criterion (fixed-window: N = 1 in reversal
for 11 extra trials; sliding-window: N = 11 in initial [range: 1-10 extra trials]; N = 7 in reversal
[range: 1-14 extra trials]), presumably due to experimenter oversight. Similarly, our data cleaning
detected four birds in the core-population that did not in fact meet the fixed-window learning
criterion because of incorrect trail numbers entered by the original experimenters e.g., skipping
trial 24. Moreover, our data cleaning detected two birds in the middle-population that were passed
by the original experimenters despite not meeting the assigned fixed-window learning criterion;
instead, both chose 7/10 and 10/10 correct choices in the last two sets of 10 trials. We note these
data issues, as well as the problematic nature of both the fixed- and sliding-window learning
criterion, continue to be unaddressed in work by Logan (et al.) (Logan, 2016b     ,a; Logan et al.,
2022b, 2023a,c). In any case, in our study we: (i) verified our 17/20 learning criterion results in a
similar proportion of male and female grackles experiencing extra initial learning trials (females,
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15/17; males, 30/32); and (ii) our learning parameter estimations during initial learning remain
relatively unchanged irrespective of whether we exclude or include extra initial learning trails
(Figure 2—figure Supplement 1     ). Thus, we are confident that any carry-over effect of extra
initial learning trials on grackles’ reversal learning in our study is negligible if not nonexistent,
and we therefore excluded extra learning trials.

Statistical analyses
We analysed, processed, and visually present our data using, respectively, the ‘rstan’ (Team,
2020     ), ‘rethinking’ (McElreath, 2018     ), and ‘tidyverse’ (Wickham et al., 2019     ) packages in R
(Team, 2021     ). We note our reproducible code is available at https://github.com/alexisbreen/Sex-
differences-in-grackles-learning     . We further note our reinforcement learning model, defined
below, does not exclude cases—two males in the core, and one male in the middle population—
where a grackle was dropped (due to time constraints) early on from reversal learning by the
original experimenters: because individual-level φ and λ estimates can still be estimated
irrespective of trial number; the certainty around the estimates will simply be wider (McElreath,
2018     ). Our Poisson models, however, do exclude these three cases for our modelling of reversal
learning, to conserve estimation. The full output from each of our models, which use weakly
informative and conservative priors, is available in Supplementary file 2, including posterior
means and 89% highest posterior density intervals (HPDI) (McElreath, 2018     ).

Poisson models

For our behavioural assay of reinforcement learning finishing trajectories, we used a multi-level
Bayesian Poisson regression to quantify the effect(s) of sex and learning phase (initial versus
reversal) on grackles’ recorded number of trials to successfully finish each phase. This model was
performed at both the population and across-population level, and accounted for individual
differences among birds through the inclusion of individual-specific varying (i.e., random) effects.

For our behavioural assay of reinforcement learning choice-option switching, we used an identical
Poisson model to that described above, to predict the total number of switches between the
rewarded and unrewarded coloured tubes.

Reinforcement learning model

We employed an adapted (from Deffner et al., 2020     ) multi-level Bayesian reinforcement
learning model, to examine the influence of sex on grackles’ initial and reversal learning. Our
reinforcement learning model, defined below, allows us to link observed coloured tube-choices to
latent individual-level attraction updating, and to translate the influence of latent attractions (i.e.,
expected payoffs) into individual tube-choice probabilities. As introduced above, we can reverse
engineer which values of our two latent learning parameters—the information-updating rate φ
and the risk-sensitivity rate λ—most likely produce grackles’ choice behaviour, by formulating our
scientific model as a statistical model. Therefore, this computational method facilitates
mechanistic insight into how multiple latent learning parameters simultaneously guide grackles’
reinforcement learning (McElreath, 2018     ).

Our reinforcement learning model consists of two equations:

https://doi.org/10.7554/eLife.89315.1
https://github.com/alexisbreen/Sex-differences-in-grackles-learning


Alexis J Breen et al., 2023 eLife. https://doi.org/10.7554/eLife.89315.1 14 of 49

Equation (1)      expresses how attraction A to choice-option i changes for an individual j across time (t + 1) based on their

prior attraction to that choice-option (Ai,j,t) plus their recently experienced choice reward-payoffs (πi,j,t), whilst

accounting for the relative influence of recent reward-payoffs (φk,l). As φk,l increases in value, so, too, does the rate of

individual-level attraction updating based on reward-payoffs. Here, then, φk,l represents the information-updating rate.

We highlight that the k, l indexing (here and elsewhere) denotes that we estimate separate φ parameters for each

population (k = 1 for core; k = 2 for middle; k = 3 for edge) and for each learning phase (l = 1 for females/initial, l = 2 for

females/reversal; l = 3 for males/initial; l = 4 for males/reversal).

Equation (2)      is a softmax function that expresses the probability P that choice-option i is selected
in the next choice-round (t + 1) as a function of the attractions A and the parameter λk,l, which
governs how much relative differences in attraction scores guide individual choice behaviour. In
the reinforcement learning literature, the λ parameter is known by several names—for example,
‘inverse temperature’, ‘exploration’ or ‘risk-appetite’ (Sutton and Barto, 2018     ; Chimento et al.,
2022     )— since the higher its value the more deterministic the choice behaviour of an individual
becomes (note λ = 0 generates random choice). In line with foraging theory (Stephens and Krebs,
2019     ), we call λ the risk-sensitivity rate, where higher values of λ imply foragers are more
sensitive to risk, seeking higher expected payoffs based on their prior experience, instead of
randomly sampling alternative options.

From the above reinforcement learning model, then, we generate inferences about the effect of
sex on φk,l and λk,l from at least 1000 effective samples of the posterior distribution, at both the
population- and across-population-level. We note our reinforcement learning model also includes
bird as a random effect (to account for repeated measures within individuals); however, for
clarity, this parameter is omitted from our equations (but not our code: https://github.com
/alexisbreen/Sex-differences-in-grackles-learning     ). Our reinforcement learning model does not, on
the other hand, include trials where a grackle did not make a tube-choice, as this measure cannot
clearly speak to individual learning—for example, satiation rather than any learning of
‘appropriate’ colour tube-choice could be invoked as an explanation in such cases. Indeed, there
are, admittedly, a number of intrinsic and extrinsic factors (e.g., temperament and temperature,
respectively) that might bias grackles’ tube choice behaviour, and, in turn, the output from our
reinforcement learning model (Webster and Rutz, 2020     ). But the aim of such models is not to
replicate the entire study system. Finally, we further note, while we exclude extra learning trials
from all of our analyses (see above), our reinforcement learning model initiates estimation of φ
and λ during reversal learning, based on individual-level attractions encompassing all previous
choices. This parameterisation ensures we precisely capture grackles’ attraction scores up to the
point of stimulus-reward reversal (for details, see our RL_Execution.R script at https://github.com
/alexisbreen/Sex-differences-in-grackles-learning     ).

Agent-based simulations: pre- and post-study

Prior to analysing our data, we used agent-based simulations to validate our reinforcement
learning model (full details in our preregistration–see Supplementary file 1). In brief, the tube
choice behaviour of simulants is governed by a set of rules identical to those defined by equations
(1)      and (2)     , and we apply the exact same learning criterion for successfully finishing both
learning phases. Crucially, this apriori model vetting verifies our reinforcement learning model
can (i) detect simulated sex effects and (ii) accurately recover simulated parameter values in both
extreme and more realistic scenarios.

After model fitting, we used the same agent-based approach to forward simulate—that is, simulate
via the posterior distribution—synthetic learning trajectories by ‘birds’ via individual-level
parameter estimates generated from our across-population reinforcement learning model.
Specifically, maintaining the correlation structure among sex- and phase-specific learning
parameters, we draw samples from the full or averaged random-effects multivariate normal
distribution describing the inferred population of grackles. We use these post-study forward
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simulations to gain a better understanding of the implied consequences of the estimated sex
differences in grackles’ learning parameters (see Figure 2      and associated main text; for an
example of this approach in a different context, see Deffner et al., 2020     ).

Evolutionary model

To investigate the evolutionary significance of strategising risk-sensitive learning, we used
algorithmic optimisation techniques (Yu and Gen, 2010     ; Otto and Day, 2011     ). Specifically, we
construct an evolutionary model of grackle learning, to estimate how our learning parameters—
the information-updating rate φ and the risk-sensitivity rate λ—evolve in environments that
systematically vary across two ecologically relevant (see main text) statistical properties: the rate
of environmental stability u and the rate of environmental stochasticity s. The environmental
stability parameter u represents the probability that behaviour leading to a food reward changes
from one choice to the next. If u is small, individuals encounter a world where they can expect the
same behaviour to be adaptive for a relatively long time. As u becomes larger, optimal behaviour
can change multiple times within an individual’s lifetime. The environmental stochasticity
parameter s describes the probability that, on any given day, optimal behaviour may not result in
a food reward due to external causes specific to this day. If s is small, optimal behaviour reliably
produces rewards. As s becomes larger, there is more and more daily ‘noise’ regarding which
behaviour is rewarded.

We consider a population of fixed size with N = 300 individuals. Each generation, individual agents
are born naïve and make t = 1000 binary foraging decisions resulting in a food reward (or not).
Agents decide and learn about the world through reinforcement learning governed by their
individual learning parameters, φ and λ (see equations (1)      and (2)     ). Both learning parameters
can vary continuously, corresponding to the infinite-alleles model from population genetics (Otto
and Day, 2011     ). Over the course of their lifetime, agents collect food rewards, and the sum of
rewards collected over the last 800 foraging decisions (or ‘days’) determines their individual
fitness. We ignore the first 200 choices because selection should respond to the steady state of the
environment, independently of initial conditions (Otto and Day, 2011     ).

To generate the next generation, we assume asexual, haploid reproduction, and use fitness-
proportionate (or ‘roulette wheel’) selection to choose individuals for reproduction (Yu and Gen,
2010     ; Otto and Day, 2011     ). Here, juveniles inherit both learning parameters, φ and λ, from
their parent but with a small deviation (in random direction) due to mutation. Specifically, during
each mutation event, a value drawn from zero-centered normal distributions N(0, μφ) or N(0, μλ) is
added to the parent value on the logit-/log-scale to ensure parameters remain within allowed
limits (between 0 and 1 for φ; positive for λ). The mutation parameters μφ and μλ thus describe
how much offspring values might deviate from parental values, which we set to 0.05. We restrict
the risk-sensitivity rate λ to the interval 0 to 15, because greater values result in identical choice
behaviour. All results reported in the main text are averaged over the last 5000 generations of 10
independent 7000-generation simulations per parameter combination. This duration is sufficient
to reach steady state in all cases.

In summary, our evolutionary model is a necessary and useful first step towards addressing
targeted research questions about the interplay between learning phenotype and environmental
characteristics.
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Table a.

Reinforcement learning speed.

Between- and across-population total-trials-in-test Poisson regression model estimates and male-female contrasts, with
corresponding lower (L) and upper (U) 89% highest-posterior density intervals in parentheses.

Table b.

Reinforcement learning switches.

Between- and across-population total-choice-option-switches-in-test Poisson regression model estimates and male-female
contrasts, with corresponding lower (L) and upper (U) 89% highest-posterior density intervals in parentheses.
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Table c.

Reinforcement learning information-updating rate ϕ.

Between- and across-population computational model ϕ estimates and male-female contrasts, with posterior means and
corresponding lower (L) and upper (U) 89% highest-posterior density intervals in parentheses.

Table d.

Reinforcement learning risk-sensitivity rate λ.

Between- and across-population computational model λ estimates and male-female contrasts, with posterior means and
corresponding lower (L) and upper (U) 89% highestposterior density intervals in parentheses.
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Abstract
How might differences in dispersal and learning interact in range expansion dynamics? To begin
to answer this question, in this preregistration we detail the background, hypothesis plus
associated predictions, and methods of our proposed study, including the development and
validation of a mechanistic reinforcement learning model, which we aim to use to assay colour-
reward reinforcement learning (and the influence of two candidate latent parameters—speed and
sampling rate—on this learning) in great-tailed grackles—a species undergoing rapid range
expansion, where males disperse.

Introduction
Dispersal and range expansion go ‘hand in hand’; movement by individuals away from a
population’s core is a pivotal precondition of witnessed growth in species’ geographic limits
(Chuang & Peterson, 2016     ; Ronce, 2007     ). Because ‘who’ disperses—in terms of sex—varies
both within and across taxa (for example, male-biased dispersal is dominant among fish and
mammals, whereas female-biased dispersal is dominant among birds; see Table 1      in Trochet et
al., 2016     ), skewed sex ratios are apt to arise at expanding range fronts, and, in turn,
differentially drive invasion dynamics. Female-biased dispersal, for instance, can ‘speed up’ staged
invertebrate invasions by increasing offspring production (Miller & Inouye, 2013     ). Alongside
sex-biased dispersal, learning ability is also argued to contribute to species’ colonisation capacity,
as novel environments inevitably present novel (foraging, predation, shelter, and social)
challenges that newcomers need to surmount in order to settle successfully (Sol et al., 2013     ;
Wright et al., 2010     ). Indeed, a growing number of studies show support for this supposition (as
recently reviewed in Lee & Thornton, 2021     ). Carefully controlled choice tests, for example, show
that urban-dwelling individuals—that is, the ‘invaders’—will both learn and unlearn novel
reward-stimulus pairings more rapidly than their rural-dwelling counterparts (Batabyal & Thaker,
2019     ), suggesting that range expansion selects for enhanced learning ability at the dispersal
and/or settlement stage(s). Given the independent influence of sex-biased dispersal and learning
ability on range expansion, it is perhaps surprising, then, that their potential interactive influence
on this aspect of movement ecology remains unexamined, particularly as interactive links
between dispersal and other behavioural traits such as aggression are documented within the
range expansion literature (Duckworth, 2006     ; Gutowsky & Fox, 2011     ).

That learning ability can covary with, for example, exploration (e.g., Auersperg et al., 2011     ;
Guillette et al., 2011     ) and neophobia (e.g., Verbeek et al., 1994     ), two behaviours which may
likewise play a role in range expansion (Griffin et al., 2017     ; Lee & Thornton, 2021     ), is one
potential reason for the knowledge gap introduced above. Such correlations stand to mask what
contribution, if any, learning ability lends to range expansion—an undoubtedly daunting research
prospect. A second (and not mutually exclusive) reason is that, for many species, a detailed diary
of their range expansion is lacking (Blackburn et al., 2009     ; Udvardy & Papp, 1969     ). And patchy
population records inevitably introduce interpretive ‘noise,’ imaginably impeding population
comparisons of learning ability (or the like).
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In range-expanding great-tailed grackles (Quiscalus mexicanus), however, learning ability appears
to represent a unique source of individual variation; more specifically, temporarily-captive great-
tailed grackles’ speed to solve colour-reward reinforcement learning tests does not correlate with
measures of their exploration (time spent moving within a novel environment), inhibition (time to
reverse a colour-reward preference), motor diversity (number of distinct bill and/or feet
movements used in behavioural tests), neophobia (latency to approach a novel object), risk
aversion (time spent stationary within a ‘safe spot’ in a novel environment), persistence (number
of attempts to engage in behavioural tests), or problem solving (number of test-relevant functional
and non-functional object-choices) (Logan, 2016a     , 2016b     ). Moreover, careful combing by
researchers of public records, such as regional bird reports and museum collections, means that
great-tailed grackle range-expansion data is both comprehensive and readily available (Dinsmore
& Dinsmore, 1993     ; Pandolfino et al., 2009     ; Wehtje, 2003     ). Thus, great-tailed grackles offer
behavioural ecologists a useful study system to investigate the interplay between life-history
strategies, learning ability, and range expansion.

Here, for the first time (to our knowledge), we propose to investigate potential differences in
colour-reward reinforcement learning performance between male and female great-tailed
grackles (Figure 1     ), to test the hypothesis that sex differences in learning ability are related to
sex differences in dispersal. Since the late nineteenth century, great-tailed grackles have been
expanding their range at an unprecedented rate, moving northward from their native range in
Central America into the United States (breeding in at least 20 states), with several first-sightings
spanning as far north as Canada (Dinsmore & Dinsmore, 1993     ; Wehtje, 2003     ). Notably, the
record of this range expansion in great-tailed grackles is heavily peppered with first-sightings
involving a single or multiple male(s) (Dinsmore & Dinsmore, 1993     ; Kingery, 1972     ; Littlefield,
1983     ; Stepney, 1975     ; Wehtje, 2003     ). Moreover, recent genetic data show that, when
comparing great-tailed grackles within a population, average relatedness: (i) is higher among
females than among males; and (ii) decreases with increasing geographic distance among females;
but (iii) is unrelated to geographic distance among males; hence, confirming a role for male-biased
dispersal in great-tailed grackles (Sevchik et al., in press). Considering these natural history and
genetic data, then, we expect male and female great-tailed grackles to differ across at least two
colour-reward reinforcement learning parameters: speed and sampling rate (here, sampling is
defined as switching between choice-options). Specifically, we expect male—versus female—great-
tailed grackles: (prediction 1 & 2) to be faster to, firstly, learn a novel colour-reward pairing, and
secondly, reverse their colour preference when the colour-reward pairing is swapped; and
(prediction 3) to be more deterministic—that is, sample less often—in their colour-reward
learning; if learning ability and dispersal relate. Indeed, since invading great-tailed grackles face
agribusiness-led wildlife management strategies, including the use of chemical crop repellents
(Werner et al., 2011     , 2015     ), range expansion should disfavour slow, error-prone learning
strategies, resulting in a spatial sorting of learning ability in great-tailed grackles (Wright et al.,
2010     ). Related to this final point, we further expect (prediction 4) such sex differences in
learning ability to be more pronounced in great-tailed grackles living at the edge, rather than the
intermediate and/or core, region of their range (e.g., Duckworth, 2006     ).

Methods

Data

This preregistration aims to use colour-reward reinforcement learning data collected (or being
collected) in great-tailed grackles across three study sites that differ in their range-expansion
demographics; that is, belonging to a core, intermediate, or edge population (based on time-since-
settlement population growth dynamics, as outlined in Chuang & Peterson, 2016     ). Specifically,
data will be utilised from: (i) Tempe, Arizona—hereafter, the core population (estimated—by
adding the average time between first sighting and first breeding to the year first sighted—to be

https://doi.org/10.7554/eLife.89315.1
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Figure 1

Left panel: images showing a male and female great-tailed grackle (credit: Wikimedia Commons). Right panel: schematic of
the colour-reward reinforcement learning experimental protocol. In the initial learning phase, great-tailed grackles are
presented with two colour-distinct tubes; however, only one coloured tube (e.g., dark grey) contains a food reward (F+ versus
F-). In the reversal learning phase, the colour-reward tube-pairings are swapped. The passing criterion was identical in both
phases (see main text for details).

https://doi.org/10.7554/eLife.89315.1
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breeding since 1951) (Walter, 2004     ; Wehtje, 2003     ); (ii) Santa Barbara, California—hereafter,
the intermediate population (known to be breeding since 1996) (Lehman, 2020     ); and (iii)
Woodland, California—hereafter, the edge population (known to be breeding since 2004)
(Hampton, 2001     ). Data collection at both the Tempe, Arizona and Santa Barbara, California
study sites has been completed prior to the submission of this preregistration (total sample size
across sites: nine females and 25 males); however, data collection at the Woodland, California
study site is ongoing (current sample size: three females and nine males; anticipated minimum
total sample size: five females and ten males). Thus, the final data set should contain colour-
reward reinforcement learning data from at least 14 female and 35 male great-tailed grackles.

Experimental protocol

General

A step-by-step description of the experimental protocol is reported elsewhere (e.g., Blaisdell et al.,
2021     ). As such, below we detail only the protocol for the colour-reward reinforcement learning
tests that we propose to analyse herein.

Colour-reward reinforcement learning tests

The reinforcement learning tests consist of two phases (Figure 1     , right panel): (i) colour-reward
learning (hereafter, initial learning) and (ii) colour-reward reversal learning (hereafter, reversal
learning). In both phases, two different coloured tubes are used: for Santa Barbara great-tailed
grackles, gold and grey (Logan, 2016b     , 2016a     ); for all other great-tailed grackles: light and
dark grey (Blaisdell et al., 2021     ). Each tube consists of an outer and inner diameter of 26 mm
and 19 mm, respectively; and each is mounted to two pieces of plywood attached at a right angle
(entire apparatus: 50 mm wide × 50 mm tall × 67 mm deep); thus resulting in only one end of each
coloured tube being accessible (Figure 1     , right panel).

In the initial learning phase, great-tailed grackles are required to learn that only one of the two
coloured tubes contains a food reward (e.g., dark grey; this colour-reward pairing is
counterbalanced across great-tailed grackles within each study site). Specifically, the rewarded
and unrewarded coloured tubes are placed—either on a table or on the floor—in the centre of the
aviary run (distance apart: table, 2 ft; floor, 3 ft), with the open tube-ends facing, and
perpendicular to, their respective aviary side-wall. Which coloured tube is placed on which side of
the aviary run (left or right) is pseudorandomised across trials. A trial begins at tube-placement,
and ends when a great-tailed grackle has either made a tube-choice or the maximum trial time has
elapsed (eight minutes). A tube-choice is defined as a great-tailed grackle bending down to
examine the contents (or lack thereof) of a tube. If the chosen tube contains food, the great-tailed
grackle is allowed to retrieve and eat the food, before both tubes are removed and the rewarded
coloured tube is rebaited out of sight (for the great-tailed grackle). If a chosen tube does not
contain food, both tubes are immediately removed. Each great-tailed grackle is given, first, up to
three minutes to make a tube-choice (after which a piece of food is placed equidistant between the
tubes to entice participation); and then, if no choice has been made, an additional five minutes
maximum, before both tubes are removed. All trials are recorded as either correct (choosing the
rewarded colour tube), incorrect (choosing the unrewarded colour tube), or incomplete (no choice
made); and are presented in 10-trial blocks. To pass initial learning, a great-tailed grackle must
make a correct choice in at least 17 out of the most recent 20 trials, with a minimum of eight and
nine correct choices across the last two blocks.

In the reversal learning phase, great-tailed grackles are required to learn that the colour-reward
pairing has been switched; that is, the previously unrewarded coloured tube (e.g., light grey) now
contains a food reward. The protocol for this second and final learning phase is identical to that,
described above, of the initial learning phase.

https://doi.org/10.7554/eLife.89315.1
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Analysis plan

General

Here, we will analyse, process, and visually present our data using, respectively, the ‘rstan’ (Stan
Development Team, 2020     ), ‘rethinking’ (McElreath, 2018     ), and ‘tidyverse’ (Wickham et al.,
2019     ) packages in R (R Core Team, 2021     ). Our reproducible code is available on GitHub (https:
//github.com/alexisbreen/Sex-differences-in-grackles-learning     ).

Reinforcement learning model

In this preregistration, we propose to employ an adapted (from Deffner et al., 2020     ) Bayesian
reinforcement learning model, to examine the influence of sex on great-tailed grackles’ initial and
reversal learning performance. The reinforcement learning model, defined below, allows us to
link observed coloured tube-choices to latent individual-level knowledge-updating (of attractions
towards, learning about, and sampling of, either coloured tube) based on recent tube-choice
reward-payoffs, and to translate such latent knowledge-updating into individual tube-choice
probabilities; in other words, we can reverse engineer the probability that our parameters of
interest (speed and sampling rate) produce great-tailed grackles’ observed tube-choice behaviour
by formulating our scientific model as a statistical model (McElreath, 2018     , p. 537). This method
can therefore capture whether, and, if so, how multiple latent learning strategies simultaneously
guide great-tailed grackles’ decision making—an analytical advantage over more traditional
methods (e.g., comparing trials to passing criterion) that ignore the potential for equifinality
(Barrett, 2019     ; Kandler & Powell, 2018     ).

Our reinforcement learning model consists of two equations:

Equation 1      expresses how attraction (A) to a choice-option (i) changes for an individual (j) across time (t + 1) based on

their prior attraction to that choice-option (Ai,j,t) plus their recently experienced choice-payoff (πi,j,t), whilst accounting

for the weight given to recent payoffs (φk,l). As φk,l increases in value, so, too, does the rate of individual attraction-

updating; thus, φk,l represents the individual learning rate. We highlight that the k, l indexing denotes that we estimate

separate φ parameters for each phase of the experiment (k = 1 for initial, k = 2 for reversal) and each sex (l = 1 for

females, l = 2 for males).

Equation 2      is a softmax function that expresses the probability (P) that option (i) is selected in
the next choice-round (t + 1) as a function of the attractions and a parameter (λk,l) that governs
how much relative differences in attraction scores guide individual choice-behaviour. The higher
the value of λk,l, the more deterministic (less option-switching) the choice-behaviour of an
individual becomes (note λk,l = 0 generates random choice); thus, λk,l represents the individual
sampling rate for phase k and sex l.

From the above reinforcement learning model, then, we will generate inferences about the effect
of sex on φk,l and λk,l from at least 1000 effective samples of the posterior distribution (see our
model validation below). We note that our reinforcement learning model also includes both
individual bird and study site as random effects (to account for repeated measures within both
individuals and populations); however, for clarity, these parameters are omitted from our
equations (but not our code: https://github.com/alexisbreen/Sex-differences-in-grackles-learning     ).
Regarding our study site random effect, we further note that, as introduced above, we will also

https://doi.org/10.7554/eLife.89315.1
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explore population-mediated sex-effects on φ and λ, by comparing these learning parameters both
within and between sexes at each study site. Finally, our reinforcement learning model excludes
trials where a great-tailed grackle did not make a tube-choice, as this measure cannot clearly
speak to individual learning ability—for example, satiation rather than any learning of
‘appropriate’ colour tube-choice could be invoked as an explanation in such cases. Indeed, there
are, admittedly, a number of intrinsic and extrinsic factors (e.g., temperament and temperature,
respectively) that might bias great-tailed grackles’ tube-choice behaviour, and, in turn, the output
from our reinforcement learning model (Webster & Rutz, 2020     ). Nonetheless, our reinforcement
learning model serves as a useful first step towards addressing if learning ability and dispersal
relate in great-tailed grackles (for a similiar rationale, see McElreath & Smaldino, 2015     ).

Model validation

We validated our reinforcement learning model in three steps. First, we performed agent-based
simulations. Specifically, we followed the tube-choice behaviour of simulated great-tailed grackles
—that is, 14 females and 35 males from one of three populations (where population membership
matched known study site sex distributions)—across the described initial learning and reversal
learning phases. The tube-choice behaviour of the simulated great-tailed grackles was governed by
a set of rules identical to those defined by our mathematical equations—for example, coloured
tube attractions were independently updated based on the reward outcome of tube choices.
Because we assigned higher average φ and λ values to simulated male (versus female) great-tailed
grackles, the resulting data set should show males outperform females on initial and reversal
learning, at both the group and individual-level; it did (Figure 2      & S1, respectively).

Next, we ran our simulated data set on our reinforcement learning model. Here, we endeavored to
determine whether our reinforcement learning model: (i) recovered our assigned φk,l and λk,l
values (it did; Table 1     ); and (ii) produced ‘correct’ qualitative inferences—that is, detected the
simulated sex differences in great-tailed grackles’ initial and reversal learning (it did; Figure 3     ).

Finally, we repeated step one and step two, using a range of realistically plausible φ and λ sex
differences (note that values for female great-tailed grackles were left unchanged from Table 1     ),
to determine whether our reinforcement learning model could detect different effect sizes of sex
on our target learning parameters. This final step confirmed that, for our anticipated minimum
sample size, our reinforcement learning model: (i) detects sex differences in φ values >= 0.03 and λ
values >= 1; and (ii) infers a null effect for φ values < 0.03 and λ values < 1 i.e., very weak
simulated sex differences (Figure 4     ). Both of these points together highlight how our
reinforcement learning model allows us to say that null results are not just due to small sample
size. Additionally, estimates obtained from step three were more precise in the reversal learning
phase compared to the initial learning phase (Figure 4     ), and we can expect to detect even
smaller sex differences if we analyse learning across both phases—an approach we will apply if
we detect no effect of phase. In sum, model validation steps one through three confirm that our
reinforcement learning model is reasonably fit.

Bias

AJB and DD are (at the time of submitting this preregistration) blind with respect to all but two
aspects of the target data: the sex and population membership of each grackle that has, thus far,
completed, or is expected to complete, the colour-reward reinforcement learning tests (because
these parameters were used in model validation simulations—see above).

Open materials

https://github.com/alexisbreen/Sex-differences-in-grackles-learning     
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Figure 2

Group-level tube-choice behaviour of simulated great-tailed grackles across colour-reward reinforcement learning trials
(females: yellow, n = 14; males: green, n = 35), following model validation step one. Tube option 1 (e.g., dark grey) was the
rewarded option in the initial learning phase; conversely, tube option 2 (e.g., light grey) contained the food reward in the
reversal learning phase. Each open circle represents an individual tube-choice; black lines indicate binomial smoothed
conditional means fitted with grey 89% compatability intervals.

Table 1

Comparison of assigned and recovered φ and λ values, following model validation step two. Eighty-nine percent highest
posterior density intervals (HPDI) are shown for recovered values.

Figure 3

Comparison of learning ability in simulated female (yellow; n = 14) and male (green; n = 35) great-tailed grackles across initial
and reversal colour-reward reinforcement learning, following model validation step two. (A) φ, the rate of learning i.e., speed.
(B) λ, the rate of sampling i.e., switching between choice-options. (C) and (D) show posterior distributions for respective
contrasts between female and male learning. Eighty-nine percent highest posterior density intervals are shaded in grey; that
this interval does not cross zero evidences a simulated effect of sex on learning ability.

https://doi.org/10.7554/eLife.89315.1
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Figure 4

Parameter recovery test for different sizes of simulated sex differences. Plots show posterior estimates of the effect of sex
(contrasts between simulated male and female great-tailed grackles; n = 14 and 35, respectively) on speed (φ) and sampling
(λ) learning parameters, following model validation step three. Black circles represent the mean recovered sex effect
estimates with grey eighty-nine percent highest posterior density intervals (HPDIs); black solid diagonal lines represent a
‘perfect’ match between assigned and recovered parameter estimates (note that we would not expect a perfect
correspondence due to stochasticity of agent-based simulations); and black dashed horizontal lines represent a recovered
null sex effect.
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Figure S1

Individual-level tube-choice behaviour of simulated great-tailed grackles across colour-reward reinforcement learning trials
(females: yellow, n = 14; males: green, n = 35). Tube option 1 (e.g., dark grey) was the rewarded option in the initial learning
phase; conversely, tube option 2 (e.g., light grey) contained the food reward in the reversal learning phase. Each open circle
shows an individual tube-choice; black solid lines show loess smoothed conditional means fitted with grey 89% compatibility
intervals; and dashed black lines show individual-unique transitions between learning phases.
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Figure 2—figure supplement 1.

Comparison of information-updating rate φ and risk-sensitivity rate λ estimates (top and bottom row, respectively) in initial
learning excluding and including extra initial learning trials (left and right column, respectively), which are present in the
original data set (see Methods and materials). Because this comparison does not show any noticeable difference depending
on their inclusion or exclusion, we excluded extra learning trials from our analyses. All plots are generated via model
estimates using our full sample size: 32 males and 17 females.
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Summary:
In this highly ambitious paper, Breen and Deffner used a multi-pronged approach to generate
novel insights on how differences between male and female birds in their learning strategies
might relate to patterns of invasion and spread into new geographic and urban areas.

The empirical results, drawn from data available in online archives, showed that while males
and females are similar in their initial efficiency of learning a standard color-food association
(e.g., color X = food; color Y = no food) scenario when the associations are switched (now,
color Y = food, X= no food), males are more efficient than females at adjusting to the new
situation (i.e., faster at 'reversal learning'). Clearly, if animals live in an unstable world, where
associations between cues (e.g., color) and what is good versus bad might change
unpredictably, it is important to be good at reversal learning. In these grackles, males tend to
disperse into new areas before females. It is thus fascinating that males appear to be better
than females at reversal learning. Importantly, to gain a better understanding of underlying
learning mechanisms, the authors use a Bayesian learning model to assess the relative role of
two mechanisms (each governed by a single parameter) that might contribute to differences
in learning. They find that what they term 'risk sensitive' learning is the key to explaining the
differences in reversal learning. Males tend to exhibit higher risk sensitivity which explains
their faster reversal learning. The authors then tested the validity of their empirical results
by running agent-based simulations where 10,000 computer-simulated 'birds' were asked to
make feeding choices using the learning parameters estimated from real birds. Perhaps not
surprisingly, the computer birds exhibited learning patterns that were strikingly similar to
the real birds. Finally, the authors ran evolutionary algorithms that simulate evolution by
natural selection where the key traits that can evolve are the two learning parameters. They
find that under conditions that might be common in urban environments, high-risk
sensitivity is indeed favored.

Strengths:
The paper addresses a critically important issue in the modern world. Clearly, some
organisms (some species, some individuals) are adjusting well and thriving in the modern,
human-altered world, while others are doing poorly. Understanding how organisms cope
with human-induced environmental change, and why some are particularly good at adjusting
to change is thus an important question.

https://doi.org/10.7554/eLife.89315.1
https://creativecommons.org/licenses/by/4.0/
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The comparison of male versus female reversal learning across three populations that differ
in years since they were first invaded by grackles is one of few, perhaps the first in any
species, to address this important issue experimentally.

Using a combination of experimental results, statistical simulations, and evolutionary
modeling is a powerful method for elucidating novel insights.

Weaknesses:
The match between the broader conceptual background involving range expansion,
urbanization, and sex-biased dispersal and learning, and the actual comparison of three
urban populations along a range expansion gradient was somewhat confusing. The fact that
three populations were compared along a range expansion gradient implies an expectation
that they might differ because they are at very different points in a range expansion. Indeed,
the predicted differences between males and females are largely couched in terms of
population differences based on their 'location' along the range-expansion gradient.
However, the fact that they are all urban areas suggests that one might not expect the
populations to differ. In addition, the evolutionary model suggests that all animals, male or
female, living in urban environments (that the authors suggest are stable but unpredictable)
should exhibit high-risk sensitivity. Given that all grackles, male and female, in all
populations, are both living in urban environments and likely come from an urban
background, should males and females differ in their learning behavior? Clarification would
be useful.

Reinforcement learning mechanisms:
Although the authors' title, abstract, and conclusions emphasize the importance of variation
in 'risk sensitivity', most readers in this field will very possibly misunderstand what this
means biologically. Both the authors' use of the term 'risk sensitivity' and their statistical
methods for measuring this concept have potential problems.

First, most behavioral ecologists think of risk as predation risk which is not considered in this
paper. Secondarily, some might think of risk as uncertainty. Here, as discussed in more detail
below, the 'risk sensitivity' parameter basically influences how strongly an option's
attractiveness affects the animal's choice of that option. They say that this is in line with
foraging theory (Stephens and Krebs 2019) where sensitivity means seeking higher expected
payoffs based on prior experience. To me, this sounds like 'reward sensitivity', but not what
most think of as 'risk sensitivity'. This problem can be easily fixed by changing the name of
the term.

In addition, however, the parameter does not measure sensitivity to rewards per se - rewards
are not in equation 2. As noted above, instead, equation 2 addresses the sensitivity of choice
to the attraction score which can be sensitive to rewards, though in complex ways depending
on the updating parameter. Second, equations 1 and 2 involve one specific assumption about
how sensitivity to rewards vs. to attraction influences the probability of choosing an option.
In essence, the authors split the translation from rewards to behavioral choices into 2 steps.
Step 1 is how strongly rewards influence an option's attractiveness and step 2 is how strongly
attractiveness influences the actual choice to use that option. The equation for step 1 is linear
whereas the equation for step 2 has an exponential component. Whether a relationship is
linear or exponential can clearly have a major effect on how parameter values influence
outcomes. Is there a justification for the form of these equations? The analyses suggest that
the exponential component provides a better explanation than the linear component for the
difference between males and females in the sequence of choices made by birds, but
translating that to the concepts of information updating versus reward sensitivity is unclear.
As noted above, the authors' equation for reward sensitivity does not actually include
rewards explicitly, but instead only responds to rewards if the rewards influence attraction
scores. The more strongly recent rewards drive an update of attraction scores, the more
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strongly they also influence food choices. While this is intuitively reasonable, I am skeptical
about the authors' biological/cognitive conclusions that are couched in terms of words
(updating rate and risk sensitivity) that readers will likely interpret as concepts that, in my
view, do not actually concur with what the models and analyses address.

To emphasize, while the authors imply that their analyses separate the updating rate from
'risk sensitivity', both the 'updating parameter' and the 'risk sensitivity' parameter influence
both the strength of updating and the sensitivity to reward payoffs in the sense of altering the
tendency to prefer an option based on recent experience with payoffs. As noted in the
previous paragraph, the main difference between the two parameters is whether they relate
to behaviour linearly versus with an exponential component.

Overall, while the statistical analyses based on equations (1) and (2) seem to have identified
something interesting about two steps underlying learning patterns, to maximize the
valuable conceptual impact that these analyses have for the field, more thinking is required
to better understand the biological meaning of how these two parameters relate to observed
behaviours, and the 'risk sensitivity' parameter needs to be re-named.

Agent-based simulations:
The authors estimated two learning parameters based on the behaviour of real birds, and
then ran simulations to see whether computer 'birds' that base their choices on those
learning parameters return behaviours that, on average, mirror the behaviour of the real
birds. This exercise is clearly circular. In old-style, statistical terms, I suppose this means that
the R-square of the statistical model is good. A more insightful use of the simulations would
be to identify situations where the simulation does not do as well in mirroring behaviour that
it is designed to mirror.

Reviewer #2 (Public Review):

Summary:
The study is titled "Leading an urban invasion: risk-sensitive learning is a winning strategy",
and consists of three different parts. First, the authors analyse data on initial and reversal
learning in Grackles confronted with a foraging task, derived from three populations labeled
as "core", "middle" and "edge" in relation to the invasion front. The suggested difference
between study populations does not surface, but the authors do find moderate support for a
difference between male and female individuals. Secondly, the authors confirm that the
proposed mechanism can actually generate patterns such as those observed in the Grackle
data. In the third part, the authors present an evolutionary model, in which they show that
learning strategies as observed in male Grackles do evolve in what they regard as conditions
present in urban environments.

Strengths:
The manuscript's strength is that it combines real learning data collected across different
populations of the Great-tailed grackle (Quiscalus mexicanus) with theoretical approaches to
better understand the processes with which grackles learn and how such learning processes
might be advantageous during range expansion. Furthermore, the authors also take sex into
account revealing that males, the dispersing sex, show moderately better reversal learning
through higher reward-payoff sensitivity. I also find it refreshing to see that the authors took
the time to preregister their study to improve transparency, especially regarding data
analysis.

Weaknesses:
One major weakness of this manuscript is the fact that the authors are working with quite
low sample sizes when we look at the different populations of edge (11 males & 8 females),
middle (4 males & 4 females), and core (17 males & 5 females) expansion range. Although I
think that when all populations are pooled together, the sample size is sufficient to answer
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the questions regarding sex differences in learning performance and which learning
processes might be used by grackles but insufficient when taking the different populations
into account.

Another weakness of this manuscript is that it does not set up the background well in the
introduction. Firstly, are grackles urban dwellers in their natural range and expand by
colonising urban habitats because they are adapted to it? The introduction also fails to
mention why urban habitats are special and why we expect them to be more challenging for
animals to inhabit. If we consider that one of their main questions is related to how learning
processes might help individuals deal with a challenging urban habitat, then this should be
properly introduced.

Also, the authors provide a single example of how learning can differ between populations
from more urban and more natural habitats. The authors also label the urban dwellers as the
invaders, which might be the case for grackles but is not necessarily true for other species,
such as the Indian rock agama in the example which are native to the area of study. Also, the
authors need to be aware that only male lizards were tested in this study. I suggest being a bit
more clear about what has been found across different studies looking at: (1) differences
across individuals from invasive and native populations of invasive species and (2)
differences across individuals from natural and urban populations.

Finally, the introduction is very much written with regard to the interaction between
learning and dispersal, i.e. the 'invasion front' theme. The authors lay out four predictions,
the most important of which is No. 4: "Such sex-mediated differences in learning to be more
pronounced in grackles living at the edge, rather than the intermediate and/or core region of
their range." The authors, however, never return to this prediction, at least not in a
transparent way that clearly pronounces this pattern not being found. The model looking at
the evolution of risk-sensitive learning in urban environments is based on the assumption
that urban and natural environments "differ along two key ecological axes: environmental
stability 𝑢 (How often does optimal behaviour change?) and environmental stochasticity 𝑠
(How often does optimal behaviour fail to pay off?). Urban environments are generally
characterised as both stable (lower 𝑢) and stochastic (higher 𝑠)". Even though it is generally
assumed that urban environments differ from natural environments the authors' assumption
is just one way of looking at the differences which have generally not been confirmed and are
highly debated. Additionally, it is not clear how this result relates to the rest of the paper: The
three populations are distinguished according to their relation to the invasion front, not with
respect to a gradient of urbanization, and further do not show a meaningful difference in
learning behaviour possibly due to low sample sizes as mentioned above.

In conclusion, the manuscript was well written and for the most part easy to follow. The
format of having the results before the methods makes it a bit harder to follow because the
reader is not fully aware of the methods at the time the results are presented. It would,
therefore, be important to more clearly delineate the different parts and purposes. Is this
article about the interaction between urban invasion, dispersal, and learning? Or about the
correct identification of learning mechanisms? Or about how learning mechanisms evolve in
urban and natural environments? Maybe this article can harbor all three, but the borders
need to be clear. The authors need to be transparent about what has and especially what has
not been found, and be careful to not overstate their case.

Author Response
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eLife assessment

This study uses a multi-pronged empirical and theoretical approach to advance our
understanding of how differences in learning relate to differences in the ways that male
versus female animals cope with urban environments, and more generally how reversal
learning may benefit animals in urban habitats. The work makes an important
contribution and parts of the data and analyses are solid, although several of the main
claims are only partially supported or overstated and require additional support.

We thank the Editor and both Reviewers for their time and for their constructive evaluation
of our manuscript. We will work to address each comment and suggestion offered by the
Reviewers in a revision.

Reviewer #1 (Public Review):

Summary:

In this highly ambitious paper, Breen and Deffner used a multi-pronged approach to
generate novel insights on how differences between male and female birds in their
learning strategies might relate to patterns of invasion and spread into new geographic
and urban areas.

The empirical results, drawn from data available in online archives, showed that while
males and females are similar in their initial efficiency of learning a standard color-food
association (e.g., color X = food; color Y = no food) scenario when the associations are
switched (now, color Y = food, X= no food), males are more efficient than females at
adjusting to the new situation (i.e., faster at 'reversal learning'). Clearly, if animals live in
an unstable world, where associations between cues (e.g., color) and what is good versus
bad might change unpredictably, it is important to be good at reversal learning. In these
grackles, males tend to disperse into new areas before females. It is thus fascinating that
males appear to be better than females at reversal learning. Importantly, to gain a
better understanding of underlying learning mechanisms, the authors use a Bayesian
learning model to assess the relative role of two mechanisms (each governed by a single
parameter) that might contribute to differences in learning. They find that what they
term 'risk sensitive' learning is the key to explaining the differences in reversal learning.
Males tend to exhibit higher risk sensitivity which explains their faster reversal learning.
The authors then tested the validity of their empirical results by running agent-based
simulations where 10,000 computer-simulated 'birds' were asked to make feeding
choices using the learning parameters estimated from real birds. Perhaps not
surprisingly, the computer birds exhibited learning patterns that were strikingly similar
to the real birds. Finally, the authors ran evolutionary algorithms that simulate evolution
by natural selection where the key traits that can evolve are the two learning parameters.
They find that under conditions that might be common in urban environments, high-risk
sensitivity is indeed favored.

Strengths:

The paper addresses a critically important issue in the modern world. Clearly, some
organisms (some species, some individuals) are adjusting well and thriving in the
modern, human-altered world, while others are doing poorly. Understanding how
organisms cope with human-induced environmental change, and why some are
particularly good at adjusting to change is thus an important question.

The comparison of male versus female reversal learning across three populations that
differ in years since they were first invaded by grackles is one of few, perhaps the first in
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any species, to address this important issue experimentally.

Using a combination of experimental results, statistical simulations, and evolutionary
modeling is a powerful method for elucidating novel insights.

Thank you—we are delighted to receive this positive feedback, especially regarding the
inferential power of our analytical approach.

Weaknesses:

The match between the broader conceptual background involving range expansion,
urbanization, and sex-biased dispersal and learning, and the actual comparison of three
urban populations along a range expansion gradient was somewhat confusing. The fact
that three populations were compared along a range expansion gradient implies an
expectation that they might differ because they are at very different points in a range
expansion. Indeed, the predicted differences between males and females are largely
couched in terms of population differences based on their 'location' along the range-
expansion gradient. However, the fact that they are all urban areas suggests that one
might not expect the populations to differ. In addition, the evolutionary model suggests
that all animals, male or female, living in urban environments (that the authors suggest
are stable but unpredictable) should exhibit high-risk sensitivity. Given that all grackles,
male and female, in all populations, are both living in urban environments and likely
come from an urban background, should males and females differ in their learning
behavior? Clarification would be useful.

Thank you for highlighting a gap in clarity in our conceptual framework. To answer the
Reviewer’s question—yes, even with this shared urban ‘history’, it seems plausible that males
and females could differ in their learning. For example, irrespective of population
membership, such sex differences could come about via differential reliance on learning
strategies mediated by an interaction between grackles’ polygynous mating system and male-
biased dispersal system, as we discuss in L254–265. Population membership might, in turn,
differentially moderate the magnitude of any such sex-effect since an edge population, even
though urban, could still pose novel challenges—for example, by requiring grackles to learn
novel daily temporal foraging patterns such as when and where garbage is collected (grackles
appear to track this food resource: Rodrigo et al. 2021 [DOI: 10.1101/2021.06.14.448443]). We
will make sure to better introduce this important conceptual information in our revision.

Reinforcement learning mechanisms:

Although the authors' title, abstract, and conclusions emphasize the importance of
variation in 'risk sensitivity', most readers in this field will very possibly misunderstand
what this means biologically. Both the authors' use of the term 'risk sensitivity' and their
statistical methods for measuring this concept have potential problems.

Please see our below responses concerning our risk-sensitivity term

First, most behavioral ecologists think of risk as predation risk which is not considered in
this paper. Secondarily, some might think of risk as uncertainty. Here, as discussed in
more detail below, the 'risk sensitivity' parameter basically influences how strongly an
option's attractiveness affects the animal's choice of that option. They say that this is in
line with foraging theory (Stephens and Krebs 2019) where sensitivity means seeking
higher expected payoffs based on prior experience. To me, this sounds like 'reward
sensitivity', but not what most think of as 'risk sensitivity'. This problem can be easily fixed
by changing the name of the term.
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We apologise for not clearly introducing the field of risk-sensitive foraging, which focuses on
how animals evaluate and choose between distinct food options, and how such foraging
decisions are influenced by pay-off variance i.e., risk associated with alternative foraging
options (seminal reviews: Bateson 2002 [DOI: 10.1079/PNS2002181]; Kacelnik & Bateson 1996
[DOI: 10.1093/ICB/36.4.402]). We further apologise for not clearly explaining how our lambda
parameter estimates such risk-sensitive foraging. To do so here, we need to consider our
Bayesian reinforcement learning model in full. This model uses observed choice-behaviour
during reinforcement learning to infer our phi (informationupdating) and lambda (risk-
sensitivity) learning parameters. Thus, payoffs incurred through choice simultaneously
influence estimation of each learning parameter—that is, in a sense, they are both sensitive to
rewards. But phi and lambda differentially direct any reward sensitivity back on
choicebehaviour due to their distinct definitions (we note this does not imply that the two
cannot influence one another i.e., co-vary on the latent scale). Glossing over the mathematics,
for phi, stronger reward sensitivity (bigger phi values) means faster internal updating about
stimulus-reward pairings, which translates behaviourally into faster learning about ‘what to
choose’. For lambda, stronger reward sensitivity (bigger lambda values) means stronger
internal determinism about seeking the non-risk foraging option (i.e., the one with the higher
expected payoffs based on prior experience), which translates behaviourally into less choice-
option switching i.e., ‘playing it safe’. We hope this information, which we will incorporate
into our revision, clarifies the rationale and mechanics of our reinforcement learning model,
and why lamba measures risk-sensitivity.

In addition, however, the parameter does not measure sensitivity to rewards per se -
rewards are not in equation 2. As noted above, instead, equation 2 addresses the
sensitivity of choice to the attraction score which can be sensitive to rewards, though in
complex ways depending on the updating parameter. Second, equations 1 and 2 involve
one specific assumption about how sensitivity to rewards vs. to attraction influences the
probability of choosing an option. In essence, the authors split the translation from
rewards to behavioral choices into 2 steps. Step 1 is how strongly rewards influence an
option's attractiveness and step 2 is how strongly attractiveness influences the actual
choice to use that option. The equation for step 1 is linear whereas the equation for step
2 has an exponential component. Whether a relationship is linear or exponential can
clearly have a major effect on how parameter values influence outcomes. Is there a
justification for the form of these equations? The analyses suggest that the exponential
component provides a better explanation than the linear component for the difference
between males and females in the sequence of choices made by birds, but translating
that to the concepts of information updating versus reward sensitivity is unclear. As
noted above, the authors' equation for reward sensitivity does not actually include
rewards explicitly, but instead only responds to rewards if the rewards influence
attraction scores. The more strongly recent rewards drive an update of attraction scores,
the more strongly they also influence food choices. While this is intuitively reasonable, I
am skeptical about the authors' biological/cognitive conclusions that are couched in
terms of words (updating rate and risk sensitivity) that readers will likely interpret as
concepts that, in my view, do not actually concur with what the models and analyses
address.

To answer the Reviewer’s question—yes, these equations are very much standard and the
canonical way of analysing individual reinforcement learning (see: Ch. 15.2 in Computational
Modeling of Cognition and Behavior by Farrell & Lewandowsky 2018 [DOI:
10.1017/CBO9781316272503]; McElreath et al. 2008 [DOI: 10.1098/rstb/2008/0131];
Reinforcement Learning by Sutton & Barto 2018). To provide a “justification for the form of
these equations'', equation 1 describes a convex combination of previous values and recent
payoffs. Latent values are updated as a linear combination of both factors, there is no simple

https://doi.org/10.7554/eLife.89315.1


Alexis J Breen et al., 2023 eLife. https://doi.org/10.7554/eLife.89315.1 46 of 49

linear mapping between payoffs and behaviour as suggested by the reviewer. Equation 2
describes the standard softmax link function. It converts a vector of real numbers (here
latent values) into a simplex vector (i.e., a vector summing to 1) which represents the
probabilities of different outcomes. Similar to the logit link in logistic regression, the softmax
simply maps the model space of latent values onto the outcome space of choice probabilities
which enter the categorial likelihood distribution. We can appreciate how we did not make
this clear in our manuscript by not highlighting the standard nature of our analytical
approach. We will do better in our revision. As far as what our reinforcement learning model
measures, and how it relates cognition and behaviour, please see our previous response.

To emphasize, while the authors imply that their analyses separate the updating rate
from 'risk sensitivity', both the 'updating parameter' and the 'risk sensitivity' parameter
influence both the strength of updating and the sensitivity to reward payoffs in the sense
of altering the tendency to prefer an option based on recent experience with payoffs. As
noted in the previous paragraph, the main difference between the two parameters is
whether they relate to behaviour linearly versus with an exponential component.

Please see our two earlier responses on the mechanics of our reinforcement learning model.

Overall, while the statistical analyses based on equations (1) and (2) seem to have
identified something interesting about two steps underlying learning patterns, to
maximize the valuable conceptual impact that these analyses have for the field, more
thinking is required to better understand the biological meaning of how these two
parameters relate to observed behaviours, and the 'risk sensitivity' parameter needs to
be re-named.

Please see our earlier response to these suggestions.

Agent-based simulations:

The authors estimated two learning parameters based on the behaviour of real birds,
and then ran simulations to see whether computer 'birds' that base their choices on
those learning parameters return behaviours that, on average, mirror the behaviour of
the real birds. This exercise is clearly circular. In old-style, statistical terms, I suppose this
means that the R-square of the statistical model is good. A more insightful use of the
simulations would be to identify situations where the simulation does not do as well in
mirroring behaviour that it is designed to mirror.

Based on the Reviewer’s summary of agent-based forward simulation, we can see we did a
poor job explaining the inferential value of this method—we apologise. Agent-based forward
simulations are posterior predictions, and they provide insight into the implied model
dynamics and overall usefulness of our reinforcement learning model. R-squared
calculations are retrodictive, and they say nothing about the causal dynamics of a model.
Specifically, agent-based forward simulation allows us to ask—what would a ‘new’ grackle
‘do’, given our reinforcement learning model parameter estimates? It is important to ask this
question because, in parameterising our model, we may have overlooked a critical
contributing mechanism to grackles’ reinforcement learning. Such an omission is invisible in
the raw parameter estimates; it is only betrayed by the parameters in actu. Agent-based
forward simulation is ‘designed’ to facilitate this call to action—not to mirror behavioural
results. The simulation has no apriori ‘opinion’ about computer ‘birds’ behavioural outcomes;
rather, it simply assigns these agents random phi and lambda draws (whilst maintaining
their correlation structure), and tracks their reinforcement learning. The exercise only
appears circular if no critical contributing mechanism(s) went overlooked—in this case
computer ‘birds’ should behave similar to real birds. A disparate mapping between computer
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‘birds’ and real birds, however, would mean more work is needed with respect to model
parameterisation that captures the causal, mechanistic dynamics behind real birds’
reinforcement learning (for an example of this happening in the human reinforcement
learning literature, see Deffner et al. 2020 [DOI: 10.1098/rsos.200734]). In sum, agent-based
forward simulation does not access goodness-of-fit—we assessed the fit of our model apriori
in our preregistration (https://osf.io/v3wxb)—but it does assess whether one did a
comprehensive job of uncovering the mechanistic basis of target behaviour(s). We will work
to make the above points on the insight afforded by agent-based forward simulation
explicitly clear in our revision.

Reviewer #2 (Public Review):

Summary:

The study is titled "Leading an urban invasion: risk-sensitive learning is a winning
strategy", and consists of three different parts. First, the authors analyse data on initial
and reversal learning in Grackles confronted with a foraging task, derived from three
populations labeled as "core", "middle" and "edge" in relation to the invasion front. The
suggested difference between study populations does not surface, but the authors do
find moderate support for a difference between male and female individuals. Secondly,
the authors confirm that the proposed mechanism can actually generate patterns such
as those observed in the Grackle data. In the third part, the authors present an
evolutionary model, in which they show that learning strategies as observed in male
Grackles do evolve in what they regard as conditions present in urban environments.

Strengths:

The manuscript's strength is that it combines real learning data collected across different
populations of the Great-tailed grackle (Quiscalus mexicanus) with theoretical
approaches to better understand the processes with which grackles learn and how such
learning processes might be advantageous during range expansion. Furthermore, the
authors also take sex into account revealing that males, the dispersing sex, show
moderately better reversal learning through higher reward-payoff sensitivity. I also find
it refreshing to see that the authors took the time to preregister their study to improve
transparency, especially regarding data analysis.

Thank you—we are pleased to receive this positive evaluation, particularly concerning our
efforts to improve scientific transparency via our study’s preregistration (https://osf.io
/v3wxb).

Weaknesses:

One major weakness of this manuscript is the fact that the authors are working with
quite low sample sizes when we look at the different populations of edge (11 males & 8
females), middle (4 males & 4 females), and core (17 males & 5 females) expansion
range. Although I think that when all populations are pooled together, the sample size is
sufficient to answer the questions regarding sex differences in learning performance and
which learning processes might be used by grackles but insufficient when taking the
different populations into account.

In Bayesian statistics, there is no strict lower limit of required sample size as the inferences
do not rely on asymptotic assumptions. With inferences remaining valid in principle, low
sample size will of course be reflected in rather uncertain posterior estimates. We note all of
our multilevel models use partial pooling on individuals (the random-effects structure),
which is a regularisation technique that generally reduces the inference constraint imposed
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by a low sample size (see Ch. 13 in Statistical Rethinking by Richard McElreath [PDF: https://
bit.ly/3RXCy8c]). We further note that, in our study preregistration (https://osf.io/v3wxb), we
formally tested our reinforcement learning model for different effect sizes of sex on learning
for both target parameters (phi and lambda) across populations, using a similarly modest N
(edge: 10 M, 5 F; middle: 22 M, 5 F ; core: 3 M, 4 F) to our actual final N, that we anticipated to
be our final N at that time. This apriori analysis shows our reinforcement learning model: (i)
detects sex differences in phi values >= 0.03 and lambda values >= 1; and (ii) infers a null
effect for phi values < 0.03 and lambda values < 1 i.e., very weak simulated sex differences
(see Figure 4 in https://osf.io/v3wxb). Thus, both of these points together highlight how our
reinforcement learning model allows us to say that across-population null results are not just
due to small sample size. Nevertheless the Reviewer is not wrong to wonder whether a bigger
N might change our population-level results (it might; so might much-needed population
replicates—see L270), but our Bayesian models still allow us to learn a lot from our current
data.

Another weakness of this manuscript is that it does not set up the background well in the
introduction. Firstly, are grackles urban dwellers in their natural range and expand by
colonising urban habitats because they are adapted to it? The introduction also fails to
mention why urban habitats are special and why we expect them to be more challenging
for animals to inhabit. If we consider that one of their main questions is related to how
learning processes might help individuals deal with a challenging urban habitat, then
this should be properly introduced.

In L53–56 we introduce that the estimated historical niche of grackles is urban environments,
and that shifts in habitat breadth—e.g., moving into more arid, agricultural environments—is
the estimated driver of their rapid North American colonisation. We will work towards
flushing out how urban-imposed challenges faced by grackles, such as the wildlife
management efforts introduced in L64–65, may apply to animals inhabiting urban
environments more broadly.

Also, the authors provide a single example of how learning can differ between
populations from more urban and more natural habitats. The authors also label the
urban dwellers as the invaders, which might be the case for grackles but is not
necessarily true for other species, such as the Indian rock agama in the example which
are native to the area of study. Also, the authors need to be aware that only male lizards
were tested in this study. I suggest being a bit more clear about what has been found
across different studies looking at: (1) differences across individuals from invasive and
native populations of invasive species and (2) differences across individuals from natural
and urban populations.

We apologise for not specifying that the review we cite in L42 by Lee & Thornton (2021)
covers additional studies on cognition in both urban invasive species as well as urban-
dwellers versus nonurban counterparts—we will remedy this omission in our revision. We
will also revise our labelling of the lizard species. We are aware only male lizards were tested
but this information is not relevant to substantiating our use of this study; that is, to highlight
that learning can differ between urban-dwelling and non-urban counterparts. Finally, the
Reviewer’s general suggestion is a good one—we will work to add this biological clarity to our
revision.

Finally, the introduction is very much written with regard to the interaction between
learning and dispersal, i.e. the 'invasion front' theme. The authors lay out four
predictions, the most important of which is No. 4: "Such sex-mediated differences in
learning to be more pronounced in grackles living at the edge, rather than the
intermediate and/or core region of their range." The authors, however, never return to
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this prediction, at least not in a transparent way that clearly pronounces this pattern not
being found. The model looking at the evolution of risk-sensitive learning in urban
environments is based on the assumption that urban and natural environments "differ
along two key ecological axes: environmental stability 𝑢 (How often does optimal
behaviour change?) and environmental stochasticity 𝑠 (How often does optimal
behaviour fail to pay off?). Urban environments are generally characterised as both
stable (lower 𝑢) and stochastic (higher 𝑠)". Even though it is generally assumed that
urban environments differ from natural environments the authors' assumption is just
one way of looking at the differences which have generally not been confirmed and are
highly debated. Additionally, it is not clear how this result relates to the rest of the paper:
The three populations are distinguished according to their relation to the invasion front,
not with respect to a gradient of urbanization, and further do not show a meaningful
difference in learning behaviour possibly due to low sample sizes as mentioned above.

Thank you for highlighting a gap in our reporting clarity. We will take care in our revision to
transparently report our null result regarding our fourth prediction; more specifically, that
we did not detect meaningful behavioural or mechanistic population-level differences in
grackles’ learning. Regarding our evolutionary model, we agree with the Reviewer that this
analysis is only one way of looking at the interaction between learning phenotype and
apparent urban environmental characteristics. Indeed, in L282–288 we state: “Admittedly, our
evolutionary model is not a complete representation of urban ecology dynamics. Relevant
factors—e.g., spatial dynamics and realistic life histories—are missed out. These omissions
are tactical ones. Our evolutionary model solely focuses on the response of reinforcement
learning parameters to two core urban-like (or not) environmental statistics, providing a
baseline for future study to build on”. But we can see now that ‘core’ is too strong a word, and
instead ‘supposed’, ‘purported’ or ‘theorised’ would be more accurate—we will revise our
wording. As far as how our evolutionary results relate to the rest of the paper, these results
suggest successful urban living should favour risk-sensitive learning, and our other analyses
in our paper reveal male grackles—the dispersing sex in this historically urban-dwelling and
currently urban-invading species—show pronounced risk-sensitive learning, so it appears
risk-sensitive learning is a winning strategy for urban-invading male grackles and urban-
invasion leaders more generally (we note, of course, other factors undoubtedly contribute to
grackles’ urban invasion success, as discussed in ‘Ideas and speculation’; see also our first
response to R1). We will work to make these links clearer in our revision. Finally, please see
our above response on the inferential sufficiency of our sample size.

In conclusion, the manuscript was well written and for the most part easy to follow. The
format of eLife having the results before the methods makes it a bit harder to follow
because the reader is not fully aware of the methods at the time the results are
presented. It would, therefore, be important to more clearly delineate the different parts
and purposes. Is this article about the interaction between urban invasion, dispersal, and
learning? Or about the correct identification of learning mechanisms? Or about how
learning mechanisms evolve in urban and natural environments? Maybe this article can
harbor all three, but the borders need to be clear. The authors need to be transparent
about what has and especially what has not been found, and be careful to not overstate
their case.

Thank you, we are pleased to read that the Reviewer found our manuscript to be generally
digestible. In our revision, we will work to add further clarity, and to temper our tone.

https://doi.org/10.7554/eLife.89315.1
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